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Main challenges for image enlargement methods in embedded systems come from the requirements of good performance, low
computational cost, and low memory usage. This paper proposes an efficient image enlargement method which can meet these
requirements in embedded system. Firstly, to improve the performance of enlargement methods, this method extracts different
kind of features for different morphologies with different approaches. Then, various dictionaries based on different kind of features
are learned, which represent the image in a more efficient manner. Secondly, to accelerate the enlargement speed and reduce
the memory usage, this method divides the atoms of each dictionary into several clusters. For each cluster, separate projection
matrix is calculated. This method reformulates the problem as a least squares regression. The high-resolution (HR) images can
be reconstructed based on a few projection matrixes. Numerous experiment results show that this method has advantages such
as being efficient and real-time and having less memory cost. These advantages make this method easy to implement in mobile

embedded system.

1. Introduction

Over the last few decades, people have widely adopted mobile
phones to life. For 2017, the number of mobile phone users
will reach almost 5.3 billion. For many mobile phone users,
mobile phone is used not only for spoken communication
but also as a tool to capture images. Mobile phones offer
great benefits to the users by enabling photography and video
recording always and everywhere. Unfortunately, many of the
images being taken with mobile phone are low in resolution
since the low quality image sensor. There are two ways to
obtain high-resolution images: (1) replace the mobile phone
with a more powerful mobile phone; (2) use some methods
to enlarge the images. Most of the mobile phone users prefer
to use a method to enlarge the image rather than replacing
the mobile phone with a more powerful mobile phone. Many
efforts have been devoted to image enlargement methods
in the past decade. However, the enlargement methods face
three challenges when applied in embedded systems: (1)
performance requirement, (2) real-time requirement, and (3)
constraint on memory consumption.

Superresolution (SR) is one of the most prospective
image enlargement methods. Existing SR methods can be
divided into three categories: interpolation-based methods
[1, 2], reconstruction-based methods [3-5], and example-
based methods [6-10].

The interpolation-based methods [1, 2] apply the correla-
tion of neighboring image pixels to approximate the funda-
mental HR pixels. These types of methods have lower com-
putation complexities. However, the interpolation does not
add any new detailed information into the enlarged image.
The quality of the enlarged image is still unsatisfying and it
may cause the aliasing to the enlarged LR image. Although the
interpolation-based methods run fast and need little memory,
the poor performance limits the application of interpolation-
based methods for the implementation in embedded system.

Reconstruction-based methods [3-7] require different
LR images of the same scene taken from slightly moved
viewpoints, and those LR images have different subpixel shifts
from each other. This category of methods tries to exploit
additional information from a sequence of successive LR
images of the same scene to synthesize HR images. Compared



with interpolation-based methods, the reconstruction-based
methods obtain better performance with a small desired
magnification factor. However, the performance of this kind
of methods degrades rapidly when the desired magnification
factor becomes large. The reconstruction-based methods
need to store the information of all the sequence LR images,
which is high memory requirement. Due to the above
reasons, reconstruction-based methods are not ready for
embedded system.

Single image SR methods such as neighbor embedding-
based methods [7, 8], regression-based methods [9, 10],
and sparse representation-based methods [11-15] have been
explored in recent years. These methods presume that the
high-frequency details lost in the LR images can be predicted
through learning the cooccurrence relationship between
LR training patches and their corresponding HR patches.
Recently, sparse representation-based methods have proven
to be effective towards solving image superresolution prob-
lems. Yang et al. [16] proposed an approach based on sparse
representation, with the assumption that the HR and LR
images share the same set of sparse coeflicients. Therefore, the
HR image can be reconstructed by combining the trained HR
dictionary and the sparse coefficients of the corresponding
LR image. Although the sparse representation-based meth-
ods offer a good performance, the optimization of dictionary
learning and image reconstruction has a problem of highly
intensive computation. Besides, sparse representation-based
SR methods reserve memory to store the information of HR
dictionary and LR dictionary. The size of dictionary impacts
the memory usage. Sparse representation-based SR methods
require intensive large memory, especially with increasing
size of dictionary. Both the time-complexity and memory
usage are key limit factors in the embedded system applica-
tions of these methods. Zhan et al. [17] proposed a fast mul-
ticlass dictionaries learning method in MRI reconstruction.
Timofte et al. [18] constructed a set of mapping relationships
between the LR and HR patches using a learned LR-HR
dictionary. Anchored Neighborhood Regression method [18]
reformulates the problem as a least squares regression, which
leads to a vast computational speedup while keeping the same
accuracy as previous methods. Anchored Neighborhood
Regression method calculates the mapping matrix based on
a universal dictionary. However, a large number of different
structural patterns exist in an image, whereas one dictionary
is not capable of capturing all of the different morphologies.
Besides, Anchored Neighborhood Regression method still
needs to store separate projection matrix for each dictionary
atom which is high memory usage.

