
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 438320, 12 pages
http://dx.doi.org/10.1155/2013/438320

Research Article
Real Fast Structure-Preserving Algorithm for Eigenproblem of
Complex Hermitian Matrices

Jiangzhou Lai1 and Linzhang Lu2,3

1 School of Mathematics and Computer Science, Fuzhou University, Fuzhou 351008, China
2 School of Mathematics and Computer Science, Guizhou Normal University, Guiyang,
Guizhou 550001, China

3 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

Correspondence should be addressed to Jiangzhou Lai; jzlai868@fzu.edu.cn

Received 1 January 2013; Accepted 18 February 2013

Academic Editor: Piermarco Cannarsa

Copyright © 2013 J. Lai and L. Lu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is well known that the flops for complex operations are usually 4 times of real cases. In the paper, using real operations instead
of complex, a real fast structure-preserving algorithm for eigenproblem of complex Hermitian matrices is given. We make use of
the real symmetric and skew-Hamiltonian structure transformed by Wilkinson’s way, focus on symplectic orthogonal similarity
transformations and their structure-preserving property, and then reduce it into a two-by-two block tridiagonal symmetric matrix.
Finally a real algorithm can be quickly obtained for eigenvalue problems of the original Hermitian matrix. Numerical experiments
show that the fast algorithm can solve real complex Hermitian matrix efficiently, stably, and with high precision.

1. Introduction

We consider eigenvalue problems of the complex Hermitian
matrix of the form

𝐻𝑥 = 𝜆𝑥, 𝐻 ∈ C
𝑛×𝑛

, 𝑥 ∈ C
𝑛

, (1)

where 𝜆 is a real scalar and𝐻 ∈ C𝑛×𝑛 is a complex Hermitian
matrix of the form

𝐻 = 𝐴 + 𝑖𝐵, (2)

where 𝐴 is a real symmetric matrix; that is, 𝐴𝑇 = 𝐴 ∈ R𝑛

and 𝐵 is a real skew-symmetric nonzero matrix, that is, 𝐵 =

−𝐵
𝑇

̸= 0 ∈ R𝑛, given by

𝐴 =
𝐻
𝑇

+ 𝐻

2
, 𝐵 =

𝐻 − 𝐻
𝑇

2𝑖
, (3)

and 𝑥 ∈ C𝑛 can be written as 𝑥 = 𝑢 + 𝑖𝑣, where 𝑢, 𝑣 ∈ R𝑛.
We know that the property of the complex Hermitian

matrix is also possessed by the symmetrymatrix; therefore lit-
tle work has been done on complex Hermitian matrix. How-
ever, from the view of numerical computation, the biggest

difference between these two types of matrices is a complex
Hermitianmatrix that involves complex operations, while the
latter does not. It is well known that a complex Hermitian
matrix is unitary similar to a real diagonal matrix; that is,
it has real eigenvalue but complex eigenvector. Because the
flops for the complex operation are usually 4 times of the real
case, so how to reduce the computation cost of the eigenvalue
problem of complex Hermitian matrices is very meaningful
and worthy of research.

In 1965, the famous numerical analysis expert Wilkinson
[1] gave a way to transform a complex Hermitian matrix into
real case. To be more precise, if (𝜆, 𝑢 + 𝑖𝑣) is the eigenpair of
𝐻, then

𝐻𝑥 = (𝐴 + 𝑖𝐵) (𝑢 + 𝑖𝑣) = 𝜆 (𝑢 + 𝑖𝑣) . (4)

Since the eigenvalues of𝐻 are real, the previous equation can
be written as

[
𝐴 −𝐵

𝐵 𝐴
][

𝑢

𝑣
] = 𝜆 [

𝑢

𝑣
] . (5)
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So the eigenproblem (1) is transformed into the eigenproblem
of the real symmetry matrix

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] ∈ R

2𝑛×2𝑛

. (6)

Note that thematrix 𝑆 in (6) is not only real symmetry but also
skew-Hamiltonian. Therefore, in the following discussion,
inspired by the algorithms for the eigenproblem of Ham-
iltonian (skew-Hamiltonian) matrix [2–11], we devise an
algorithm by taking full advantage of the special structure of
(6).

In this paper we first prove that orthogonal symplectic
similarity transformations not only preserve the symmetry
and skew-Hamiltonian structure of (6), but also eigenvectors
of (6), since the eigenvectors of (6) have special structure;
that is, it is also orthogonal symplectic. Therefore, by these
transformations, a real stable, accurate, and fast method is
devised to reduce (6) into a block symmetry tridiagonal
matrix, and then we get the eigenproblem of the original Her-
mitian matrix. When implementing the method, although its
dimension doubles the one of 𝐻, we can make full use of
the special structure of 𝑆 to avoid superfluous calculation and
storage.

The remainder of the paper is organized as follows.
In Section 2, we show the basic orthogonal symplectic
matrix and its algorithm. In Section 3, we present the
overall real algorithm for eigenproblem of complex Her-
mitian matrix. Some implementation aspects are discussed
in Section 4. Finally, in Section 5, the results of numerical
experiments are discussed to end the paper.

2. Basic Orthogonal Symplectic
Matrix and Its Algorithm

It is well known that by choosing a proper unitary vector 𝑤,
Householder transformation can zero some entries of a given
vector; likewise, we definedHouseholder symplectic transfor-
mation which has the following form.

Definition 1. A real 2𝑛 × 2𝑛matrix 𝑆 is a symplectic matrix if
𝑆𝐽𝑆
𝑇

= 𝐽, where 𝑆𝑇 is the transpose of 𝑆 and 𝐽 is the orthogo-
nal matrix:

𝐽 = [
0 𝐼
𝑛

−𝐼
𝑛

0
] ∈ R

2𝑛×2𝑛

. (7)

Here 𝐼
𝑛
is the identity 𝑛 × 𝑛 matrix and 0 is the zero 𝑛 × 𝑛

matrix.

Definition 2. Letting 𝑘 ∈ {1, 2, . . . , 𝑛}, a matrix 𝐻(𝑘, 𝑤) ∈

R2𝑛×2𝑛 is called Householder symplectic matrix, if it has the
form

𝐻(𝑘, 𝑤) = [
diag (𝐼

𝑘−1
, 𝑃) 0

0 diag (𝐼
𝑘−1

, 𝑃)
] ∈ R

2𝑛×2𝑛

, (8)

where

𝑃 = 𝐼 −
2𝑤𝑤
𝑇

𝑤𝑇𝑤
, 𝑤 ∈ R

𝑛−𝑘+1

. (9)

Obviously,𝐻 = diag(𝐼
𝑘−1

, 𝑃) is Householder transformation
of order 𝑛, when 𝑤 = 0,𝐻(𝑘, 𝑤) = 𝐼

2𝑛
.

Note that Householder symplectic matrix 𝐻(𝑘, 𝑤) is just
a direct sum of two “ordinary” 𝑛-by-𝑛Householder matrices,
specially when 𝑤 = 0, 𝐻(𝑘, 𝑤) = 𝐼

2𝑛
. So based on

the algorithm of “ordinary” Householder transformation, we
obtain the following algorithm for Householder symplectic
transformation𝐻(𝑘, 𝑤) of order 2𝑛.

Algorithm 3 (Householder symplectic transformation [8]).
Given 𝑘 (1 ≤ 𝑘 < 𝑛) and 𝑦, 𝑧 ∈ R𝑛, the following algorithm
determines 𝑤 = (𝑤

𝑘
, . . . , 𝑤

𝑛
)
𝑇, such that if

𝐻(𝑘, 𝑤) (
𝑦

𝑧
) = (

𝑣

𝑥
) , (10)

then 𝑥
𝑖
= 0, 𝑖 = 𝑘 + 1, . . . , 𝑛:

𝜎 := (𝑧
2

𝑘
+ 𝑧
2

𝑘+1
+ ⋅ ⋅ ⋅ + 𝑧

2

𝑛
)
1/2

,

𝑤
𝑘
:= 𝑧
𝑘
+ sign (𝑧

𝑘
) 𝜎,

𝑤
𝑖
:= 𝑧
𝑖

(11)

end.

𝐻(𝑘, 𝑤) is completely determined by 𝑘th to 𝑛th compo-
nents of vector 𝑧; it makes 𝑥 satisfy 𝑥

𝑖
= 0 for 𝑖 = 𝑘 + 1, . . . , 𝑛.

Note that by interchanging the roles of 𝑦 and 𝑧, the previous
algorithm can be used to determine𝐻(𝑘, 𝑤) such that 𝑣

𝑖
= 0

for 𝑖 = 𝑘 + 1, . . . , 𝑛.
Householder symplectic transformation can be used to

zero large portions of a vector as Householder transforma-
tion; likewise, we can define Givens symplectic transforma-
tion, which can be used to zero single entries.

