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Wireless sensor networks (WSN) are presented as proper solution for wildfire monitoring. However, this application requires a
design of WSN taking into account the network lifetime and the shadowing effect generated by the trees in the forest environment.
Cooperative communication is a promising solution for WSN which uses, at each hop, the resources of multiple nodes to transmit
its data. Thus, by sharing resources between nodes, the transmission quality is enhanced. In this paper, we use the technique
of reinforcement learning by opponent modeling, optimizing a cooperative communication protocol based on RSSI and node
energy consumption in a competitive context (RSSI/energy-CC), that is, an energy and quality-of-service aware-based cooperative
communication routing protocol. Simulation results show that the proposed algorithm performs well in terms of network lifetime,
packet delay, and energy consumption.

1. Introduction

The automatic monitoring of wildfire generally supports
multimodal observations. This is due to the extent of the
areas to be covered and the difficulty of detecting fire. In
fact, most fire detection techniques, for example, based on
the video, suffer from false alarms. The use of wireless sensor
networks (WSNs) can improve the quality of the detection
and consequently the reduction of the false alarm. WSN
can be easily deployed and do not require special auxiliary
installation. They are mainly used to control buildings,
houses, or archaeological sites in the forest.

However, the forest environment presents the problem
of wide covered areas requiring the transmission of a large
amount of information through the network with the risk of
significant energy consumption and hence limiting the life-
time of the network. Particularly, energy parameter is crucial
for the wildfire application. This is due to the complexity
of maintenance of the sensors and the substitution of dead
batteries due to the difficulty of access to these sensors placed
generally in large covered areas. The second problem which
arises in this type of environment is the fading effect due

to the presence of trees leading to an important shadowing
phenomenon.

To solve these problems, we propose a new methodology
to design and optimize WSN based on both energy conser-
vation and consideration of the quality of transmission for
choosing the routing protocol.

Cooperative communication is a promising solution for
enhancing WSN lifetime. In recent works, this concept
has been proposed to exploit the spatial diversity gains in
wireless networks [1–3]. Data aggregation in WSN often uses
multihop transmission techniques. At each hop, the network
relies on only one sensor. This often results in a significant
decrease in the energy of some sensors and thus limits the
lifetime of the network while a large number of sensors
are still in working condition. The main idea of cooperative
communication consists in relying, at each hop, on the
resources of multiple nodes or relays (called cooperative
nodes) to transmit data from one sensor to another, instead
of using only one sensor as relay. Thus, by sharing resources
between nodes, the transmission quality is enhanced.

It is also obvious that the use of a cooperative scheme
improves the reliability of communication in case of fire
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propagation. Indeed, the presence of several relays for each
possible hop ensures the further communication of informa-
tion and therefore the possibility of detection and tracking of
potential wildfire.

Thus, cooperative mechanism is the key to the perfor-
mance of cooperative communication protocols. However,
it is challenging to find the optimal cooperative policies
in dynamic WSN, where reinforcement learning (RL) algo-
rithms can be used to find the optimal control policy without
the need of centralized control.

Recently, a cooperative communication protocol for
quality-of-service (QoS) provisioning has been proposed
and named MRL-CC, a multiagent reinforcement learning-
based cooperative communication routing algorithm [1].The
RL concept consists in considering the cooperative nodes
as multiple agents learning their optimal policy through
experiences and rewards.MRL-CC has been based on intern-
ode distance and packet delay to enhance the QoS metrics.
However, it does not care about energy consumption and
network lifetimewhich are important components for energy
efficiency.

In this paper, we design cooperative communication
routing protocol based on both energy consumption and
QoS. The QoS is measured by the absolute received signal
strength indicator (RSSI). To integrate these two parameters
in the routing protocol, we use a competitive/opponent
mechanism implemented at each node by the multiagent
reinforcement-learning (MRL) algorithm. Our proposed
algorithm (RSSI/energy-CC) is also an energy andQoS aware
routing protocol since it ensures better performance in terms
of end-to-end delay and packet loss rate, taking into account
the consumed energy through the network.