The existing sparse representation-based SR methods
always suffer from three main problems for embedded sys-
tem. First, the performance of these methods is limited, since
these methods only use one approach to extract the features
of the image for presenting the LR image generally. However,
the morphologies vary significantly across images. Different
patches prefer different features for accurately representing
different morphologies. A single feature extraction approach
cannot represent the image accurately. Therefore, jointly
representing an image with different kind of features is impor-
tant. Furthermore, time-complexity and memory usage are
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key limit factors in the embedded system applications of these
methods. The optimization of dictionary learning and image
reconstruction leads to highly intensive computation. Sparse
representation-based methods need to reserve memory to
store the information of HR dictionary and LR dictionary.
The size of dictionary impacts the memory usage.

Above all, this study makes the following three main
contributions. (1) Jointly representing an image with different
types of features is proposed in feature extraction stage. For
accurately representing different morphologies, images (or
patches) prefer different types of features extracted by differ-
ent approaches, since one single feature extraction approach
cannot accurately capture the essential features of the image.
(2) Multiple dictionaries are learned based on different types
of features in sparse representation stage, since one dictionary
with single type of features is inadequate in capturing all of
the different morphologies of the image. To capture the differ-
ent morphologies of the image more accurately, multifeature
dictionaries, which consist of different dictionaries with dif-
ferent features, are learned. (3) To reduce the computational
cost and memory usage, we propose an Anchored Cluster
Regression method. Anchored Cluster Regression method
divides the dictionary atoms into several clusters. Then, the
projection matrix for each cluster is calculated. In Anchored
Cluster Regression method, each HR patch can be recon-
structed by the projection matrix of its corresponding cluster.
Anchored Cluster Regression method reformulates the prob-
lem as a least squares regression. It only needs to store the pro-
jection matrix of each cluster. Anchored Cluster Regression
leads to a vast computational speedup and needs less memory.

2. Sparse Representation-Based SR Method

Superresolution aims to reconstruct the HR image from the
LR image, which can be formulated as follows:

Y = HBX, )

where Y € RY is the observed low-resolution (LR) image.
X e RM is its corresponding high-resolution (HR) image
of the same scene. Y is a downsampled and blurred version
of X. H denotes a downsampling operator and B is the blur
operator.

Let Patch_y’ be LR patch of the LR image with the size
\/n x \/n at the location i, i = 1,2,...,C. Then, we have

Patch,yi =R;(Y), (2)

where R;(:) is an operator that extracts a patch at position i
from the LR image Y.

Similarly, the corresponding HR patch Patch_x’ is with
the size VnL x VnL at the location i, i = 1,2,...,C. And
we have

Patch x' = R (X). (3)

With LR patch Patch_y', y' is the feature extracted from
Patch_y'. The feature can be expressed as

y' = Features;, (Patch,yi) , (4)

where Features; (-) refers to extracting LR feature operator.
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Subsequently, the corresponding HR feature x' is extract-
ed from HR patch Patch_x':

x' = Peaturesy; (Patchxi) , ()

where Featuresy(-) refers to extracting HR feature operator,
which is usually the differences between the LR image and its
corresponding HR image.

