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The Laplacian spectra are the eigenvalues of Laplacian matrix 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺), where𝐷(𝐺) and 𝐴(𝐺) are the diagonal matrix
of vertex degrees and the adjacency matrix of a graph 𝐺, respectively, and the spectral radius of a graph 𝐺 is the largest eigenvalue
of 𝐴(𝐺). The spectra of the graph and corresponding eigenvalues are closely linked to the molecular stability and related chemical
properties. In quantum chemistry, spectral radius of a graph is the maximum energy level of molecules. Therefore, good upper
bounds for the spectral radius are conducive to evaluate the energy of molecules. In this paper, we first give several sharp upper
bounds on the adjacency spectral radius in terms of some invariants of graphs, such as the vertex degree, the average 2-degree, and
the number of the triangles. Then, we give some numerical examples which indicate that the results are better than the mentioned
upper bounds in some sense. Finally, an upper bound of the Nordhaus-Gaddum type is obtained for the sum of Laplacian spectral
radius of a connected graph and its complement. Moreover, some examples are applied to illustrate that our result is valuable.

1. Introduction

The graphs in this paper are simple and undirected. Let 𝐺 be
a simple graph with 𝑛 vertices and𝑚 edges. For V ∈ 𝑉, denote
by 𝑑V, 𝑚V, and 𝑁V the degree of v, the average 2-degree of V,
and the set of neighbors of v, respectively.Then 𝑑V𝑚V is the 2-
degree of V. Let Δ, Δ󸀠, 𝛿, and 𝛿󸀠 denote the maximum degree,
second largest degree, minimum degree, and second smallest
degree of vertices of G, respectively. Obviously, we have Δ󸀠 <
Δ and 𝛿󸀠 > 𝛿. A graph is d-regular if Δ = 𝛿 = 𝑑.

The complement graph𝐺𝑐 of𝐺 is the graph with the same
set of vertices as G, where two distinct vertices are adjacent if
and only if they are independent in 𝐺. The line graph 𝐿

𝐺
of

𝐺 is defined by 𝑉(𝐿
𝐺
) = 𝐸(𝐺), where any two vertices in 𝐿

𝐺

are adjacent if and only if they are adjacent as edges of G.
Let𝑋 be a nonnegative squarematrix.The spectral radius

𝜌(𝑋) of𝑋 is the maximum eigenvalue of𝑋. Denote by 𝐵 the
adjacency matrix of 𝐿

𝐺
, then 𝜌(𝐵) is the spectral radius of

𝐵. Let 𝐷(𝐺) and 𝐴(𝐺) denote the diagonal matrix of vertex
degrees and the adjacency matrix of G, respectively. Then the
matrix 𝐿(𝐺) = 𝐷(𝐺)−𝐴(𝐺) is called the Laplacianmatrix of a
graph𝐺. Obviously, it is symmetric and positive semidefinite.

Similarly, the quasi-Laplacian matrix is defined as 𝑄(𝐺) =
𝐷(𝐺) + 𝐴(𝐺), which is a nonnegative irreducible matrix.
The largest eigenvalue of the Laplacian matrix, denoted by
𝜇(𝐺), is called the Laplacian spectral radius. The Laplacian
eigenvalues of a graph are important in graph theory, because
they have close relations to many graph invariants, including
connectivity, isoperimetric number, diameter, andmaximum
cut. Particularly, good upper bounds for 𝜇(𝐺) are applied in
many fields. For instance, it is used in theoretical chemistry,
within the Heilbronner model, to determine the first ioniza-
tion potential of alkanes, in combinatorial optimization to
provide an upper bound on the size of the maximum cut in
graph, in communication networks to provide a lower bound
on the edge-forwarding index, and so forth. To learn more
information on the applications of Laplacian spectral radius
and other Laplacian eigenvalues of a graph, see references [1–
4].

In the recent thirty years, the researchers obtained many
good upper bounds for 𝜇(𝐺) [5–8]. These upper bounds
improved the previous results constantly. In this paper, we
focus on the bounds for the spectral radius of a graph, and the
bound of Nordhaus-Gaddum type is also considered, which
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is the sum of Laplacian spectral radius of a connected graph
𝐺 and its complement 𝐺𝑐.

At the end of this section, we introduce some lemmas
which will be used later on.