Definition 4. Given 𝑘 ∈ {1, 2, . . . , 𝑛}, a matrix 𝐽(𝑘, 𝜃) ∈ R2𝑛×2𝑛

is called Givens symplectic matrix, if it has the form

𝐽 (𝑘, 𝜃) = [
𝐶 𝑆

−𝑆 𝐶
]

=

[
[
[
[
[
[
[

[

𝐼
𝑘−1

0
𝑘−1

cos 𝜃 sin 𝜃
𝐼
𝑛−𝑘

0
𝑛−𝑘

0
𝑘−1

𝐼
𝑘−1

− sin 𝜃 cos 𝜃
0
𝑛−𝑘

𝐼
𝑛−𝑘

]
]
]
]
]
]
]

]

,

(12)

where

𝐶 = diag (𝐼
𝑘−1

, cos 𝜃, 𝐼
𝑛−𝑘

) ,

𝑆 = diag (0
𝑘−1

, sin 𝜃, 0
𝑛−𝑘

) .

(13)

𝐽(𝑘, 𝜃) is an “ordinary” 2𝑛-by-2𝑛 Givens rotation that
rotates in planes 𝑘 and 𝑛 + 𝑘. The corresponding algorithm
is as follows.
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Algorithm 5 (Givens symplectic transformation [8]). Given
𝑘 (1 ≤ 𝑘 < 𝑛) and 𝑦, 𝑧 ∈ R𝑛, the following algorithm deter-
mines 𝑐 = cos 𝜃, 𝑠 = sin 𝜃 such that if

𝐽 (𝑘, 𝑤) (
𝑦

𝑧
) = (

𝑣

𝑥
) , (14)

then 𝑥
𝑘
= 0:

𝜎 := (𝑦
2

𝑘
+ 𝑧
2

𝑘
)
1/2

,

if 𝜎 = 0

then 𝑐 := 1 and 𝑠 := 0

else 𝑐 := 𝑦
𝑘
/𝜎 and 𝑠 := 𝑧

𝑘
/𝜎

end.

(15)

3. The Reduction of the Symmetry
and Skew-Hamiltonian Matrix 𝑆

Nowwe consider some properties of the symmetry and skew-
Hamiltonian matrix 𝑆 of (6).

Lemma 6. If (𝜆, [ 𝑢
𝑣
]) is the eigenpair of

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] , (16)

then (𝜆, [
−𝑣

𝑢
]) is also its eigenpair.

Proof. If

[
𝐴 −𝐵

𝐵 𝐴
][

𝑢

𝑣
] = 𝜆 [

𝑢

𝑣
] , (17)

then we have

[
𝐴 −𝐵

𝐵 𝐴
][

−𝑣

𝑢
] = 𝜆 [

−𝑣

𝑢
] . (18)

According to Lemma 6, there are two different eigenvec-
tors corresponding to the same eigenvalue, so it can be easy
to prove that

[
𝐴 −𝐵

𝐵 𝐴
][

𝑈 −𝑉

𝑉 𝑈
] = Λ[

𝑈 −𝑉

𝑉 𝑈
] , (19)

where Λ = {𝜆
1
, . . . , 𝜆

𝑛
} is the set of eigenvalues of (6) and

[
𝑈 −𝑉

𝑉 𝑈
] ∈ R

2𝑛×2𝑛 (20)

is the eigenvectors of (6). Note that the matrix in (20) is
symplectic orthogonal. The following lemma tells us that the
product of symplectic orthogonal matrices is also symplectic
orthogonal.

Lemma 7. Supposing that 2𝑛-by-2𝑛 real matrices of the form

𝑄 = [
𝑄
1

𝑄
2

−𝑄
2
𝑄
1

] , �̃� = [
�̃�
1

�̃�
2

−�̃�
2
�̃�
1

] (21)

are both orthogonal and symplectic, then their product 𝑄�̃� is
both orthogonal and symplectic.

Lemma 7 shows that the special structure of eigenvectors
of 𝑆 can be preserved by the symplectic orthogonal similarity
transformations. The following theorem is the foundation of
the fast and stable structure-preserving algorithmgiven in the
following discussion.

Theorem 8. Suppose 𝐴𝑇 = 𝐴 ∈ 𝑅
𝑛×𝑛

, 𝐵
𝑇

= −𝐵 ̸= 0 ∈ 𝑅
𝑛×𝑛,

and

𝑄 = [
𝑄
1

𝑄
2

−𝑄
2
𝑄
1

] (22)

is an orthogonal symplectic matrix. If

[
�̃�
11

�̃�
12

�̃�
21

�̃�
22

] (23)

satisfy

[
�̃�
11

�̃�
12

�̃�
21

�̃�
22

] = [
𝑄
1

𝑄
2

−𝑄
2
𝑄
1

]

𝑇

[
𝐴 −𝐵

𝐵 𝐴
][

𝑄
1

𝑄
2

−𝑄
2
𝑄
1

] , (24)

then

�̃�
11

= �̃�
22
, �̃�

21
= −�̃�
12
,

�̃�
𝑇

11
= �̃�
11
, �̃�

𝑇

12
= −�̃�
12
.

(25)

Proof. It is easy to obtain

�̃�
11

= 𝑄
𝑇

1
𝐴𝑄
1
+ 𝑄
𝑇

1
𝐵𝑄
2
− 𝑄
𝑇

2
𝐵𝑄
1
+ 𝑄
𝑇

2
𝐴𝑄
2
,

�̃�
22

= 𝑄
𝑇

2
𝐴𝑄
2
− 𝑄
𝑇

2
𝐵𝑄
1
+ 𝑄
𝑇

1
𝐴𝑄
1
+ 𝑄
𝑇

1
𝐵𝑄
2
,

�̃�
12

= 𝑄
𝑇

1
𝐴𝑄
2
− 𝑄
𝑇

1
𝐵𝑄
1
− 𝑄
2
𝐵𝑄
2
− 𝑄
𝑇

2
𝐴𝑄
1
,

�̃�
21

= 𝑄
𝑇

2
𝐴𝑄
1
+ 𝑄
𝑇

2
𝐵𝑄
2
+ 𝑄
𝑇

1
𝐵𝑄
1
− 𝑄
𝑇

1
𝐴𝑄
2
.

(26)

Then

�̃�
11

= �̃�
22
, �̃�

21
= −�̃�
12
. (27)

Moreover 𝐴𝑇 = 𝐴, 𝐵
𝑇

= −𝐵, hence we have

�̃�
𝑇

11
= �̃�
11
, �̃�

𝑇

12
= −�̃�
12
. (28)

The previous theorem shows that the symplectic similar-
ity transformation preserves the symmetry and skew-Hamil-
tonian structure of

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] , (𝐴

𝑇

= 𝐴, 𝐵
𝑇

= −𝐵) . (29)
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This structure-preserving property provides a way to trans-
form the matrix into a special skew-Hamiltonian matrix:

[
𝑇 0

0 𝑇
] ∈ R

2𝑛×2𝑛

, (30)

where 𝑇 ∈ R𝑛×𝑛 is a real symmetry tridiagonal matrix. So we
have the following results, which provide a theoretical basis
for the real fast structure-preserving algorithm for eigenprob-
lems of a Hermitian matrix.

Theorem 9. Letting 𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] ∈ R2𝑛×2𝑛, where 𝐴𝑇 = 𝐴,

𝐵
𝑇

= −𝐵, then there exists an orthogonal symplectic matrix
𝑄 = [

𝑄
1
𝑄
2

−𝑄
2
𝑄
1

] ∈ R2𝑛×2𝑛 such that

𝑄
𝑇

𝑆𝑄 = [
𝑇 0

0 𝑇
] ∈ R

2𝑛×2𝑛

, (31)

where 𝑇 is a symmetric tridiagonal matrix. Suppose that 𝑇 has
the eigenvalue decomposition

�̃�
1

𝑇

𝑇�̃�
1
= Λ, (32)

that is

[
�̃�
1

0

0 �̃�
1

]

𝑇

[
𝑇 0

0 𝑇
] [

�̃�
1

0

0 �̃�
1

] = [
Λ 0

0 Λ
] . (33)

Then eigenvalues of 𝑆 are

𝜆 (𝑆) = 𝜆 (𝑇) ⊔ 𝜆 (𝑇) , (34)

and eigenvectors are the columns of

𝑄�̃� = [
𝑄
1

𝑄
2

−𝑄
2
𝑄
1

] [
�̃�
1

0

0 �̃�
1

] = [
𝑄
1
�̃�
1

𝑄
2
�̃�
1

−𝑄
2
�̃�
1
𝑄
1
�̃�
1

] . (35)

We now consider how an orthogonal symplectic 𝑄 ∈

R2𝑛×2𝑛 can be determined to reduce 𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] (𝐴𝑇 = 𝐴,

𝐵
𝑇

= −𝐵) to

𝑄
𝑇

𝑆𝑄 = [
𝑇 0

0 𝑇
] , (36)

where 𝑇 is a symmetry tridiagonal matrix. It is worth illus-
trating a few steps of the algorithm before presenting it inn
full generality. We depict an 8-by-8 symmetry and skew-
Hamiltonian matrix (𝑛 = 4) as follows:

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] =

[
[
[
[
[
[
[
[
[
[
[

[

𝑥 𝑥 𝑥 𝑥 0 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 0 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 0 𝑥

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 0

0 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 0 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 0 𝑥 𝑥 𝑥 𝑥 𝑥

𝑥 𝑥 𝑥 0 𝑥 𝑥 𝑥 𝑥

]
]
]
]
]
]
]
]
]
]
]

]

(𝑛 = 4) .