The rest of the paper is organized as follows. Section 2
describes the RL algorithm and the design and imple-
mentation of MRL-CC algorithm and our algorithm, the
RSSI/energy-CC. The performance analysis is presented in
Section 3. Finally, Section 4 concludes the paper and gives
future research discussions.

2. Cooperative Communication in WSN Using
Reinforcement Learning

In this section, the background information on RL is pro-
vided. Then, we give an overview about the architecture and
design issues of our concept of cooperative communication
inWSN.Then, we describe the architecture and design issues
of MRL-CC, a cooperative communication algorithm using
RL. After that, we explain the architecture of new algorithm,
RSSI/energy-CC, taking into account both QoS and energy
consumption.

2.1. Reinforcement Learning. RL provides a framework in
which an agent can learn control policies based on experi-
ences and rewards. In the standard RL model, an agent is
connected to its environment via perception and action, as
shown in Figure 1. On each step of interaction, the agent
receives as an input, 𝑖, some indication of the current state,
𝑠, of the environment; the agent then chooses an action,
𝑎, to generate as an output. The action changes the state

System environment
(State: S)

Reward: R

Agent: A

State s ∈ S

Action a ∈ A

Reward r ∈ R

Figure 1: Reinforcement learning model.

of the environment, and the value of the state transition is
communicated to the agent through a scalar RL signal, 𝑟.
Depending on its behavior, the agent should choose actions
that tend to increase the long-term sum of values of the
reinforcement signal [4].

The main idea of RL is to strengthen the good behaviors
of the agent while weakening the bad behaviors through
rewards given by the environment.

The environment of the agent is described by a Markov
decision process (MDP). An MDP models an agent acting
in an environment with a tuple (𝑆, 𝐴, 𝑃, 𝑅), where 𝑆 is a set
of states and 𝐴 denotes a set of actions. 𝑃(𝑠 | 𝑠, 𝑎) is the
transition model that describes the probability of entering
state 𝑠 ∈ 𝑆 after executing action 𝑎 ∈ 𝐴 at state 𝑠 ∈ 𝑆.
𝑅(𝑠, 𝑎, 𝑠


) is the reward obtained when the agent executes 𝑎

at 𝑠 and enter 𝑠. The goal of solving an MDP is to find an
optimal policy, 𝜋 : 𝑆 → 𝐴, that maps states to actions such
that the cumulative reward is maximized [4].

Multiagent systems (MASs) are systems showing that
multiple agents are connected to the environment and that
they may take actions to change the state of the environment.
The generalization of the Markov decision process to the
multiagent case is the stochastic game (SG) [5].

In MAS case, each agent assumes itself as the only one
that can change the state of the environment and does not
consider the interactions between itself and other agents.
Therefore, the state transitions are the result of the joint action
of all agents, a = [𝑎

1
, . . . , 𝑎

𝑛
], where 𝑛is the number of agents.

Consequently, the rewards for each agent𝑅
𝑖
, 𝑖 = 1, . . . , 𝑛, also

depends on the joint action. The policies 𝜋
𝑖
: 𝑆 → 𝐴 form

together the joint policyΠ.
If 𝑅
1
= ⋅ ⋅ ⋅ = 𝑅

𝑛
, all the agents have the same goal

(to maximize the same expected return), and the SG is fully
cooperative. If 𝑛 = 2 and 𝑅

1
= −𝑅

2
, the two agents have

opposite goals, and the SG is fully competitive. Mixed games
are stochastic games that are neither fully cooperative nor
fully competitive.
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Figure 2: Multihop mesh cooperative structure for data dissemina-
tion in WSNs.
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Figure 3: Cooperation between adjacent groups of cooperative
nodes.