Lemma 1 (see [9]). Let𝑀 = (𝑚
𝑖𝑗
)
𝑛×𝑛

be an irreducible non-
negative matrix with spectral radius 𝜌(𝑀), and let 𝑅

𝑖
(𝑀) be

the 𝑖th row sum of M; that is, 𝑅
𝑖
(𝑀) = ∑

𝑗
𝑚
𝑖𝑗
. Then

min
1≤𝑖≤𝑛

𝑅
𝑖
(𝑀) ≤ 𝜌 (𝑀) ≤ max

1≤𝑖≤𝑛

𝑅
𝑖
(𝑀) . (1)

Moreover, if the row sums of𝑀 are not all equal, then both
inequalities are strict.

Lemma 2 (see [10]). Let𝐺 = [𝑉, 𝐸] be a connected graph with
𝑛 vertices; then

𝜌 (𝐺) ≤
1

2
𝜌 (𝐿
𝐺
) + 1. (2)

The equality holds if and only if 𝐺 is a regular graph.

This lemma gives a relation between the spectral radius
of a graph and its line graph. Therefore, we can estimate the
spectral radius of the adjacencymatrix of graph by estimating
that of its line graph.

Lemma3 (see [11]). Let𝐵 be a real symmetric 𝑛×𝑛matrix, and
let 𝜌(𝐵) be the largest eigenvalue of 𝐵. If 𝑃(𝜆) is a polynomial
on 𝜆, then

min
V∈𝑉

𝑅V (𝑃 (𝐵)) ≤ 𝑃 (𝜌 (𝐵)) ≤ max
V∈𝑉

𝑅V (𝑃 (𝐵)) . (3)

Here𝑅V(𝑃(𝐵)) is the vth row sumofmatrix𝑃(𝐵).Moreover,
if the row sums of 𝑃(𝐵) are not all equal, then both inequalities
are strict.

Lemma 4 (see [11]). Let 𝐺 be a simple connected graph with
𝑛 vertices and let 𝜌(𝑄) be the largest eigenvalue of the quasi-
Laplacian matrix of graph 𝐺. Then

𝜇 (𝐺) ≤ 𝜌 (𝑄) , (4)

with equality holds if and only if 𝐺 is a bipartite graph.

By these lemmas, we will give some improved upper
bounds for the spectral radius and determine the correspond-
ing extremal graphs.

This paper is organized as follows. In Section 2, we
will give several sharp upper and lower bounds for the
spectral radius of graphs and determine the extremal graphs
which achieve these bounds. In Section 3, some bounds
of Nordhaus-Gaddum type will be given. Furthermore, in
Sections 2 and 3, we present some examples to illustrate that
our results are better than all of the mentioned upper bounds
in this paper, in some sense.

2. Bounds on the Spectral Radius

2.1. Previous Results. The eigenvalues of adjacency matrix of
the graph have wide applications inmany fields. For instance,
it can be used to present the energy level of specific electrons.
Specially, the spectral radius of a graph is the maximum
energy level of molecules. Hence, good upper bound for the
spectral radius helps to estimate the energy level of molecules
[12–15]. Recently, there are some classic upper bounds for the
spectral radius of graphs.

In the early time Cao [16] gave a bound as follows:

𝜌 (𝐺) ≤ √2𝑚 − 𝛿 (𝑛 − 1) + Δ (𝛿 − 1). (5)
The equality holds if and only if 𝐺 is regular graph or a

star plus of𝐾
2
, or a complete graph plus a regular graph with

smaller degree of vertices.
Hu [17] obtained an upper bound with simple form as

follows:

𝜌 (𝐺) ≤ √2𝑚 − 𝑛 − 𝛿 + 2. (6)
The equality holds if and only if 𝐺 is 𝑛 − 2 regular graph.
In 2005, Xu [18] proved that

𝜌 (𝐺) ≤ √2𝑚 − 𝑛 + 1 − (𝛿 − 1) (𝑛 − 1 − Δ). (7)
The equality holds if and only if 𝐺 is regular graph or a

star graph.
Using the average 2-degree of the vertices, the rese-

archers got more upper bounds.
Cao’s [16] another upper bound:

𝜌 (𝐺) ≤ max
𝑢∈𝑉(𝐺)

√𝑑
𝑢
𝑚
𝑢
. (8)

The equality holds if and only if 𝐺 is a regular graph or a
semiregular bipartite graph.

Similarly, Abrham and Zhang [19] proved that

𝜌 (𝐺) ≤ max
𝑢V∈𝐸(𝐺)

√𝑑
𝑢
𝑑V. (9)

The equality holds if and only if 𝐺 is a regular graph or a
semiregular bipartite graph.

In recent years, Feng et al. [10] give some upper bounds
for the spectral radius as follows:

𝜌 (𝐺) ≤ max
𝑢∈𝑉(𝐺)

√
𝑑
2

𝑢
+ 𝑑
𝑢
𝑚
𝑢

2
. (10)

The equality holds if and only if 𝐺 is regular graph.