(37)

The zero diagonals in 𝐵 follow from skew symmetry. It is easy
to verify that the (2, 1) and (1, 2) block of this matrix can be
zeroed by applying a sequence of Householder and Givens
symplectic similarity transformations.

The first step is to zero 𝑏
31

and 𝑏
41

using a Householder
symplectic 𝐻

1
= 𝐻(2, 𝑤). This matrix can be determined by

executing Algorithm 3 with 𝑘 = 2, 𝑦 = 𝐴𝑒
1
, and 𝑧 = 𝐵𝑒

1
.

Note that after performing, only the rows and columns 2, 3,
and 4 of 𝐴, 𝐵, and −𝐵 are affected, the result being

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] := 𝐻

1
𝑆𝐻
𝑇

1
=

[
[
[
[
[
[
[
[
[
[
[

[

𝑥 𝑥 𝑥 𝑥 0 𝑥 0 0

𝑥 𝑥 𝑥 𝑥 𝑥 0 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 0 𝑥 0 𝑥

𝑥 𝑥 𝑥 𝑥 0 𝑥 𝑥 0

0 𝑥 0 0 𝑥 𝑥 𝑥 𝑥

𝑥 0 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

0 𝑥 0 𝑥 𝑥 𝑥 𝑥 𝑥

0 𝑥 𝑥 0 𝑥 𝑥 𝑥 𝑥

]
]
]
]
]
]
]
]
]
]
]

]

(𝑛 = 4) .

(38)

Then (1, 3) and (1, 4) positions of 𝐵 are zeroed; meanwhile
the same positions of −𝐵 are zeroed because Householder
symplectic similarity transformation preserves the structure
of 𝑆.

The next step is to zero 𝑏
21

using Givens similarity 𝐽
1
=

𝐽(2, 𝜃), which can be achieved by applying Algorithm 5 with
𝑘 = 2, 𝑦 = 𝐴𝑒

1
, and 𝑧 = 𝐵𝑒

1
. And notice that only the second

row and column of𝐴, 𝐵 and −𝐵 be affected. This implies that

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] := 𝐽

1
𝑆𝐽
𝑇

1
=

[
[
[
[
[
[
[
[
[
[
[

[

𝑥 𝑥 𝑥 𝑥 0 0 0 0

𝑥 𝑥 𝑥 𝑥 0 0 𝑥 𝑥

𝑥 𝑥 𝑥 𝑥 0 𝑥 0 𝑥

𝑥 𝑥 𝑥 𝑥 0 𝑥 𝑥 0

0 0 0 0 𝑥 𝑥 𝑥 𝑥

0 0 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

0 𝑥 0 𝑥 𝑥 𝑥 𝑥 𝑥

0 𝑥 𝑥 0 𝑥 𝑥 𝑥 𝑥

]
]
]
]
]
]
]
]
]
]
]

]

(𝑛 = 4) .

(39)

Next we compute a Householder symplectic 𝐻(2, 𝑤)

to zero 𝑎
31

and 𝑎
41
, which can be achieved by applying

Algorithm 3 with 𝑘 = 2, 𝑦 = 𝐵𝑒
1
, and 𝑧 = 𝐴𝑒

1
. Denote

𝐺
1
= 𝐻(2, 𝑤), the result being

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] := 𝐺

1
𝑆𝐺
𝑇

1
=

[
[
[
[
[
[
[
[
[
[
[

[

𝑥 𝑥 0 0 0 0 0 0

𝑥 𝑥 𝑥 𝑥 0 0 𝑥 𝑥

0 𝑥 𝑥 𝑥 0 𝑥 0 𝑥

0 𝑥 𝑥 𝑥 0 𝑥 𝑥 0

0 0 0 0 𝑥 𝑥 0 0

0 0 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

0 𝑥 0 𝑥 0 𝑥 𝑥 𝑥

0 𝑥 𝑥 0 0 𝑥 𝑥 𝑥

]
]
]
]
]
]
]
]
]
]
]

]

(𝑛 = 4) .

(40)
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Note that the (1, 3) and (1, 4) positions of 𝐴 are zeroed. This
completes the zeroing in the first column of 𝑆. Likewise we
can zero the 2th of 𝑆 with the property that

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] =

[
[
[
[
[
[
[
[
[
[
[

[

𝑥 𝑥 0 0 0 0 0 0

𝑥 𝑥 𝑥 0 0 0 0 0

0 𝑥 𝑥 𝑥 0 0 0 𝑥

0 0 𝑥 𝑥 0 0 𝑥 0

0 0 0 0 𝑥 𝑥 0 0

0 0 0 0 𝑥 𝑥 𝑥 0

0 0 0 𝑥 0 𝑥 𝑥 𝑥

0 0 𝑥 0 0 0 𝑥 𝑥

]
]
]
]
]
]
]
]
]
]
]

]

(𝑛 = 4) .

(41)

Notice that only the (3, 4) and (4, 3) positions of 𝐵 are
nonzero; they are zeroed only by applying Givens symplectic
similarity transformation 𝐺

3
= 𝐽(4, 𝜃) to 𝑆 and we get

𝑆 = 𝐺
3
𝑆𝐺
𝑇

3
= [

𝑇 0

0 𝑇
] =

[
[
[
[
[
[
[
[
[
[
[

[

𝑥 𝑥 0 0 0 0 0 0

𝑥 𝑥 𝑥 0 0 0 0 0

0 𝑥 𝑥 𝑥 0 0 0 0

0 0 𝑥 𝑥 0 0 0 0

0 0 0 0 𝑥 𝑥 0 0

0 0 0 0 𝑥 𝑥 𝑥 0

0 0 0 0 0 𝑥 𝑥 𝑥

0 0 0 0 0 0 𝑥 𝑥

]
]
]
]
]
]
]
]
]
]
]

]

(𝑛 = 4) .

(42)

This completes the zeros of 𝑆 with 𝑛 = 4. The similar
method can be applied to zero the general matrix of order 2𝑛.
Overall we have the following procedure “Reduction to block
symmetry tridiagonal matrix.” Given matrix

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] with 𝐴

𝑇

= 𝐴, 𝐵
𝑇

= −𝐵. (43)

The following algorithm updates 𝐴 to the symmetry tridiag-
onal matrix 𝑇; meanwhile 𝐵 and −𝐵 are reduced into an 𝑛× 𝑛

zero matrix; moreover we have 𝜆(𝑆) = 𝜆(𝑇) ⊔ 𝜆(𝑇).

Algorithm 10 (reduction to block symmetry tridiagonal
matrix).
For 𝑘 = 1, . . . , 𝑛 − 2 do:

if 𝑘 ≤ 𝑛 − 2 do:
(1) Apply Algorithm 3 with 𝑦 = 𝐴𝑒

𝑘
and 𝑧 = 𝐵𝑒

𝑘
to

determine𝐻
𝑘
= 𝐻(𝑘 + 1, 𝑤). Update is as follows:

[
𝐴 −𝐵

𝐵 𝐴
] := 𝐻

𝑘
[
𝐴 −𝐵

𝐵 𝐴
]𝐻
𝑇

𝑘
. (44)

(2) Apply Algorithm 5 with 𝑦 = 𝐴𝑒
𝑘
and 𝑧 = 𝐵𝑒

𝑘
to

determine 𝐽
𝑘
= 𝐽 (𝑘 + 1, 𝜃). Updates are as follows:

[
𝐴 −𝐵

𝐵 𝐴
] := 𝐽

𝑘
[
𝐴 −𝐵

𝐵 𝐴
] 𝐽
𝑇

𝑘
. (45)

(3) Apply Algorithm 3 with 𝑦 = 𝐵𝑒
𝑘
, 𝑧 = 𝐴𝑒

𝑘
to

determine 𝐺
𝑘
= 𝐻(𝑘 + 1, 𝑤). Updates are as follows:

[
𝐴 −𝐵

𝐵 𝐴
] := 𝐺

𝑘
[
𝐴 −𝐵

𝐵 𝐴
]𝐺
𝑇

𝑘
. (46)

If 𝑘 = 𝑛 − 1 do the folowing.