With the sparse generating model, each LR patch feature
y' (¥ € M") can be projected over the LR dictionary D),
which characterizes the LR patches. This projection produces
a sparse representation of yi via ocf:

y =Dog y eR", o, <k (6)

where D, and o are the LR dictionary and the sparse
representation of y', respectively. Generally, in order to obtain
an optimal & that has the fewest nonzero elements, we should
solve the following optimization problem:

o =min D=y, + A lladly» @)

where A is a constant.
Similarly, we have the sparse representation of the HR
patch:

x = Dha;, (8)

where D, is the HR dictionary. Conventional sparse
representation-based methods assume that the LR patch
and its corresponding HR version share the same sparse
coefficients in relation to their own dictionaries; namely, oc§ =
ocZ. Therefore,

x' = Dya. )

HR dictionary is defined as
D, = argDminZ Hx,- - Dy« "2 . (10)
h i

The sizes of the dictionaries D; and Dy are D, € R™Y
and D, € R™, respectively, where w is the number of
atoms in the dictionary. # is the dimension of each atom in
LR dictionary while # is the dimension of each atom in HR
dictionary.

It is clear that the sparse representation is a bridge
between low-resolution and high-resolution patches. To gen-
erate such sparse representation, both LR dictionary D; and
HR dictionary Dy, play a key role. The dictionaries D; and Dj,
can be easily generated from a set of samples by the methods
such as OMP [13].

Once sparse coefficients for each LR patch are learned,
we can use this sparse representation to recover its corre-
sponding HR patch. If we have obtained all the reconstructed
HR patches, the HR image is recovered by averaging the
overlapping reconstructed patches on their overlaps.

3. The Proposed SR Method

The proposed method can be divided into three steps:
(a) learning different dictionary based on different mor-
phologies, (b) calculating the projection matrixes, and (c)
reconstructing the HR mobile sensor image.

3.1. Learning the Dictionaries Based on Different Features.
Most existing sparse representation-based SR methods use
only derivative features to represent the morphologies of
LR image. However, the artifacts would occur when using
inappropriate features. An explanation for this phenomenon
is that dictionary learning from only one kind of features
cannot represent essential morphologies of the images. Since
the morphologies can vary significantly across images, dif-
ferent patches prefer different features for representation of
their morphology accurately. As such, multifeature treatment
can help represent the image in a more efficient manner. We
propose a method which can present the image with different
dictionaries based on different features.

For LR patch Patch_y’, K different types of features can
be adopted to represent it:

yi’k = Featureslz (Patch,yi) , k=1,2,...,K, (1)

where yi’k (k = 1,2,...,K) is the kth kind of features of
Patch_ yi. Featuresﬁ(-) denotes extracting kth kind of features.

Similarly, for the HR patch Patch_x', x’ is the feature of it.

Given HR patch Patch_x' and LR patch Patch_y’, we can
obtain K kinds of LR and HR patch pairs { yi’k Xt (k=
1,2,...,K) for training.

Based on the K kinds of LR and HR training sets {y", x'}
prepared above, the LR and HR dictionaries of these training
sets are learned from the following models.

The K-SVD dictionary training is applied to the set of
patches { yi’k}:

Df = arg min " yi’k - Dfoc;"kui
Dfag* (12)

st ||, <L Vi

where ocf’k are sparse coeflicient vectors of yi’k and || - ||, is the
I° norm counting the nonzero entries of a vector. Most sparse
representation-based SR methods rely on the assumption
that the HR and LR images share the same set of sparse
coefficients. Therefore, the HR image can be reconstructed
by combining the HR dictionary and the sparse coeflicients
of the corresponding LR image. Thus, the HR patch x’ can
be recovered by approximation as x° =~ leloc;"k. D'fl can be
calculated by minimizing the following mean approximation
error; that is,

ik i ik ik|?
D;" =arg irkmn “x -D) o "2 (13)

h

3.2. Calculating the Projection Matrixes. Although sparse
representation-based methods offer a good performance, the
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FIGURE 1: Framework of sparse representation-based SR method.