𝜌 (𝐺) ≤ max
𝑢V∈𝐸(𝐺)

√
𝑑
𝑢
(𝑑
𝑢
+ 𝑚
𝑢
) + 𝑑V (𝑑V + 𝑚V)

2
. (11)

The equality holds if and only if 𝐺 is regular graph.

𝜌 (𝐺) ≤ max
𝑢∈𝑉(𝐺)

𝑑
𝑢
+ √𝑑
𝑢
𝑚
𝑢

2
. (12)

The equality holds if and only if 𝐺 is regular graph.

𝜌 (𝐺) ≤ max
𝑢V∈𝐸(𝐺)

𝑑
𝑢
+ 𝑑V +

√(𝑑
𝑢
− 𝑑V)
2

+ 4𝑚
𝑢
𝑚V

4
.

(13)

The equality holds if and only if 𝐺 is regular graph.
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2.2. Main Results. All of these upper bounds mentioned in
Section 2.1 are characterized by the degree and the average
2-degree of the vertices. Actually, we can also use other
invariants of the graph to estimate the spectral radius. In the
following, such an invariant will be introduced.

In a graph, a circle with length 3 is called a triangle. If 𝑢
is a triangle’s vertex in a graph, then 𝑢 is incident with this
triangle. Denote by 𝑇

𝑢
the number of the triangles associated

with the vertex 𝑢. For example, in Figure 1, we have𝑇
𝑢
= 3 and

𝑇V = 𝑇𝑤= 0.
Let 𝑁

𝑢
∩ 𝑁V be the set of the common adjacent points

of vertex 𝑢 and v; then |𝑁
𝑢
∩ 𝑁V| present the cardinality of

𝑁
𝑢
∩ 𝑁V.
Now, some new and sharp upper and lower bounds for

the spectral radius will be given.

Theorem 5. Let𝐺 be a simple connected graph with 𝑛 vertices.
Then

𝜌 (𝐺) ≤ max
𝑢V∈𝐸(𝐺)

𝑑
2

𝑢
𝑚
𝑢
+ 𝑑
2

V𝑚V − 2 (𝑇𝑢 + 𝑇V)

2 (𝑑
𝑢
𝑑V −

󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V
󵄨󵄨󵄨󵄨)

; (14)

the equality holds if and only if 𝐺 is a regular graph.

Proof. Let 𝐾 = diag(𝑑
𝑢
𝑑V − |𝑁𝑢 ∩ 𝑁V| : 𝑢V ∈ 𝐸(𝐺)) is

a diagonal matrix and 𝐵 is the adjacency matrix of the line
graph. Denote 𝑁 = 𝐾

−1
𝐵𝐾, then 𝑁 and 𝐵 have the same

eigenvalues. Since 𝐺 is a simple connected graph, it is easy
to obtain that 𝑁 is nonnegative and irreducible matrix. The
(𝑢V, 𝑝𝑞)th entry of𝑁 is equal to

{{

{{

{

𝑑
𝑝
𝑑
𝑞
−
󵄨󵄨󵄨󵄨󵄨
𝑁
𝑝
∩ 𝑁
𝑞

󵄨󵄨󵄨󵄨󵄨

𝑑
𝑢
𝑑V −

󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V
󵄨󵄨󵄨󵄨

, 𝑝𝑞 ∼ 𝑢V,

0, else,
(15)

here 𝑝𝑞 ∼ 𝑢V implies that 𝑝𝑞 and 𝑢V are adjacent in graph.
Hence, the 𝑢Vth row sum 𝑅

𝑢V(𝑁) of𝑁 is

∑

𝑝𝑞∼𝑢V

𝑑
𝑝
𝑑
𝑞
−
󵄨󵄨󵄨󵄨󵄨
𝑁
𝑝
∩ 𝑁
𝑞

󵄨󵄨󵄨󵄨󵄨

𝑑
𝑢
𝑑V −

󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V
󵄨󵄨󵄨󵄨

=

∑
𝑞∼𝑢
𝑑
𝑢
𝑑
𝑞
+ ∑
𝑝∼V 𝑑𝑝𝑑V − 2𝑑𝑢𝑑V

𝑑
𝑢
𝑑V −

󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V
󵄨󵄨󵄨󵄨

−

∑
𝑞∼𝑢

󵄨󵄨󵄨󵄨󵄨
𝑁
𝑢
∩ 𝑁
𝑞

󵄨󵄨󵄨󵄨󵄨
+∑
𝑝∼V

󵄨󵄨󵄨󵄨󵄨
𝑁
𝑝
∩ 𝑁V

󵄨󵄨󵄨󵄨󵄨
− 2
󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V

󵄨󵄨󵄨󵄨

𝑑
𝑢
𝑑V −

󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V
󵄨󵄨󵄨󵄨

=
𝑑
2

𝑢
𝑚
𝑢
+ 𝑑
2

V𝑚V − 2𝑑𝑢𝑑V − 2 (𝑇𝑢 + 𝑇V) + 2
󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V