(4) Apply Algorithm 5 with 𝑦 = 𝐴𝑒
𝑛−1

and 𝑧 = 𝐵𝑒
𝑛−1

to
determine 𝐽

𝑛−1
= 𝐽(𝑛, 𝜃). Update is as follows:

[
𝐴 −𝐵

𝐵 𝐴
] := 𝐽

𝑛−1
[
𝐴 −𝐵

𝐵 𝐴
] 𝐽
𝑇

𝑛−1
. (47)

After completion, we get the block symmetry tridiagonal
matrix [ 𝑇 0

0 𝑇
], where 𝑇 is a symmetry tridiagonal matrix. The

orthogonal matrix 𝑄𝑇 is given by

𝑄
𝑇

= 𝐽
𝑛−1

(𝐺
𝑛−2

𝐽
𝑛−2

𝐻
𝑛−2

) ⋅ ⋅ ⋅ (𝐺
2
𝐽
2
𝐻
2
) (𝐺
1
𝐽
1
𝐻
1
) . (48)

Themethod of reduction 𝑆 into block symmetry tridiago-
nal matrix is given by Algorithm 10; in the former 𝑛−2 steps,
each step we premultiply by one Givens symplectic similarity
and two Householder symplectic similarity and by postmul-
tiply their transpose. Finally in the 𝑛− 1 step, only the Givens
symplectic similarity is done. According to (48), it is clear that
𝑄
𝑇 is the product of 3(𝑛 − 2) + 1 orthogonal matrices, which

is backward stability.

Algorithm 11 (the overall algorithm).
(1) Transform Hermitian matrix 𝐻 into the symmetry and
skew-Hamiltonian matrix:

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] where 𝐴

𝑇

= 𝐴, 𝐵
𝑇

= −𝐵. (49)

(2) ApplyAlgorithm 10 to reduce 𝑆 into a block symmetry
tridiagonal matrix:

𝑄
𝑇

𝐻𝑄 = [
𝑇 0

0 𝑇
] . (50)

(3) Compute eigenpairs (Λ,𝑋) of 𝑇 via 𝑄𝑅.
(4) Setting

[
𝑄
11

𝑄
21

] = [
𝑄
1

𝑄
2

−𝑄
2
𝑄
1

] [
𝑋

0
] = [

𝑄
1
𝑋

−𝑄
2
𝑋
] , (51)

then Λ is eigenvalue of 𝐻, and 𝑄
11
+ 𝑖𝑄
21
is the eigenvector

of𝐻.

4. Implementation Aspects

When implementing Algorithm 10, the matrix 𝑆must be tak-
en full advantage of in order to avoid superfluous calculation
and storage. In this section there are two parts; the first is to
consider the computational cost and storage for the reduction
to this block symmetry tridiagonal matrix, and the second is
the computational cost and storage of the eigenvector 𝑄𝑇.

Due to the special structure𝐴 = 𝐴
𝑇 and 𝐵𝑇 = −𝐵, shared

by 𝐴 and 𝐵, only 𝑛2 workspace is required for matrix

𝑆 = [
𝐴 −𝐵

𝐵 𝐴
] where 𝐴

𝑇

= 𝐴, 𝐵
𝑇

= −𝐵. (52)
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Now we consider the computation cost for reducing 𝑆 to
the block symmetry tridiagonal form, for Householder sym-
plectic similarity, let

𝐻
𝑘
= 𝐻 (𝑘 + 1, 𝑤) = diag (𝐼

𝑘
, 𝑃, 𝐼
𝑘
, 𝑃) , (53)

𝑆 =

[
[
[

[

𝐴
11

𝐴
21

𝐵
11

𝐵
21

𝐴
𝑇

21

𝐴
22

−𝐵
𝑇

21

𝐵
22

𝐵
𝑇

11

−𝐵
𝑇

21

𝐴
11

𝐴
𝑇

12

𝐵
𝑇

21

𝐵
𝑇

22

𝐴
12

𝐴
22

]
]
]

]

𝑘

𝑛 − 𝑘

𝑘

𝑛 − 𝑘

𝑘 𝑛 − 𝑘 𝑘 𝑛 − 𝑘

, (54)

then

𝐻
𝑘
𝑆𝐻
𝑘
=

[
[
[

[

𝐴
11

𝑃𝐴
𝑇

12

𝐵
11

𝑃𝐵
21

𝐴
12
𝑃

𝑃𝐴
22
𝑃

−𝐵
𝑇

21
𝑃

𝑃𝐵
22
𝑃

𝐵
𝑇

11

−𝑃𝐵
𝑇

21

𝐴
11

𝑃𝐴
𝑇

12

𝐵
𝑇

21
𝑃

𝑃𝐵
𝑇

22

𝐴
12

𝑃𝐴
22
𝑃

]
]
]

]

𝑘

𝑛 − 𝑘

𝑘

𝑛 − 𝑘

𝑘 𝑛 − 𝑘 𝑘 𝑛 − 𝑘

.

(55)

In 𝑘th step, updating 𝑆 to 𝐻
𝑘
𝑆𝐻
𝑘
is equal to two ordinary

Householder similarities for 𝑛 × 𝑛matrix, one for symmetry
matrix 𝐴 and one for skew-symmetry matrix 𝐵, so we only
need to compute𝑃𝐴𝑇

12
,𝑃𝐴
22
𝑃,𝑃𝐵
21
, and𝑃𝐵

22
𝑃. Likewise, we

can update 𝑆 to 𝐺
𝑘
𝑆𝐺
𝑘
by the same way.

Algorithm 12 (Householder symplectic similarity).
For 𝑘 = 1 : 𝑛 − 2

[𝑣, 𝛽] = house (𝐵 (𝑘 + 1 : 𝑛, 𝑘)) ,

𝑤 = 𝛽𝐵(𝑘 + 1 : 𝑛, 𝑘 : 𝑛)
𝑇

𝑣,

𝐵 (𝑘 + 1 : 𝑛, 𝑘 : 𝑛) = 𝐵 (𝑘 + 1 : 𝑛, 𝑘 : 𝑛) − 𝑣𝑤
𝑇

,

𝑤 = 𝛽𝐵 (𝑘 : 𝑛, 𝑘 + 1 : 𝑛) 𝑣
𝑇

,

𝐵 (𝑘 : 𝑛, 𝑘 + 1 : 𝑛) = 𝐵 (𝑘 : 𝑛, 𝑘 + 1 : 𝑛) − 𝑤𝑣
𝑇

,

𝑤 = 𝛽𝐴(𝑘 + 1 : 𝑛, 𝑘 : 𝑛)
𝑇

𝑣,

𝐴 (𝑝 + 1 : 𝑛, 𝑝 : 𝑛) = 𝐴 (𝑘 + 1 : 𝑛, 𝑘 : 𝑛) − 𝑣𝑤
𝑇

,

𝑤 = 𝛽𝐴 (𝑘 : 𝑛, 𝑘 + 1 : 𝑛) 𝑣,

𝐴 (𝑘 : 𝑛, 𝑘 + 1 : 𝑛) = 𝐴 (𝑘 : 𝑛, 𝑘 + 1 : 𝑛) − 𝑤𝑣
𝑇

(56)

end.

Updating by Givens symplectic similarity is equally sim-
ple; setting 𝑐 = cos(𝜃), 𝑠 = sin(𝜃) then

𝐽
𝑘
= 𝐽 (𝑘 + 1, 𝜃) =

[
[
[
[
[
[
[

[

𝐼
𝑘

0
𝑘

𝑐 𝑠

𝐼
𝑛−𝑘−1

0
𝑛−𝑘−1

0
𝑘

𝐼
𝑘

−𝑠 𝑐

0
𝑛−𝑘−1

𝐼
𝑛−𝑘−1

]
]
]
]
]
]
]

]

,

𝑆 =

[
[
[
[
[
[
[

[

𝐴
11

𝐴
21

𝐴
31

𝐵
11

𝐵
21

𝐵
31

𝐴
12

𝐴
22

𝐴
32

𝐵
12

𝐵
22

𝐵
32

𝐴
13

𝐴
23

𝐴
33

𝐵
13

𝐵
23

𝐵
33

−𝐵
11

−𝐵
21

−𝐵
31

𝐴
11

𝐴
21

𝐴
31

−𝐵
12

−𝐵
22

−𝐵
32

𝐴
12

𝐴
22

𝐴
32

−𝐵
13

−𝐵
23

−𝐵
33

𝐴
13

𝐴
23

𝐴
33

]
]
]
]
]
]
]

]

𝑘 + 1

1

𝑛 − 𝑘 − 2

𝑘 + 1

1

𝑛 − 𝑘 − 2

𝑘 + 1 1 𝑛 − 𝑘 − 2 𝑘 1 𝑛 − 𝑘 − 2

.