2.2. Cooperative Communication Concept in WSN

2.2.1. Adopted Architecture. For reliable data dissemination
in WSNs, we use a multihop mesh cooperative structure. It
consists in forming groups of cooperative nodes (denoted as
CN) between the source node and the sink node. The data
packets originated from a source node are forwarded towards
the sink by these CN groups (Figure 2) using a multihop
transmission. When a data packet is received by a CN group,
a node from that group will be elected to broadcast the data
packet to the adjacent CN group.The other nodes of that CN
group will help in the packet forwarding in case the elected
node fails in data packet transmission or in case the packet is
corrupted.

Therefore, we can show the group of nodes connected
to each other in a multihop mesh cooperative structure in
Figure 3. In fact, the set of 𝑛th cooperative group (denoted
by 𝑉
𝑛
) is connected with 𝑉

𝑛−1
and 𝑉

𝑛+1
, which are one hop

farther and closer towards the sink than 𝑉
𝑛
, respectively, that

is, each node in 𝑉
𝑛
is connected with all nodes in 𝑉

𝑛−1
and

𝑉
𝑛+1

.
To construct a multihop mesh cooperative structure, a

set of nodes, termed as reference nodes (denoted as RN),
between the source node and the sink node is first selected.
After that, a set of nodes around each RN will be selected
as CN, and thus a multihop mesh cooperative structure is
constructed in this phase [6].

2.2.2. WSN Modeling with RL. From the point of view of
RL, we can consider a WSN as multiagent system. In fact,
sensor nodes can be considered as agents interacting with the
environment which can be represented for node 𝑖 ∈ 𝑉

𝑛
as

follows.

(i) State: the CN groups are modeled to be the environ-
ment states:

𝑠
𝑛
= {𝑘} , where 𝑘 ∈ {. . . , 𝑉

𝑛−1
, 𝑉
𝑛
, 𝑉
𝑛+1
, . . .} . (1)

(ii) Action: an agent can operate one of these two actions:

𝑎
𝑓
: forwarding of the packet from 𝑉

𝑛
to 𝑉
𝑛+1

,
𝑎
𝑚
: monitoring the forwarded packet;

so: 𝐴 = {𝑎
𝑓
, 𝑎
𝑚
}.

In our study, we have considered two approaches. The first
approach is proposed in [1] where the RL strategy (policy,
behaviors, and rewards) for the sensor nodes considers the
packet delay and the packet loss rate. This technique has
been called the MRL-CC algorithm. The goal of MRL-CC
is to enhance packet delay and packet loss rate. The second
approach is treated in our work in [7] where the RL strategy
is based on the link quality between sensor nodes and their
amount of energy consumption. Our strategy goal is to
enhance energy efficiency and lifetime of the WSN, that is,
to reduce network energy consumption and to maximize
network lifetime.

2.3. Multiagent Reinforcement Learning-Based Cooperative
Communication Routing Algorithm (MRL-CC)

2.3.1. MRL-CC Implementation. Node election in the CN
group is based on a multiagent RL algorithm, performing a
fully cooperative task using a “𝑄-learning” algorithm. The
strategy is described as follows.

(i) Behavior: each node maintains 𝑄-values of itself and
its cooperative partners which reflect the qualities
(transmission delay, packet delivery ratio) of the
available routes to the sink.

(ii) Policy: when a packet is received by the nodes in a
CN group, each node will compare its own 𝑄-value
with those of other nodes in the CN group; the node
which determines that it has the highest 𝑄-value will
be elected to forward the data packet to the adjacent
CN group towards the sink. The other cooperative
nodeswillmonitor the packet transmission at the next
hop.