󵄨󵄨󵄨󵄨

𝑑
𝑢
𝑑V −

󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V
󵄨󵄨󵄨󵄨

=
𝑑
2

𝑢
𝑚
𝑢
+ 𝑑
2

V𝑚V − 2 (𝑇𝑢 + 𝑇V)

𝑑
𝑢
𝑑V −

󵄨󵄨󵄨󵄨𝑁𝑢 ∩ 𝑁V
󵄨󵄨󵄨󵄨

− 2.

(16)

From Lemmas 1 and 2, we have

𝜌 (𝐺) ≤
1

2
𝜌 (𝐵) + 1

≤ max {1
2
𝑅
𝑢V (𝑁) + 1 : 𝑢V ∈ 𝑉 (𝐻)} .

(17)

𝑢 �

𝑤

𝑢 �

𝑤

Figure 1: Graph with triangles.

It means that (14) holds and the equality in (14) holds if
and only if 𝐺 is a regular graph.

In a graph, let 𝛼 and 𝛽 represent the number of vertices
with the maximum degree and minimum degree, respec-
tively. Then, we get the following results.

Theorem 6. Let𝐺 be a simple connected graph with 𝑛 vertices.
If Δ ≤ min{𝑛 − 1 − 𝛽, 𝑛 − 1 − 𝛼}, then

𝜌 (𝐺) ≤ √2𝑚 + Δ (𝛿
󸀠 − 1) − 𝛽𝛿 − (𝑛 − 1 − 𝛽) 𝛿󸀠, (18)

𝜌 (𝐺) ≥ √2𝑚 + (Δ
󸀠 − 1) 𝛿 − 𝛼Δ − (𝑛 − 1 − 𝛼) Δ

󸀠; (19)

the equality holds if and only if 𝐺 is a regular graph.

Proof. Since 𝑅V(𝐴2) is exactly the number of walks of length
2 in 𝐺 with a starting point V, thus

𝑅V (𝐴
2
) = ∑

𝑢∼V

𝑑
𝑢
= 2𝑚 − 𝑑V − ∑

𝑢≁V

𝑑
𝑢
. (20)

Therefore, from Lemmas 1 and 3, if Δ ≤ 𝑛−1−𝛽, we have
𝑑V ≤ 𝑛 − 1 − 𝛽 for any V ∈ 𝑉(𝐺). Then

𝜌 (𝐴
2
) ≤ max

V∈𝑉(𝐺)
(2𝑚 − 𝑑V − ∑

𝑢≁V

𝑑
𝑢
)

≤ max
V∈𝑉(𝐺)

(2𝑚 − 𝑑V − (𝛽𝛿 + (𝑛 − 𝑑V − 1 − 𝛽) 𝛿
󸀠
))

= max
V∈𝑉(𝐺)

(2𝑚 + (𝛿
󸀠
− 1) 𝑑V − 𝛽𝛿 − (𝑛 − 1 − 𝛽) 𝛿

󸀠
)

≤ 2𝑚 + Δ (𝛿
󸀠
− 1) − 𝛽𝛿 − (𝑛 − 1 − 𝛽) 𝛿

󸀠
.

(21)

Hence, it is easy to obtain that (18) holds.
If equality in (18) holds, then all equalities in the above

argument must hold. Thus, for all V ∈ 𝑉(𝐺)

∑

𝑢≁V

𝑑
𝑢
= 𝛽𝛿 + (𝑛 − 𝑑V − 1 − 𝛽) 𝛿

󸀠
. (22)

It means that 𝑑V = 𝑛 − 1 and 𝛿
󸀠
= 𝛿, or 𝑑

𝑢
= 𝛿 = 𝛿

󸀠; this
shows that the graph𝐺 is regular. Conversely, if𝐺 is k-regular,
it is not difficult to check that 𝜌(𝐺) attains the upper bound
by direct calculation.
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Similarly for the lower bound, if Δ ≤ 𝑛 − 1 − 𝛼, we have

𝜌 (𝐴
2
) ≥ min

V∈𝑉(𝐺)
(2𝑚 − 𝑑V − ∑

𝑢≁V

𝑑
𝑢
)

≥ min
V∈𝑉(𝐺)

(2𝑚 − 𝑑V − (𝛼Δ + (𝑛 − 𝑑V − 1 − 𝛼)Δ
󸀠
))

= min
V∈𝑉(𝐺)

(2𝑚 + (Δ
󸀠
− 1) 𝑑V − 𝛼Δ − (𝑛 − 1 − 𝛼) Δ

󸀠
)

≥ 2𝑚 + (Δ
󸀠
− 1) 𝛿 − 𝛼Δ − (𝑛 − 1 − 𝛼) Δ

󸀠
.