(57)

Denoting 𝑆
𝐽
= (𝐽
𝑘
𝑆𝐽
𝑇

𝑘
), then we have

𝑆
𝐽
(1 : 2𝑛, 1 : 𝑛)

=

[
[
[
[
[
[
[

[

𝐴
11

𝑐𝐴
21
+ 𝑠𝐵
21

𝐴
31

𝐵
11

𝑐𝐵
21
−𝑠𝐴
21

𝐵
31

𝑐𝐴
12
−𝑠𝐵
12

𝐴
22

𝑐𝐴
32
−𝑠𝐵
32

𝑐𝐵
12
+𝑠𝐴
12

𝐵
22

𝑐𝐵
32
+𝑠𝐴
32

𝐴
𝑇

31

𝐴
𝑇

32

𝐴
33

𝐵
13

𝑐𝐵
23
−𝑆𝐴
23

𝐵
33

]
]
]
]
]
]
]

]

𝑘+1

1

𝑛−𝑘−2

𝑘+1

1

𝑛−𝑘−2

𝑘+1 1 𝑛−𝑘−2

.

(58)

Note that updating 𝑆 into 𝐽
𝑘
𝑆𝐽
𝑇

𝑘
such that𝐵(𝑘+1, 𝑘) = 0 affects

the rows (resp. the columns) 𝑘 + 1, 𝑛 + 𝑘 + 1 of 𝑆, that is,

the rows(columns) 𝑘 + 1, 𝑛 + 𝑘 + 1 of 𝐴 and 𝐵. According
to (58), we only need to compute 𝑐𝐴

21
+ 𝑠𝐵
21
, 𝑐𝐴
32

− 𝑠𝐵
32
,

𝑐𝐵
21
− 𝑠𝐴
21
and 𝑐𝐵

32
+ 𝑠𝐴
32
because 𝑆

𝐽
is also symmetry and

skew-Hamiltonian matrix. Therefore, only 2(𝑛 − 𝑘) flops are
required in 𝑘th step, altogether ∑𝑛−1

𝑘=1
2(𝑛 − 𝑘) = 𝑛

2

− 𝑛 flops.
Bellow is the algorithm for 𝐽

𝑘
𝑆𝐽
𝑇

𝑘
in 𝑘th step.

Algorithm 13 (Givens symplectic similarity). Consider

𝑎 = 𝐴 (𝑘 + 1, 𝑘) , 𝑏 = 𝐵 (𝑘 + 1, 𝑘) ,

[𝑐, 𝑠] = givens (𝑎, 𝑏) ,

𝐴 (𝑘 + 1, 𝑘) = 𝑐𝐴 (𝑘 + 1, 𝑘) + 𝑠𝐵 (𝑘 + 1, 𝑘) ,

𝐴 (𝑘, 𝑘 + 1) = 𝐴 (𝑘 + 1, 𝑘) ,
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for 𝑖 = 𝑘 + 2 : 𝑛

𝑆 (𝑖, 𝑘 + 1) = 𝑐𝐴 (𝑖, 𝑘 + 1) − 𝑠𝐵 (𝑖, 𝑘 + 1) ,

𝐵 (𝑖, 𝑘 + 1) = 𝑐𝐵 (𝑖, 𝑘 + 1) + 𝑠𝐴 (𝑖, 𝑘 + 1) ,

𝐵 (𝑘 + 1, 𝑖) = −𝐵 (𝑖, 𝑘 + 1) ,

𝐴 (𝑖, 𝑘 + 1) = 𝑆 (𝑖, 𝑘 + 1) ,

𝐴 (𝑘 + 1, 𝑖) = 𝐴 (𝑖, 𝑘 + 1)

end
𝐵 (𝑘 + 1, 𝑘) = 0,

𝐵 (𝑘, 𝑘 + 1) = 0.

(59)

Overall (4/3)𝑛3 × 4 + O(𝑛2) = (16/3)𝑛
3

+ O(𝑛2) flops are
required for reducing 𝑆 to [ 𝑇 0

0 𝑇
].

This reduction includes 4 times computational cost of
Householder tridiagonalized for 𝑛 × 𝑛 symmetry matrix
and 𝑛

2

− 𝑛 flops for Givens similarity transformation. Since
one complex operation is four times of real operation,
(16/3)𝑛

3

+ O(𝑛2) flops are required for complex Hermitian
tridiagonalization.

Now we consider the computation and storage problem
for eigenvectors

𝑄
𝑇

= 𝐽
𝑛−1

(𝐺
𝑛−2

𝐽
𝑛−2

𝐻
𝑛−2

) ⋅ ⋅ ⋅ (𝐺
2
𝐽
2
𝐻
2
) (𝐺
1
𝐽
1
𝐻
1
) . (60)

To obtain 𝑄
𝑇, we can premultiply only by 𝑛 × 𝑛 matrices

by using the special structure of 𝐽
𝑘
, 𝐺
𝑘
, and 𝐻

𝑘
though they

are 2𝑛-by-2𝑛matrices.When premultiplying byHouseholder
symplectics𝐻

𝑘
, let a 2𝑛 × 2𝑛matrix 𝑄𝑇 be of the form

𝑄
𝑇

= [
𝑄
𝑁×𝑁

−𝑈
𝑁×𝑁

𝑈
𝑁×𝑁

𝑄
𝑁×𝑁

]

=

[
[
[

[

𝑄
11

𝑄
21

𝑈
11

𝑈
21

𝑄
12

𝑄
22

𝑈
12

𝑈
22

−𝑈
11

−𝑈
21

𝑄
11

𝑄
21

−𝑈
12

−𝑈
22

𝑄
12

𝑄
22

]
]
]

]

𝑘

𝑛 − 𝑘

𝑘

𝑛 − 𝑘

𝑘 𝑛 − 𝑘 𝑘 𝑛 − 𝑘

.

(61)

So two 𝑛2 workspace is required for𝑄𝑇, one for𝑄
𝑁×𝑁

and one
for 𝑈
𝑁×𝑁

. Premultiplying by 𝐻
𝑘
= diag(𝐼

𝑘+1
, 𝑃
𝐴
, 𝐼
𝑘+1

, 𝑃
𝐴
) in

𝑘th step, we have

𝐻
𝑘
𝑄
𝑇

=

[
[
[

[

𝑄
11

𝑃
𝐴
𝑄
21

𝑈
11

𝑃
𝐴
𝑈
21

𝑄
12

𝑃
𝐴
𝑄
22

𝑈
12

𝑃
𝐴
𝑈
22

−𝑈
11

−𝑃
𝐴
𝑈
21

𝑄
11

𝑃
𝐴
𝑄
21

−𝑈
12

−𝑃
𝐴
𝑈
22

𝑄
12

𝑃
𝐴
𝑄
22

]
]
]

]

𝑘

𝑛 − 𝑘

𝑘

𝑛 − 𝑘

𝑘 𝑛 − 𝑘 𝑘 𝑛 − 𝑘

.

(62)

Therefore, only 𝑄
21
, 𝑄
22
and the real part of 𝑄𝑇 are updated

to 𝑃
𝐴
𝑄
21
, 𝑃
𝐴
𝑄
22

and also imaginary part 𝑈
21
, 𝑈
22

updated
to 𝑃
𝐴
𝑈
21
, 𝑃
𝐴
𝑈
22
. The main work is computing the product

of Householder matrix 𝐻 = 𝐼 − 𝛽𝑣𝑣
𝑇

∈ R(𝑛−𝑘)×(𝑛−𝑘) and
[𝑄
21

𝑄
22
] ∈ R(𝑛−𝑘)×(𝑛), and the product of𝐻 and [𝑈

21
𝑈
22
]

∈ R(𝑛−𝑘)×(𝑛), where the first columns of 𝑄
21
and 𝑈

21
are zero.

So 4(𝑛 − 𝑘)(𝑛 − 𝑘 − 1) flops are required each step, altogether
∑
𝑛−2

𝑘=1
8(𝑛 − 𝑘)(𝑛 − 𝑘 − 1) = (8/3)𝑛

3

+ O(𝑛2) flops. Likewise
premultiplying by 𝐺

𝑘
requires other (8/3)𝑛3 + O(𝑛2) flops.