FIGURE 2: Test images in our experiments.

optimization of dictionary learning and image reconstruction
has a problem of highly intensive computation. Besides,
sparse representation-based SR methods need to reserve
memory to store the information of HR dictionary and LR
dictionary. The size of dictionary impacts the memory usage.
Sparse representation-based SR methods require intensive
large memory, especially with increasing size of dictionary.
Both time-complexity and memory usage are key limit factors
in the embedded system applications of these methods.

Timofte et al. [19] proposed an Anchored Neighborhood
Regression method, which constructed a set of mapping
matrixes between the LR and HR patches using learned LR
and HR dictionaries.

Based on multiple dictionaries obtained in Section 3.2,
Anchored Neighborhood Regression method solves this

problem as follows: for each dictionary, to calculate the
sparse representation of y', problem (7) is reformulated as
a least squares regression regularized by the [,-norm of the
coefhicients [19]:

af =min |Dfa" -y, + A", aa)
where D;‘ is the LR dictionary of the kth type of feature. Dﬁ
is the corresponding HR dictionary of Df. af is the sparse
vector of y'.

Then, Ridge Regression is employed to solve the problem.
The algebraic solution [19] is given as

af = ((p})' D} + M)fl (D) 5. (15)
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(d)

(e)

FIGURE 3: Visual comparison of baby: (a) original HR image, (b) results obtained using Cubic B-spline method, (c) results obtained using
Yang’s method, (d) results obtained using the ANR method, and (e) results obtained using our method.

Since sparse representation-based SR methods assume
that the HR and LR images share the same set of sparse
coeflicients, therefore, the HR patches can be reconstructed
by the sparse coefficients of the LR image oclk and the

corresponding HR dictionary Df:
i Nk k k KTk A 6
x' =Dyoy =Di((Df) Df+A1) (Df) y.  (16)

We can obtain mapping matrixes between the LR and HR
patches:
x' = PGy,
- 17)
k k K\ 1k LT
PL =D} <(Dl) Dy + M) (Df) .

Equation (17) means that we can precalculate a mapping
matrix for each dictionary. Inferring the HR patch becomes
a multiplication for each input patch. The mapping matrix
Pé can be computed offline and saved as a simple matrix
to be applied to new image patches, which makes vast
computational speedup while keeping the same accuracy as
previous methods.

Timoft et al. [18] group the dictionary atoms into neigh-
borhoods. More specifically, for each atom in the dictionary,
they compute its K nearest neighbors, which will represent
its neighborhood. Once the neighborhoods are defined,
Anchored Neighborhood Regression method calculates a
separate projection matrix Pik for each dictionary atom df
based on its own neighborhood. The SR problem can then
be solved by calculating the nearest atom in the dictionary
for each input patch feature. Then, the HR patch can be
reconstructed using the projection matrix of the nearest
atom:

i ki
x =Py,

. (18)
pF = pff ((Df"i)T DF + )u) 1 (D),

where PF is the projection matrix of the atom d* and d¥ is
the nearest atom of y' in the LR dictionary D;‘. D;‘” is the
neighborhoods set of atoms d~. DZ’i is the corresponding set

of the HR dictionary DZ.
Anchored Neighborhood Regression method reformu-
lates the SR problem as a least squares regression, which
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FIGURE 4: Visual comparison of bird: (a) original HR image, (b) results obtained using Cubic B-spline method, (c) results obtained using
Yang’s method, (d) results obtained using the ANR method, and (e) results obtained using our method.

leads to a vast computational speedup. However, Anchored
Neighborhood Regression method still needs to store sep-
arate projection matrix for each dictionary atom which is
high memory usage. Memory usage is key limit factor in the
embedded system application for Anchored Neighborhood
Regression methods.