(iii) Reward: the reward function is defined as follows:

𝑟
𝑖
=

((𝑑
𝑉
𝑛
,sink − 𝑑𝑉

𝑛+1
,sink) /𝑑𝑉

𝑛
,sink)

((𝑇
𝑉
𝑛+1

− 𝑇
𝑉
𝑛

) /𝑇
𝑟𝑚𝑛
)

, (2a)

𝑟
𝑖
= −

𝑇
𝑟𝑓

𝑇
𝑟𝑚𝑛

. (2b)

Equation (2a) is used to calculate the reward when the
packet forwarding is successful, where 𝑑

𝑉
𝑛
,sink is the average

distance between 𝑉
𝑛
and the sink, which can be calculated as

𝑑
𝑉
𝑛
,sink =

1

𝑁
𝑉
𝑛

∑

𝑖∈𝑉
𝑛

𝑑
𝑖,sink (3)
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where 𝑁
𝑉
𝑛

is the number of cooperative nodes in 𝑉
𝑛
, 𝑇
𝑉
𝑛+1

and 𝑇
𝑉
𝑛

are the packet forwarding time at 𝑉
𝑛+1

and 𝑉
𝑛
,

respectively; 𝑇
𝑟𝑚𝑛

is the maximum amount of time that can
be elapsed in the remaining path to the sink to meet the
QoS requirements on end-to-end delay. The positive reward
reflects the quality of the packet forwarding.

Equation (2b) is used to calculate the reward when the
packet forwarding fails; 𝑇

𝑟𝑓
is the packet reforwarding timer

used for failed forwarding packets. The negative reward
reflects the delay caused by the unsuccessful packet transmis-
sion from 𝑉

𝑛
to 𝑉
𝑛+1

.

(i) 𝑄-value update: in MRL-CC, for 1-hop forwarding, at
iteration 𝑡, node 𝑖 ∈ 𝑉

𝑛
forwards a packet to 𝑉

𝑛+1
,

and then 𝑗 ∈ 𝑉
𝑛+1

is elected to continue packet
forwarding. Therefore, node 𝑖 updates its 𝑄-value as

𝑄
𝑡+1

𝑖
(𝑠
𝑡

𝑖
, 𝑎
𝑡

𝑖
)

= (1 − 𝛼)𝑄
𝑡

𝑖
(𝑠
𝑡

𝑖
, 𝑎
𝑡

𝑖
)

+ 𝛼(𝑟
𝑡+1

𝑖
(𝑠
𝑡+1

𝑖
) + 𝛾𝜔 (𝑖, 𝑗)max

𝑎
𝑗
∈𝐴

𝑄
𝑡

𝑗
(𝑠
𝑡

𝑗
, 𝑎
𝑡

𝑗
)

+𝛾 ∑

𝑖


∈𝑉
𝑛

𝑖


̸= 𝑖

𝜔 (𝑖, 𝑖

)max
𝑎
𝑖
∈𝐴

𝑄
𝑡

𝑖
 (𝑠
𝑡

𝑖
 , 𝑎
𝑡

𝑖
)) ,

(4)

where 𝛾 ∈ [0, 1] is the discount factor, 𝛼 ∈ [0, 1] is the learn-
ing rate parameter and 𝜔(𝑖, 𝑗) and 𝜔(𝑖, 𝑖) are, respectively,
factors that weigh the maximum 𝑄-value for node 𝑗 in 𝑉

𝑛+1

and the maximum 𝑄-value of node 𝑖 (neighbor of node 𝑖) in
𝑉
𝑛
.
Equation (4) shows that the𝑄-value of node 𝑖 is a weighed

sum of the 𝑄-value of node 𝑖 at the previous state, the
action’s immediate reward, the maximum𝑄-value of 𝑗 which
is elected as the forwarding node in 𝑉

𝑛+1
at the next hop, and

the 𝑄-values of all of 𝑖’s cooperative partners in 𝑉
𝑛
.

Note that in the initialization phase, each node is assigned
with an initial 𝑄-value. For node 𝑖 ∈ 𝑉

𝑛
, its initial 𝑄-value

(denoted as 𝑄ini
𝑖
) is calculated based on the relative distance

(compared with its cooperative partners in𝑉
𝑛
) from node 𝑖 to

the nodes in 𝑉
𝑛+1

, as shown in the following:

𝑄
ini
𝑖
=

𝑑
𝑉
𝑛
,𝑉
𝑛+1

𝑑
𝑖,𝑉
𝑛+1

, (5)

where 𝑑
𝑉
𝑛
,𝑉
𝑛+1

is the average distance between 𝑉
𝑛
and 𝑉

𝑛+1
,

which can be calculated as

𝑑
𝑉
𝑛
,𝑉
𝑛+1

=
1

𝑁
𝑉
𝑛

∑

𝑖∈𝑉
𝑛

𝑑
𝑖,𝑉
𝑛+1

, (6)

where𝑁
𝑉
𝑛

is the number of cooperative nodes in 𝑉
𝑛
.