Algorithm 14 (computation of𝐻
𝑘
𝑄
𝑇).

For 𝑘 = 1 : 𝑛 − 2

[𝑣, 𝛽] = house (𝐵 (𝑘 + 1 : 𝑛, 𝑘)) ,

𝑤 = 𝛽𝑄1(𝑘 + 1 : 𝑛, 2 : 𝑛)
𝑇

𝑣,

𝑄1 (𝑘 + 1 : 𝑛, 2 : 𝑛) = 𝑄1 (𝑘 + 1 : 𝑛, 2 : 𝑛) − 𝑣𝑤
𝑇

,

𝑤 = 𝛽𝑄2(𝑘 + 1 : 𝑛, 2 : 𝑛)
𝑇

𝑣,

𝑄2 (𝑘 + 1 : 𝑛, 2 : 𝑛) = 𝑄2 (𝑘 + 1 : 𝑛, 2 : 𝑛) − 𝑣𝑤
𝑇

(63)

end.

For Givens symplectic matrix 𝐽
𝑘
, set

𝑄
𝑇

=

[
[
[
[
[
[
[

[

𝑄
11

𝑄
21

𝑄
31

𝑈
11

𝑈
21

𝑈
31

𝑄
12

𝑄
22

𝑄
32

𝑈
12

𝑈
22

𝑈
32

𝑄
13

𝑄
23

𝑄
33

𝑈
13

𝑈
23

𝑈
33

−𝑈
11

−𝑈
21

−𝑈
31

𝑄
11

𝑄
21

𝑄
31

−𝑈
12

−𝑈
22

−𝑈
32

𝑄
12

𝑄
22

𝑄
32

−𝑈
13

−𝑈
23

−𝑈
33

𝑄
13

𝑄
23

𝑄
33

]
]
]
]
]
]
]

]

𝑘

1

𝑛−𝑘−1

𝑘

1

𝑛−𝑘−1

𝑘 1 𝑛−𝑘 −1 𝑘 1 𝑛−𝑘−1

.

(64)

Premultiplying by 𝐽
𝑘
, denoting 𝑄𝑇

𝐽
= 𝐽
𝑘
𝑄
𝑇, we have

𝑄
𝑇

𝐽
(1 : 2𝑛, 1 : 𝑛)

=

[
[
[
[
[
[
[

[

𝑄
11

𝑐𝑄
21
+𝑠𝑈
21

𝑄
31

0

𝑐𝑈
21
−𝑠𝑄
21

0

𝑄
12

𝑐𝑄
22
+𝑠𝑈
22

𝑄
32

0

𝑐𝑈
22
−𝑠𝑄
22

0

𝑄
13

𝑐𝑄
23
+𝑠𝑈
23

𝑄
33

0

𝑐𝑈
23
−𝑠𝑄
23

0

]
]
]
]
]
]
]

]

𝑘

1

𝑛−𝑘 −1

𝑘

1

𝑛− 𝑘 −1

𝑘 1 𝑛−𝑘−1

.

(65)

Therefore, each step updating the 𝑘 + 1th and 𝑛 + 𝑘 + 1th row
of𝑄𝑇 requires 4(𝑛−1) flops, altogether 4(𝑛−1)2 flops. Below
is the algorithm.

Algorithm 15 (computation of 𝐽
𝑘
𝑄
𝑇).

For 𝑘 = 1 : 𝑛 − 2

𝑇1 = 𝑄1,

𝑇2 = 𝑄2,
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𝑄1 (𝑘 + 1, 2 : 𝑛) = 𝑐𝑄1 (𝑘 + 1, 2 : 𝑛) ,

𝑄2 (𝑘 + 1, 2 : 𝑛) = 𝑠𝑄2 (𝑘 + 1, 2 : 𝑛) ,

𝑄2 (𝑘 + 2 : 𝑛, 2 : 𝑛) = 0,

𝑄1 (𝑘 + 1 : 𝑛, 2 : 𝑛) = 𝑄1 (𝑘 + 1 : 𝑛, 2 : 𝑛)

+ 𝑄2 (𝑘 + 1 : 𝑛, 2 : 𝑛) ,

𝑇1 (𝑘 + 1, 2 : 𝑛) = − 𝑠𝑇1 (𝑘 + 1, 2 : 𝑛) ,

𝑇1 (𝑘 + 2 : 𝑛, 2 : 𝑛) = 0,

𝑇2 (𝑘 + 1, 2 : 𝑛) = 𝑐𝑇2 (𝑘 + 1, 2 : 𝑛) ,

𝑄2 (𝑘 + 1 : 𝑛, 2 : 𝑛) = 𝑇1 (𝑘 + 1 : 𝑛, 2 : 𝑛)

+ 𝑇2 (𝑘 + 1 : 𝑛, 2 : 𝑛)

(66)

end.
Overall in each step we only need to premultiply two 𝑛 ×

𝑛 Householder matrix and one 𝑛 × 𝑛 Givens matrix in the
procedure of computing the eigenvector.

5. Numerical Experiments

All codes were run in MATLAB 7.04 in double precision and
all experiments were performed on a personal computer with
1.41 Ghz central processing unit (AMD Sempron(tm) Pro-
cessor 2500+), 520MB memory, and Windows XP system.
Machine epsilon 𝑒𝑝𝑠 ≈ 2.22 × 10

−16.

Example 16. To illustrate Algorithm 11 more clearly, we give
a simple example and show the processes and results of
Algorithm 11 of𝐻

1
:

𝐻
1
= [

[

1 −3𝑖 −4𝑖

3𝑖 1 4𝑖

4𝑖 4𝑖 1

]

]

. (67)

We first transform𝐻
1
into symmetry and skew-Hamiltonian

matrix 𝑆:

𝐻 → 𝑆 =

[
[
[
[
[
[
[

[

1 0 0 0 3 4

0 1 0 −3 0 4

0 0 1 −4 −4 0

0 −3 −4 1 0 0

3 0 −4 0 1 0

4 4 0 0 0 1

]
]
]
]
]
]
]

]

. (68)

Then

𝑆 → 𝐻
𝑇

𝑆𝐻 =

[
[
[
[
[
[
[

[

1 0 0 0 5 0

0 1 0 −5 0 −4

0 0 1 0 4 0

0 −5 0 1 0 0

5 0 4 0 1 0

0 −4 0 0 0 1

]
]
]
]
]
]
]

]

→ 𝐽
𝑇

𝐻
𝑇

𝑆𝐻𝐽

Table 1: Example 16—real fast algorithm for𝐻
1
(Algorithm 11).

Eigenvalue Eigenvector
7.4031 0.5522 0.3534 + 0.4243𝑖 −0.2650 + 0.5657𝑖

−5.4031 0.5522 0.3534 − 0.4243𝑖 −0.2650 − 0.5657𝑖

1.0000 −0.6247 0.6247 −0.4685

Table 2: Example 16—complex algorithm (eig) for eigenproblem
𝐻
1
.

Eigenvalue Eigenvector
7.4031 −0.2343 − 0.5000𝑖 0.2343 − 0.5000𝑖 0.6247

−5.4031 0.2343 − 0.5000𝑖 −0.2343 − 0.5000𝑖 −0.6247

1.0000 −0.6247 − 0.0000𝑖 0.6247 + 0.0000𝑖 −0.4685

=

[
[
[
[
[
[
[

[

1 5 0 0 0 0

5 1 4 0 0 0

0 4 1 0 0 0

0 0 0 1 5 0

0 0 0 5 1 4

0 0 0 0 4 1

]
]
]
]
]
]
]

]

= [
𝑇 0

0 𝑇
] ,

(69)

where

𝐻 =

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 0.6 0.8 0 0 0

0 0.8 −0.6 0 0 0

0 0 0 1 0 0

0 0 0 0 0.6 0.8

0 0 0 0 0.8 −0.6

]
]
]
]
]
]
]

]

,

𝐽 =

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 0 0 0 −1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

.

(70)

Denoting that (𝐷, 𝑉) is the eigenpair of 𝑇

𝑉 = [

[

0.5522 −0.6247 0.5522

−0.7071 0.0000 0.7071

0.4417 0.7809 0.4417

]

]

,

𝐷 = [

[

−5.4031 0 0

0 1.0000 0

0 0 7.4031

]

]

,

(71)

then

𝑄[
𝑉

0
] = 𝐻

1
𝐽 [

𝑉

0
]

=

[
[
[
[
[
[
[

[

0.5522 −0.6247 0.5522

0.3534 0.6247 0.3534

−0.2650 −0.4685 −0.2650

0 0 0

−0.4243 0.0000 0.4243

−0.5657 0.0000 0.5657

]
]
]
]
]
]
]

]

(72)
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Table 3: Example 17—the real fast algorithm for eigenproblem of𝐻
2
.