To reduce the memory usage, we propose an Anchored
Cluster Regression method. This method divides the atoms
into several clusters for each dictionary by K-means clus-
tering. Then, separate projection matrix P¥ of each cluster
is calculated. Then, use the projection matrix of the nearest
cluster to reconstruct the HR patch:

XK = Pck yi, (19)
Pk _ Dk,c Dk,c TDk,c AL ! Dk,c T (20)
c =Yy ( ] ) t ( I ) >
T -1 T
of = ((Df’f) Dy + M) (Df°) ¥, (21)
where D;"C is the set of atoms in the cluster ¢ of the LR

dictionary D;‘. D’h"c is the corresponding set of the HR
dictionary lel.

Anchored Cluster Regression method only needs to
store the projection matrix of each cluster rather than the
projection matrix of each atom. If N atoms are divided into
K clusters, Anchored Cluster Regression method only needs
to store K projection matrix of each cluster, while Anchored
Neighborhood Regression needs to store N projection matrix
of each atom. Anchored Cluster Regression significantly
reduces the memory. Furthermore, the computational com-
plexity of Anchored Cluster Regression method is O(K),
while complexity of Anchored Neighborhood Regression is
O(N), where N is the number of atoms and K is the number
of clusters. Anchored Cluster Regression significantly reduces
the computation.

3.3. Reconstructing the HR Image. Given a LR patch, we
can get different HR patches based on different projection
matrixes. These different HR patches are integrated to gen-
erate the final reconstructed HR image.

For a LR patch Patch_y', we get the K kinds of features
{y"*} (k = 1,2,...,K). For the features y"*, we can find the
nearest cluster c* of the kth LR dictionary; then, we can obtain
kth estimated HR patch x™* of the HR patch x* based on the
projection matrix by (19).
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FIGURE 5: Visual comparison of butterfly: (a) original HR image, (b) results obtained using Cubic B-spline method, (c) results obtained using
Yang’s method, (d) results obtained using the ANR method, and (e) results obtained using our method.

Those K different estimated HR patches are fused
together to get a final reconstructed HR image X' of HR patch
x' [20]:

Kk ik
~i _ Zk:l wx (22)
= =%
D w
where w* is important. According to the weight w*, this

study fuses the K different estimated HR patches {x"*} (k =
1,2,...,K) together to get the final reconstructed HR image
X

k (e;()z

wh=exp| ——%

, (23)

where e; is representation error function. e; reflects the
accurateness of the sparse representation:

e = y* - Df“ay’”, (24)

where ¢; is smaller, Df’coclk’c is more similar to y*.

3.4. Summary of Proposed Algorithm. The proposed method
contains two phases, that is, learning phase and reconstruc-
tion phase. For the learning phase, features of different
morphologies are extracted from training images. Then,
valid multiple dictionaries are learned based on different
morphologies. For each dictionary, the atoms are divided
into multiple clusters. The projection matrix of each cluster
is calculated by (19)-(21).

In the reconstruction phase, for each LR patch, features
of different morphologies are first extracted. Then, for each
type of features, the nearest clusters in its corresponding
morphology dictionaries are found. Based on the projection
matrixes of these clusters, multiple estimated HR patches are
reconstructed in the final stage. Then, the final HR patches
are generated by using weighting average to process all
estimated HR patches. Ultimately, the HR image is composed
through averaging the overlapping reconstructed patches.
The algorithm is illustrated in Figure I.

4. Experimental Results

In our experiments, we use the same training set as [18],
which contains 91 images. For test, we use Set 5 datasets from
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FIGURE 6: Visual comparison of head: (a) original HR image, (b) results obtained using Cubic B-spline method, (c) results obtained using
Yang’s method, (d) results obtained using the ANR method, and (e) results obtained using our method.

[18]. The Set 5 datasets contain 5 images. The test images
are shown in Figure 2. The low-resolution images used in
all experiments are downsampled from the high-resolution
images. In our experiments, low-resolution images are gener-
ated by shrinking the corresponding high-resolution images
with the scale factor of 3.

Gabor filters [21] have similar frequency and orientation
representations to those of the human visual system. In
the spatial domain, a 2D Gabor filter can be generated by
Gaussian kernel function modulated with a sinusoidal plane
wave. We employed Gabor features to represent the texture
structure, since Gabor features can effectively characterize
the texture representation and discrimination of LR patch.
Gabor features of the image are extracted by convolving the
normalized images with a family of Gabor filter (in this study,
we use 2 scales and 4 orientations). Beside, we use derivative
features representing high-frequency morphology structure
of the image. k = 1 means that the features are Gabor features.
k = 2 means that the features are derivative features.