(23)

It means that (19) holds and the equality in (19) holds if
and only if 𝐺 is a regular graph by similar discussion.

Theorem 7. Let𝐺 be a simple connected graph with 𝑛 vertices.
If Δ ≤ 𝑛 − 1 − 𝛽; then

𝜌 (𝐺) ≤

𝛿
󸀠
− 1 + √(𝛿󸀠 + 1)

2

+ 8𝑚 − 4𝛽 (𝛿 − 𝛿󸀠) − 4𝑛𝛿󸀠

2
;

(24)

the equality holds if and only if 𝐺 is a regular graph.

Proof. According to the proof of Theorem 6, we have

𝑅V (𝐴
2
) = 2𝑚 − 𝑑V − ∑

𝑢≁V

𝑑
𝑢

≤ 2𝑚 + (𝛿
󸀠
− 1) 𝑑V − 𝛽𝛿 − (𝑛 − 1 − 𝛽) 𝛿

󸀠
.

(25)

Thus

𝑅V (𝐴
2
− (𝛿
󸀠
− 1)𝐴) ≤ 2𝑚 − 𝛽𝛿 − (𝑛 − 1 − 𝛽) 𝛿

󸀠
. (26)

From Lemma 3, we have

𝜌
2

(𝐴) − (𝛿
󸀠
− 1) 𝜌 (𝐴) − 2𝑚 + 𝛽𝛿 + (𝑛 − 1 − 𝛽) 𝛿

󸀠
≤ 0.

(27)

Solving this quadratic inequality, we obtain that upper
bound (24) holds.

If equality in (24) holds, then all equalities in the argu-
ment must hold. By the similar discussion of Theorem 6, the
equality holds if and only if 𝐺 is a regular graph.

2.3. Numerical Examples. In this section, we will present two
graphs to illustrate that our some new bounds are better than
other bounds in some sense. Let Figures 2 and 3 be graphs of
orders 7 and 8.

The estimated value of each upper bound is listed in
Table 1. Obviously, from Table 1, bound (24) is the best in all
known upper bounds for Figure 2 and bound (14) is the best
for Figure 3. Furthermore, bound (18) is the best except (13)
and (24) for Figure 2. Hence, commonly, these upper bounds
are incomparable.

3. Bounds of the Nordhaus-Gaddum Type

3.1. Previous Results. In this part, we mainly discuss the
upper bounds on the sum of Laplacian spectral radius of
a connected graph 𝐺 and its complement 𝐺𝑐, which is
called the upper bound of the Nordhaus-Gaddum type. For
convenience, let

𝜎 (𝐺) = 𝜇 (𝐺) + 𝜇 (𝐺
𝑐
) . (28)

The following are some classic upper bounds of
Nordhaus-Gaddum type.The coarse bound 𝜇(𝐺) ≤ 2Δ easily
implies the simplest upper bound on 𝜎(𝐺):

𝜎 (𝐺) ≤ 2 (𝑛 − 1) + 2 (Δ − 𝛿) . (29)

In particular, if both 𝐺 and 𝐺
𝑐 are connected and

irregular, Shi [20] gave a better upper bound as follows:

𝜎 (𝐺) ≤ 2 (𝑛 − 1 −
2

2𝑛2 − 𝑛
) + 2 (Δ − 𝛿) . (30)

Liu et al. [21] proved that

𝜎 (𝐺) ≤ 𝑛 − 2 + {(Δ − 𝜔)
2
+ 𝑛
2
+ 4 (Δ − 𝛿) (𝑛 − 1)}

1/2

, (31)

where 𝜔 = 𝑛 − 𝛿 − 1.
Shi [20] gives another upper bound

𝜎 (𝐺) ≤ 2{(𝑛 − 1) (2𝜔 − 𝛿) + (Δ + 𝛿)
2
− Δ + 𝛿}

1/2

. (32)

To learn other bounds of the Nordhaus-Gaddum type,
see references [22, 23]. In order to state the main result of
this section, we first give an upper bound for the Laplacian
spectral radius.