Eigenvalue Eigenvector
16.6334 0.4207 0.4417 + 0.1637𝑖 0.4177 + 0.1008𝑖 0.3343 + 0.0604𝑖 0.5220 + 0.1688𝑖

−6.0472 0.4928 0.4942 − 0.0179𝑖 0.0460 + 0.0178𝑖 −0.3757 − 0.1146𝑖 −0.5966 + 0.0018𝑖

3.3730 −0.1369 −0.1327 + 0.0555𝑖 0.4347 + 0.1567𝑖 −0.7694 − 0.2026𝑖 0.3370 + 0.0198𝑖

−1.8356 −0.5240 0.2953 − 0.2007𝑖 0.4425 + 0.4636𝑖 0.1982 + 0.1590𝑖 −0.2902 − 0.1959𝑖

−0.1236 0.5356 −0.5467 − 0.2943𝑖 0.1736 + 0.3981𝑖 0.0803 + 0.1618𝑖 −0.0590 − 0.3210𝑖

Table 4: Example 17—the real fast algorithm for eigenproblem of𝐻
2
.

Eigenvalue Eigenvector
16.6334 0.4003 − 0.1295𝑖 0.4706 + 0.0198𝑖 0.4285 − 0.0326𝑖 0.3367 − 0.0454𝑖 0.5486

−6.0472 0.4928 + 0.0015𝑖 0.4942 − 0.0164𝑖 0.0459 + 0.0179𝑖 −0.3753 − 0.1158𝑖 −0.5966

3.3730 0.1367 − 0.0080𝑖 0.1293 − 0.0631𝑖 −0.4431 − 0.1310𝑖 0.7800 + 0.1572𝑖 −0.3376

−1.8356 0.4343 − 0.2932𝑖 −0.1325 + 0.3315𝑖 −0.6262 − 0.1367𝑖 −0.2532 − 0.0208𝑖 0.3502

−0.1236 −0.0968 + 0.5268𝑖 0.3882 − 0.4845𝑖 −0.4229 + 0.0988𝑖 −0.1736 + 0.0497𝑖 0.3263

Table 5: Example 17—the real fast algorithm for eigenproblem of𝐻
2
.

Real fast algorithm Complex algorithm (eig) Error
2.022700124819288𝑒 + 001 2.022700124819288𝑒 + 001 7.105427357601002𝑒 − 015

1.902502989496266𝑒 + 001 1.902502989496268𝑒 + 001 1.421085471520200𝑒 − 014

1.800263600389322𝑒 + 001 1.800263600389323𝑒 + 001 1.065814103640150𝑒 − 014

1.700158594984117𝑒 + 001 1.700158594984119𝑒 + 001 2.131628207280301𝑒 − 014

1.600156256127496𝑒 + 001 1.600156256127496𝑒 + 001 0

1.500156225818778𝑒 + 001 1.500156225818779𝑒 + 001 8.881784197001252𝑒 − 015

1.400156222655317𝑒 + 001 1.400156222655317𝑒 + 001 3.552713678800501𝑒 − 015

1.300156061869106𝑒 + 001 1.300156061869103𝑒 + 001 2.842170943040401𝑒 − 014

1.200151108208256𝑒 + 001 1.200151108208256𝑒 + 001 3.552713678800501𝑒 − 015

1.100086192964745𝑒 + 001 1.100086192964745𝑒 + 001 0

9.999138070352572𝑒 + 000 9.999138070352565𝑒 + 000 7.105427357601002𝑒 − 015

8.998488917917468𝑒 + 000 8.998488917917442𝑒 + 000 2.664535259100376𝑒 − 014

7.998439381308970𝑒 + 000 7.998439381308969𝑒 + 000 8.881784197001252𝑒 − 016

6.998437773446823𝑒 + 000 6.998437773446838𝑒 + 000 1.509903313490213𝑒 − 014

5.998437741812211𝑒 + 000 5.998437741812216𝑒 + 000 5.329070518200751𝑒 − 015

4.998437438725036𝑒 + 000 4.998437438725052𝑒 + 000 1.598721155460225𝑒 − 014

3.998414050158813𝑒 + 000 3.998414050158812𝑒 + 000 8.881784197001252𝑒 − 016

2.997363996106763𝑒 + 000 2.997363996106775𝑒 + 000 1.199040866595169𝑒 − 014

1.974970105037331𝑒 + 000 1.974970105037334𝑒 + 000 3.774758283725532𝑒 − 015

7.729987518071178𝑒 − 001 7.729987518071133𝑒 − 001 4.440892098500626𝑒 − 015

is the first half of eigenvectors of 𝑆.The computing eigenprob-
lem of𝐻

1
is showed in Table 1.

According to Tables 1 and 2, it can be seen that the eigen-
vectors are different except the one corresponding to 1. In fact,
by Table 1, the eigenvector corresponding to 7.4031 is 𝑣(1) =
(0.5522, 0.3534 + 0.4243𝑖, −0.2650 + 0.5657𝑖)

𝑇, and 𝑣
(2)

=

(−0.2343− 0.5000𝑖, 0.2343− 0.5000𝑖, 0.6247)
𝑇 by Table 2. It is

easy to prove that rank (𝑣(1), 𝑣(2)) = 1, that is, 𝑣(1) = 𝑒
𝑖𝜃

𝑣
(2).

So the complex eigenvector after normalizing is not unique,
which is the biggest difference from real eigenvector.

Example 17. Now we give a little bigger matrix𝐻
2
; we depict

its eigenproblem in Tables 3 and 4, respectively:

𝐻
2
=

[
[
[
[
[

[

1 2 + 𝑖 3 + 𝑖 4 + 𝑖 5 + 𝑖

2 − 𝑖 2 3 − 1𝑖 4 6

3 − 𝑖 3 + 1𝑖 3 1 5

4 − 𝑖 4 1 3 1 + 𝑖

5 − 𝑖 6 5 1 − 𝑖 3

]
]
]
]
]

]

. (73)

According to tables, we can see that the eigenvectors are
complex and it is easy to prove that the two eigenvectors
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Table 6: Example 17—the real fast algorithm for eigenproblem of𝐻
2
.

Real fast algorithm Complex algorithm (eig) Error
2.002255917401552𝑒 + 002 2.002255917401532𝑒 + 002 2.074784788419493𝑒 − 012

1.990236230837739𝑒 + 002 1.990236230837733𝑒 + 002 6.252776074688882𝑒 − 013

1.980012299298954𝑒 + 002 1.980012299298937𝑒 + 002 1.676880856393836𝑒 − 012

1.970001799412475𝑒 + 002 1.970001799412465𝑒 + 002 9.663381206337363𝑒 − 013

1.960001565550514𝑒 + 002 1.960001565550502𝑒 + 002 1.193711796076968𝑒 − 012

1.950001562523487𝑒 + 002 1.950001562523486𝑒 + 002 1.136868377216160𝑒 − 013

1.940001562497741𝑒 + 002 1.940001562497715𝑒 + 002 2.586375558166765𝑒 − 012

1.930001562497571𝑒 + 002 1.930001562497559𝑒 + 002 1.165290086646564𝑒 − 012

1.920001562497562𝑒 + 002 1.920001562497558𝑒 + 002 4.547473508864641𝑒 − 013

1.910001562497567𝑒 + 002 1.910001562497556𝑒 + 002 1.193711796076968𝑒 − 012

1.900001562497573𝑒 + 002 1.900001562497560𝑒 + 002 1.364242052659392𝑒 − 012

1.890001562497554𝑒 + 002 1.890001562497561𝑒 + 002 7.389644451905042𝑒 − 013

1.880001562497553𝑒 + 002 1.880001562497555𝑒 + 002 1.989519660128281𝑒 − 013

1.870001562497555𝑒 + 002 1.870001562497559𝑒 + 002 3.694822225952521𝑒 − 013

1.860001562497558𝑒 + 002 1.860001562497558𝑒 + 002 8.526512829121202𝑒 − 014

1.850001562497552𝑒 + 002 1.850001562497558𝑒 + 002 5.400124791776761𝑒 − 013

1.840001562497563𝑒 + 002 1.840001562497560𝑒 + 002 2.842170943040401𝑒 − 013

1.830001562497566𝑒 + 002 1.830001562497558𝑒 + 002 8.526512829121202𝑒 − 013

1.820001562497562𝑒 + 002 1.820001562497559𝑒 + 002 3.410605131648481𝑒 − 013

1.810001562497546𝑒 + 002 1.810001562497558𝑒 + 002 1.193711796076968𝑒 − 012

corresponding to the same eigenvalue are linear dependent,
so the eigenvectors, which are computed by the real fast
algorithm (Algorithm 11) span the same space as complex
algorithm (eig).