In the low-resolution images, we always use 3 x 3 low-
resolution patches, with overlap of 1 pixel between adjacent
patches, corresponding to 9 x 9 patches with overlap of 3
pixels for the high-resolution patches. 10000 pairs of low- and

high-resolution patches are randomly chosen from the patch
pairs generated by training images for dictionaries training.

Not only visual comparison but also quantitative com-
parisons are confirming the superiority of the proposed
method. Peak signal-to-noise ratio (PSNR) and the structural
similarity measurement (SSIM) have been implemented in
order to obtain some quantitative results for comparison.
The values of the PSNR and SSIM of all of the test images
were used as the quality index. The PSNR evaluates the
reconstruction quality based on the pixel intensity. The SSIM
measures the similarity between two images based on their
structural information. The SSIM metric needs a “perfect”
reference image for comparison and provides a normalized
value within [0, 1], where “0” indicates that the two images
are totally different, whereas “1” confirms that the two images
are the same. Thus, higher values of PSNR and SSIM indicate
a result with better quality.

4.1. The Effect of Dictionaries with Multifeatures. To validate
the effect of dictionaries with multiple features, we compared
our method with the derivative feature-based method and
Gabor feature-based method. In our method, we use Gabor
features to characterize the texture of the image and derivative
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(d)

(e)

FIGURE 7: Visual comparison of woman: (a) original HR image, (b) results obtained using Cubic B-spline method, (c) results obtained using
Yang’s method, (d) results obtained using the ANR method, and (e) results obtained using our method.

features represent high-frequency morphology structure of
the image. These two features are used together to present the
image. The derivative feature-based method adopted deriva-
tive features to represent the LR image. And dictionaries with
the derivative features were used to sparsely represent the LR
patch. Similarly, Gabor feature-based method adopted Gabor
features to represent the LR image. And dictionaries with
the Gabor features were used to sparsely represent the LR
patch. The PSNR and SSIM values of the SR results using
various methods are listed in Table 1. We can observe that the
proposed framework has a better performance than the single
feature-based methods in terms of both PSNR and SSIM.
This is due to the reason that one single feature extraction
approach cannot accurately capture all the essential features
of the image. Multitype features can jointly represent different
morphologies in the image more accurately, so that different
dictionaries with multitype features can represent the image
in a more efficient manner and provide a more global look
of the image, which would lead to the fact that the proposed
framework has a better performance.

4.2. Reconstruction Results. To illustrate the effectiveness
of the proposed framework in terms of visual fidelity and
objective criterion, we compared the proposed framework
with three well-known image SR algorithms, that is, Cubic

TaBLE 1: Effects of multifeatures.

Gabor features Derivative features

Method Multiple features

PSNR/SSIM PSNR/SSIM PSNR/SSIM
Baby 33.67/0.681 34.69/0.731 35.09/0.743
Bird 32.43/0.761 33.16/0.783 34.42/0.802
Butterfly 24.65/0.658 24.58/0.647 25.79/0.680
Head 29.46/0.673 33.19/0.712 33.56/0.728
Woman  24.94/0.578 29.86/0.683 30.16/0.693

B-spline interpolation method, Yangs method [16], and
Anchored Neighborhood Regression method [18]. For ANR,
in dictionary learning step, the number of atoms in the
dictionary is 1,000. The neighborhood size is 40 when
regressor is calculated.