3.2. Laplacian Spectral Radius. Here we give a new upper
bound for the Laplacian spectral radius. For convenience, let

𝑓 (𝑚, Δ, 𝛿) = ((Δ −
𝛿

2
− 1)

2

+ 16𝑚 − 2𝛿 (4𝑛 − 𝛿 − 2))

1/2

.

(33)

Theorem 8. Let𝐺 be a simple connected graph of order 𝑛 with
Δ and 𝛿; then

𝜇 (𝐺) ≤
Δ + (3/2) 𝛿 − 1 + 𝑓 (𝑚, Δ, 𝛿)

2
, (34)

with equality holds if and only if 𝐺 is bipartite regular.
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Proof. Let 𝐾 = 𝑄 − 𝛿𝐸; then 𝑅V(𝐾) = 2𝑑V − 𝛿, it means that
2𝑑V = 𝑅V(𝐾) + 𝛿. Considering the Vth row sum of matrix𝐾2,
we have

𝑅V (𝐾
2
) = 𝑅V (𝑄

2
) − 2𝛿𝑅V (𝑄) + 𝛿

2

= 2𝑑
2

V + 2∑

𝑢∼V

𝑑
𝑢
− 4𝛿𝑑V + 𝛿

2

= 2𝑑
2

V + 2(2𝑚 − 𝑑V − ∑

𝑢≁V,𝑢 ̸= V

𝑑
𝑢
) − 4𝛿𝑑V + 𝛿

2

≤ 2𝑑
2

V + 2 (2𝑚 − 𝑑V − (𝑛 − 𝑑V − 1) 𝛿) − 4𝛿𝑑V + 𝛿
2

= 2𝑑
2

V − 2𝑑V − 2𝛿𝑑V + 4𝑚 − 2 (𝑛 − 1) 𝛿 + 𝛿
2

= (2𝑑V − 𝛿) 𝑑V − (2 + 𝛿) 𝑑V

+ 4𝑚 − 2 (𝑛 − 1) 𝛿 + 𝛿
2

≤ Δ𝑅V (𝐾) − (2 + 𝛿)
𝑅V (𝐾) + 𝛿

2

+ 4𝑚 − 2 (𝑛 − 1) 𝛿 + 𝛿
2

= (Δ −
𝛿

2
− 1)𝑅V (𝐾) + 4𝑚 − 2𝑛𝛿 + 𝛿 +

𝛿
2

2
.

(35)

This is equivalent to the following inequality:

𝑅V (𝐾
2
− (Δ −

𝛿

2
− 1)𝐾) ≤ 4𝑚 − 2𝑛𝛿 + 𝛿 +

𝛿
2

2
. (36)

From Lemma 3, we obtain that

𝜌
2

(𝐾) − (Δ −
𝛿

2
− 1) 𝜌 (𝐾) ≤ 4𝑚 − 2𝑛𝛿 + 𝛿 +

𝛿
2

2
. (37)

By simple calculation, we get the upper bound of the
spectral radius of matrix𝐾 as follows:

𝜌 (𝐾) ≤
Δ − (𝛿/2) − 1

2

+

((Δ − (𝛿/2) − 1)
2
+ 16𝑚 − 2𝛿 (4𝑛 − 𝛿 − 2))

1/2

2
.

(38)

Since𝜌(𝐾) = 𝜌(𝑄)−𝛿, therefore fromLemma 4we obtain
that the result (34) holds.

If the spectral radius 𝜇(𝐺) achieves the upper bound in
(34), then each inequality in the above proof must be equal.
This implies that Δ = 𝛿 for all V ∈ 𝑉(𝐺), thus 𝐺 is regular
graph. From Lemma 4 again, G is regular bipartite graph.

Conversely, it is easy to verify that equality in (34) holds
for regular bipartite graphs.

3.3. Bound of the Nordhaus-GaddumType. In this part, based
onTheorem 8, an upper bound of Nordhaus-Gaddum type of
Laplacian matrix will be given.
Theorem 9. Let 𝐺 be a simple graph of order 𝑛 with Δ and 𝛿;
then

𝜎 (𝐺) ≤

5𝑛 − Δ + 𝛿 − 9 + √2{2(2Δ − 𝛿 − 2)
2
+ 8𝛿 (2 + 𝛿) + (𝜔 − Δ) (𝑛 + 3Δ − 3𝛿 − 5) + 32𝑛𝜔 − 8𝜋 (3𝑛 + Δ − 1)}

1/2

4

(39)

here 𝜔 = 𝑛 − 𝛿 − 1 and 𝜋 = 𝑛 − Δ − 1. Moreover, if both 𝐺 and
𝐺
𝑐 are connected, then the upper bound is strict.