Example 18. In this examplewe construct complexHermitian
matrices of the form

𝐻
3
= diag (1, 2, . . . , 2 ∗ 𝑛) +

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 −
1

2

−
1

2
0 −

1

2

−
1

2

. . . . . .

. . . . . . −
1

2

−
1

2
0

]
]
]
]
]
]
]
]
]
]
]
]
]

]2𝑛×2𝑛

+ 𝑖 ∗ [
0 𝐵

−𝐵 0
] ,

(74)

where 𝐵 = (1/8) diag(eye(𝑛)). In tables we only give a
few eigenvalues with largest modulus and compare it with
complex algorithm (eig). Let 𝑛 = 10, 100; that is, the order of
matrix𝐻

3
is 20, 200, respectively.The eigenvalues and errors,

which are computed respectively by real fast algorithm and
complex algorithm (eig), are showed in Tables 5 and 6. All
the eigenvalues of matrix of order 20 are given, while only
the 20th largest modulus eigenvalues of matrix order 200 are
present. It is easy to prove that eigenvectors corresponding
to the same eigenvalue are linear dependent. According to

Table 7: Example 20—relative error.

2 ∗ 𝑁 Max (relerr) Min (relerr) Average (relerr)
200 0.2645𝑒 − 013 0 0.0288𝑒 − 013

300 0.7872𝑒 − 013 0 0.0447𝑒 − 013

400 0.1949𝑒 − 013 0 0.0242𝑒 − 013

500 0.3536𝑒 − 013 0 0.0287𝑒 − 013

600 0.3297𝑒 − 012 0 0.0058𝑒 − 012

700 0.2149𝑒 − 013 0 0.0292𝑒 − 013

800 0.1773𝑒 − 011 0 0.0007𝑒 − 011

900 0.2841𝑒 − 012 0 0.0037𝑒 − 012

1000 0.6865𝑒 − 012 0 0.0046𝑒 − 012

the tables, we have the same result as the complex algorithm
(eig), but only the real operation is used.

Example 19. ComplexHermitianmatrices are constructed by
Hilbert matrix, and the MATLAB code is as follows:

𝑛 = 10; (75)

𝐻 = hilb (𝑛) ; (76)

𝐻
4
= 𝐻 + (tril (𝐻) − diag (diag (𝐻)))



𝑖

− (tril (𝐻) − diag (diag (𝐻))) .

(77)
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Table 8: Example 20—residual 𝑟 = 𝐻𝑣
𝑖
− 𝑣
𝑖
𝜆.

2 ∗ 𝑁 max
𝑖=1,...,𝑁

(𝐻𝑣
𝑖
− 𝑣
𝑖
𝜆) min

𝑖=1,...,𝑁
(𝐻𝑣
𝑖
− 𝑣
𝑖
𝜆) Average (𝐻𝑣

𝑖
− 𝑣
𝑖
𝜆)

200 0.1140𝑒 − 012 0.0113𝑒 − 012 0.0282𝑒 − 012

300 0.2110𝑒 − 012 0.0168𝑒 − 012 0.0420𝑒 − 012

400 0.2275𝑒 − 012 0.0225𝑒 − 012 0.0556𝑒 − 012

500 0.3608𝑒 − 012 0.0271𝑒 − 012 0.0682𝑒 − 012

600 0.6141𝑒 − 012 0.0324𝑒 − 012 0.0819𝑒 − 012

700 0.9271𝑒 − 012 0.0396𝑒 − 012 0.0954𝑒 − 012

800 0.8451𝑒 − 012 0.0452𝑒 − 012 0.1080𝑒 − 012

900 0.6920𝑒 − 012 0.0496𝑒 − 012 0.1175𝑒 − 012

1000 0.1218𝑒 − 011 0.0056𝑒 − 011 0.0132𝑒 − 011

When 𝑛 = 10, the 6 largest modulus eigenvalues are present
and 3 eigenvectors corresponding to the 3 largest modulus
eigenvalues are given here:

𝜆 (𝐻
4
)eig =

{{{{{{{

{{{{{{{

{

2.13798182520799

0.51461933549659

−0.49873888113430

−0.18865833608333

0.17747332069964

−0.08500068573387

}}}}}}}

}}}}}}}

}

,

𝜆(𝐻
4
)Algorithm 11 =

{{{{{{{

{{{{{{{

{

2.13798182520799

0.51461933549659

−0.49873888113430

−0.18865833608333

0.17747332069964

−0.08500068573387

}}}}}}}

}}}}}}}

}

,

(78)

𝑉
(eig)

=

[
[
[
[
[
[
[
[
[
[

[

−0.1267 − 0.0857𝑖 −0.0156 − 0.1526𝑖 0.1174 + 0.0100𝑖

0.0529 + 0.2493𝑖 −0.0069 + 0.2192𝑖 −0.1508 − 0.1187𝑖

0.0647 − 0.2646𝑖 −0.2177 − 0.2291𝑖 0.1777 + 0.1521𝑖

−0.3229 + 0.1315𝑖 0.3057 − 0.0144𝑖 −0.0986 − 0.2811𝑖

0.2230 + 0.2709𝑖 −0.1554 + 0.3121𝑖 −0.0529 + 0.2981𝑖

0.2089 − 0.2644𝑖 −0.2960 − 0.2141𝑖 0.2578 − 0.2379𝑖

−0.2801 − 0.2083𝑖 0.2142 − 0.2740𝑖 −0.3615 − 0.0351𝑖

−0.2635 + 0.2411𝑖 0.2822 + 0.1932𝑖 0.2113 + 0.3073𝑖

0.1389 + 0.3183𝑖 −0.1273 + 0.3242𝑖 0.1640 − 0.3632𝑖

0.3304 −0.3474 −0.4016

]
]
]
]
]
]
]
]
]
]

]

,

(79)

𝑄

=

[
[
[
[
[
[
[
[
[
[

[

−0.6616 −0.4938 −0.3499

−0.3850 − 0.2226𝑖 0.1121 − 0.3048𝑖 −0.0667 + 0.5036𝑖

−0.2449 − 0.2266𝑖 0.2977 + 0.0431𝑖 0.2830 + 0.3297𝑖

−0.1682 − 0.2102𝑖 0.1960 + 0.2453𝑖 0.3451 + 0.0933𝑖

−0.1203 − 0.1921𝑖 0.0573 + 0.3070𝑖 0.2918 − 0.0624𝑖

−0.0880 − 0.1754𝑖 −0.0550 + 0.2958𝑖 0.2086 − 0.1463𝑖

−0.0649 − 0.1608𝑖 −0.1329 + 0.2524𝑖 0.1273 − 0.1825𝑖

−0.0477 − 0.1480𝑖 −0.1816 + 0.1980𝑖 0.0581 − 0.1897𝑖

−0.0346 − 0.1368𝑖 −0.2082 + 0.1428𝑖 0.0028 − 0.1802𝑖

−0.0243 − 0.1270𝑖 −0.2190 + 0.0916𝑖 −0.0394 − 0.1614𝑖

]
]
]
]
]
]
]
]
]
]

]

.

(80)
we prove that rank([𝑉(:, 𝑘)𝑄(:, 𝑘)]) = 1 for 𝑘 = 1, 2, 3. It
is very interesting that the eigenvectors computed from our
algorithm are unique but not the complex algorithm (eig).

Example 20. At last we construct some rand Hermitian
matrices of order𝑁; its MATLAB code is as follows.

𝐴 = rand (𝑛) , 𝑆𝐴 = 𝐴


+ 𝐴, (81)

𝐵 = rand (𝑛) , 𝑆𝐵 = 𝐵 − 𝐵


, (82)

𝐻 = 𝑆𝐴 + 𝑖
∗

𝑆𝐵. (83)

Letting 2 ∗ 𝑁 = 200 : 100 : 1000, denote

max (relerr) = max
𝑗


𝜆
eig
𝑗

− 𝜆
Sympl
𝑗



𝜆
Sympl
𝑗



, (84)

min (relerr) = min
𝑗


𝜆
eig
𝑗

− 𝜆
Sympl
𝑗



𝜆
Sympl
𝑗



. (85)

All the relative errors we compute are present by a factor of
order O(10𝑑). The average relative errors for all examples of
each dimension we computed for each example in Table 7 are
denoted by average (relerr).Themax,min, and average errors
of 𝑟 = 𝐻𝑣

𝑖
− 𝑣
𝑖
𝜆 are also considered in Table 8. According to

two tables, all the “relerr” and “residual” are order O(10−13)
and very small. Hence it can be concluded that eigenproblems
computed by the real fast algorithm have high precision, and
the method always converges.
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