Yang’s method needs to store the information about the
HR and LR dictionary. The sizes of HR patch and LR patch
are VnL x VnL and n x ~/n, respectively. If the atom
number in the dictionary is M, with ¢ iterations needed,
the computational complexity of Yang’s method is roughly
O(kMnL). Anchored Neighborhood Regression needs to
store M projection matrix of each atom in the dictionary.
The size of projection matrix is #L x n. The computational
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FIGURE 8: Zoomed version of the marked area of Figures 3-7: (a) original HR image, (b) results obtained using Cubic B-spline method, (c)
results obtained using Yang’s method, (d) results obtained using the ANR method, and (e) results obtained using our method.

complexity of Anchored Neighborhood Regression is O(N); ~ If N atoms are divided into K clusters, Anchored Cluster
Anchored Cluster Regression method only needs to storethe ~ Regression method only needs to store K projection matrix
projection matrix of each cluster rather than the projection  of each cluster. The computational complexity of Anchored
matrix of each atom. The size of projection matrix is nL x n.  Cluster Regression method is O(K).
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TABLE 2: Numerical results of Figures 3-7.

Cubic B-spline
PSNR/SSIM/time (second)

Yang’s

PSNR/SSIM/time (second)

ANR

PSNR/SSIM/time (second)

Our method

PSNR/SSIM/time (second)

Baby 33.91/0.697/0 34.29/0.726/56.06
Bird 32.58/0.768/0 34.11/0.789/22.33
Butterfly 24.04/0.632/0 25.58/0.674/20.22
Head 32.88/0.704/0 33.17/0.709/15.58
Woman 28.56/0.679/0 29.94/0.687/19.04

34.90/0.738/0.98 35.09/0.743/0.8
34.38/0.794/0.29 34.42/0.802/0.24
25.82/0.687/0.24 25.79/0.680/0.20
33.44/0.716/0.28 33.56/0.728/0.26

30.17/0.693/0.27

30.16/0.693/0.23

We first presented the superresolution results by different
methods in Figures 3-7. Then, the zoomed version of the
marked areas of Figures 3-7 is shown in Figure 8. We
see that the Cubic B-spline interpolation methods blurred
the edges and lost some dedicated details in the resultant
images. Although Yang’s method recovered plenty of details,
it produced many jaggy and ringing artifacts along with the
edges or details. The reason for this is that a single type of
features is unable to completely represent various structures
of the image. On the contrary, with the proposed framework,
images were presented with sharp edges but fewer artifacts.
Different dictionaries with multitype features were used
to represent the LR image and the weights of different
HR patches were also adaptively adjusted in the proposed
framework. That is why the proposed framework obtained a
better visual quality than all the other three methods.

Moreover, the PSNR and SSIM values of superresolution
results using various algorithms are listed in Table 2. We can
see the PSNR and SSIM gains of proposed framework over the
other methods, which demonstrates that the superresolution
results with the proposed framework have better objective
quality than other methods in terms of PSNR and SSIM
indexes. All this illustrates that the proposed framework is
the best one among the compared methods in terms of visual
perception and objective quality.

In addition, from Table 2, we see that the time consump-
tion of Cubic B-spline interpolation methods is 0 seconds.
That is because Cubic B-spline is an interpolation-based
method which is the simplest and the fastest. We can find
that Yang’s method is consistently the most time-consuming,
because it needs to solve a least squares optimization and an
iterative convex optimization. Due to reformulating the SR
problem as a least squares regression, our method runs a little
faster than Anchored Neighborhood Regression method,
that is, because it only needs to search the nearest cluster
in our method rather than searching the nearest atom in
Anchored Neighborhood Regression method. Besides, our
method significantly reduces the memory usage, which is
suitable for embedded system applications.

5. Conclusion

This paper introduces a new SR enlargement method for
mobile sensor image. First, to represent mobile sensor images
more accurately, complex information in natural images is
optimally captured by different morphological components
and multimorphology dictionaries learned from correspond-
ing morphological training set. For each dictionary, the atoms

are divided into multiple clusters to calculate the projection
matrix. Then, the weights of the HR patches obtained based
on different projection matrix are adaptively controlled.
Experiments have proved the improvement of the proposed
framework in terms of both visual perception and quantita-
tion comparisons with other compared methods. Since the
main computation of this scheme is matrix multiplication and
the memory usage is low, this method is easy to implement in
mobile embedded system applications.
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