Proof. According to the relation of a graph 𝐺 and its comple-
ment, it is not difficult to obtain the invariants of 𝐺𝑐. Denote
it byΔ(𝐺𝑐) = 𝑛−𝛿−1, 𝛿(𝐺𝑐) = 𝑛−Δ−1, and𝑚(𝐺𝑐) = 𝐶2

𝑛
−𝑚.

FromTheorem 8, we have

𝜇 (𝐺
𝑐
) ≤
Δ (𝐺
𝑐
) + (3/2) 𝛿 (𝐺

𝑐
)−1

2

+
𝑓 (𝑚 (𝐺

𝑐
) , Δ (𝐺

𝑐
) , 𝛿 (𝐺

𝑐
))

2
.

(40)

Let

𝑔 (𝑚) = 𝑓 (𝑚, Δ, 𝛿) + 𝑓 (𝑚 (𝐺
𝑐
) , Δ (𝐺

𝑐
) , 𝛿 (𝐺

𝑐
)) . (41)

Then the upper bound of the Nordhaus-Gaddum type of
Laplacian matrix is

𝜎 (𝐺) = 𝜇 (𝐺) + 𝜇 (𝐺
𝑐
) ≤

5𝑛 − Δ + 𝛿 − 9 + 2𝑔 (𝑚)

4
(42)

since

𝑔
󸀠

(𝑚) =
8

𝑓 (𝑚, Δ, 𝛿)
−

8

𝑓 (𝑚 (𝐺
𝑐
) , Δ (𝐺

𝑐
) , 𝛿 (𝐺

𝑐
))
. (43)

Obviously, 𝑔󸀠(𝑚) ≥ 0 holds if and only if the following
inequality holds:

𝑓 (𝑚, Δ, 𝛿) ≤ 𝑓 (𝐶
2

𝑛
− 𝑚, 𝑛 − 𝛿 − 1, 𝑛 − Δ − 1) . (44)
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Figure 2: Graph of order 7.

Figure 3: Graph of order 8.

Let𝑚 be a variable; then solving this inequality, we have

𝑚 ≤
(𝑛 − 𝛿 − Δ − 1) (𝑛 − 3𝛿 + 3Δ − 5) + 32𝑛 (𝑛 + 𝛿 − 1)

128

−
8𝛿 (𝛿 + 2) − 8 (𝑛 − Δ − 1) (3𝑛 + Δ − 1)

128
= 𝑚
∗
.

(45)

Here, the symbol 𝑚∗ represents the right hand of the
above inequality. Then we can assert that 𝑔(𝑚) is an increas-
ing function for 𝑚 ≤ 𝑚∗, and it implies that 𝑔(𝑚) ≤ 𝑔(𝑚∗).
Therefore, we have

𝜎 (𝐺) ≤
5𝑛 − Δ + 𝛿 − 9 + 2𝑔 (𝑚

∗
)

4

=
5𝑛 − Δ + 𝛿 − 9 + 4𝑓 (𝑚

∗
, Δ, 𝛿)

4
.

(46)

Simplifying this expression by direct calculation, we
prove that the result (39) is correct.

If equality in (39) holds, then each inequality in the above
proof must be equality. From Theorem 8, we obtain that
both 𝐺 and 𝐺𝑐 are regular bipartite. But it is impossible for
a connected graph, this implies that the Laplacian spectral
radius of either 𝐺 or 𝐺𝑐 fails to achieve its upper bound and
so does the sum. Hence the inequality in (39) is strict.

3.4. Numerical Examples. In this section, we give some
examples to illustrate that the new bound is better than other
bounds for some graphs. Considering the graph of order 10
in Figure 4 and Figures 1–3, the estimated value of each upper
bound of the Nordhaus-Gaddum type is given in Table 2.

Clearly, from Table 2, we can see that new bound (39) is
the best in all known upper bounds for all figures mentioned
in this paper.

4. Conclusion

From numerical examples of Sections 2 and 3, the estimated
value of new upper bounds of the spectral radius and the

Figure 4: Graph of order 10.

Table 1: Estimated value of each upper bound.

Upper bounds Figure 2 Figure 3
Bound (5) 3.1623 4.1231

Bound (6) 3.1623 3.6056

Bound (7) 3.1623 3.6056

Bound (8) 3.1623 4.0000

Bound (9) 3.4641 3.8079

Bound (10) 3.6056 3.8079

Bound (11) 3.2787 3.6056

Bound (12) 3.5811 3.8028

Bound (13) 3.0650 3.6250

Bound (14) 3.5000 3.5000

Bound (18) 3.1623 4.0000

Bound (24) 3.0000 4.0000

Actual value 2.7321 3.3028

Table 2: Estimated value of each upper bound.

Upper bound Figure 1 Figure 2 Figure 3 Figure 4
Bound (29) 28 18 16 46

Bound (30) 27.98 17.96 15.96 45.99

Bound (31) 26.23 16.05 15.59 46.02

Bound (32) 28.43 17.44 18.22 50.52

Bound (39) 25.84 15.88 15.52 44.97

Nordhaus-Gaddum type of graphs are the smallest in all
known upper bounds for the graphs considered in these
examples. Itmeans that our results are better than the existing
upper bounds in some sense.
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high-energy band in the photoelectron spectrumof alkanes and
its dependence on molecular structure,” Journal of the Serbian
Chemical Society, vol. 64, pp. 673–680, 1999.



The Scientific World Journal 7

[4] B.Mohar and S. Poljak, “Eigenvalues and themax-cut problem,”
Czechoslovak Mathematical Journal, vol. 40, pp. 343–352, 1990.

[5] T. F.Wang, “Several sharp upper bounds for the largest laplacian
eigenvalue of a graph,” Science in China, vol. 50, no. 12, pp. 1755–
1764, 2007.

[6] X. D. Zhang, “Two sharp upper bounds for the Laplacian
eigenvalues,” Linear Algebra and Its Applications, vol. 376, no.
1-3, pp. 207–213, 2004.

[7] T. Wang, J. Yang, and B. Li, “Improved upper bounds for
the Laplacian spectral radius of a graph,” Electronic Journal of
Combinatorics, vol. 18, no. 1, article P35, 2011.

[8] T. F. Wang and B. Li, “New upper bounds for the laplacian
spectral radius of graphs,” Journal of SichuanNormal University,
vol. 33, pp. 487–490, 2010.

[9] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, New York, NY, USA, 1985.

[10] L. Feng, Q. Li, and X. D. Zhang, “Some sharp upper bounds on
the spectral radius of graphs,” Taiwanese Journal of Mathemat-
ics, vol. 11, no. 4, pp. 989–997, 2007.

[11] J. S. Li and Y. L. Pan, “Upper bounds for the laplacian graph
eigenvalues,” Acta Mathematica Sinica, vol. 20, pp. 803–806,
2004.

[12] J. L. Shu, Y. Hong, and R. K.Wen, “A Sharp upper bound on the
largest eigenvalue of the Laplacian matrix of a graph,” Linear
Algebra and Its Applications, vol. 347, pp. 123–129, 2002.

[13] D. Cvetkovic, M. doob, and H. Sachs, Spectral of Graphs:Theory
and Applications, Academic Press, NewWork, NY, USA, 1997.

[14] D. M. Cvetkovic, M. Doob, I. Gutman, and A. Yorgasev,
Recent Results in the Theory of Graph Spectra, North-Holland
Publishing, Amsterdam, The Netherlands, 1988.

[15] N. L. Biggs, Algebraic Graph Theory, Cambridge University
Press, Cambridge, 2nd edition, 1993.

[16] D. S. Cao, “Bounds on eigenvalues and chromatic number,”
Linear Algebra and Its Applications, vol. 270, pp. 1–13, 1998.

[17] S. B. Hu, “Upper bound on spectral Radius of graphs,” Journal
of Hebei University, vol. 20, pp. 232–234, 2000.

[18] H. J. Xu, “Upper bound on spectral radius of graphs,” Journal of
Jiamusi University, vol. 23, pp. 126–110, 2005.

[19] B. Abrham and X. D. Zhang, “on the spectral radius of graphs
with cut vertices,” Journal of Combinatorial Thcory, vol. 83, pp.
233–240, 2001.

[20] L. Shi, “Bounds on the (Laplacian) spectral radius of graphs,”
Linear Algebra and Its Applications, vol. 422, no. 2-3, pp. 755–
770, 2007.

[21] H. Liu, M. Lu, and F. Tian, “On the Laplacian spectral radius of
a graph,” Linear Algebra and Its Applications, vol. 376, no. 1–3,
pp. 135–141, 2004.

[22] Y. Hong and J. L. Shu, “A sharp upper bound for the spectral
radius of the Nordhaus-Gaddum type,” Discrete Mathematics,
vol. 211, pp. 229–232, 2000.

[23] S. He and J. L. Shu, “Ordering of trees with respect to their
spectral radius of Nordhaus-Gaddum type,” Journal of Applied
Mathematics, vol. 22, pp. 247–252, 2007.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