The average distance between node 𝑖 and𝑉
𝑛+1

, denoted by
𝑑
𝑖,𝑉
𝑛+1

, can be calculated as

𝑑
𝑖,𝑉
𝑛+1

=
1

𝑁
𝑉
𝑛+1

∑

𝑗∈𝑉
𝑛+1

𝑑
𝑖,𝑗
. (7)

2.3.2. Interpretation. We can conclude that MRL-CC algo-
rithm is considering each CN group as one single node
because it is performing a fully cooperative task. In fact, all
nodes of one CN group get the same positive/negative reward
after each transmission procedure. The value of that reward
represents the quality of packet forwarding in terms of delay
and packet loss rate. Besides, the 𝑄-values of the cooperative
nodes are initially based on average distance. Therefore, by
electing a node with the highest 𝑄-value, we also understand
that the policy adopted inMRL-CC is based on node election
with the shortest distance and the lowest packet delay. Thus,
MRL-CC ensures communication reliability. However, it has
no information about energy consumption that can be a
useful parameter to be considered in RL.

2.4. WSN Modeling with Reinforcement Learning in
RSSI/Energy-CC Algorithm

2.4.1. Main Idea. Nodes in a CN group will be considered as
opponents to each other, so that, each nodewill maintain a𝑄-
value which reflects the payoff that would have been received
if that node selected the action 𝑎

𝑓
and the other nodes jointly

selected the action 𝑎
𝑚
. After that, the node with the highest

total payoff will be elected to forward the data packet to the
next CN group towards the sink.

For the rewarding procedure, there are two cases.

(i) Transmission succeeded: the 𝑄-values of each node
will be updated according to its energy consumption
compared to its neighbors in its CN group.

(ii) Transmission failed: the 𝑄-value of the node that
failed to forward the data packet will be updated with
a negative reward, whereas for the other nodes, their
𝑄-value will be updated according to an indication
about their signal quality.

In our work, we have chosen to use the RSSI as an available
indication about signal quality for each packet received at a
sensor node.

2.4.2. RSSI/Energy-CC Algorithm Strategy. Node election in
the CN group is based on a multiagent RL algorithm,
performing a fully competitive task using an “opponent
modeling” algorithm [8].The strategy is described as follows.

(i) Policy: node election, for packet forwarding, for the
node with the best link quality and the lowest energy
consumption, or a tradeoff between the two criteria.

(ii) Behavior: each node maintains 𝑄-values which
reflects the payoff that would have been received
if that node selected the forwarding action 𝑎

𝑓
and

another node in its CN group selected themonitoring
action 𝑎

𝑚
.
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(iii) Reward: Each time a packet is forwarded, all the
nodes will receive immediate rewards from the envi-
ronment, which represent a tradeoff about energy
consumption and quality of the received signal.

2.4.3. Algorithm Initialization Phase. In the initialization
phase, each node is assignedwith an initial value regarding its
opponents in𝑉

𝑛
.The initial payoff of node 𝑖 ∈ 𝑉

𝑛
compared to

its neighbor 𝑖 is the 𝑄-value calculated based on its absolute
RSSI in dBmmeasured from the next cooperative group𝑉

𝑛+1
.

The 𝑄-value is defined as follows:

𝑄
ini
𝑖

, 𝑖
=

RSSI
𝑖,𝑉
𝑛+1

− RSSI
𝑖

,𝑉
𝑛+1

RSSI
𝑉
𝑛
,𝑉
𝑛+1

, (8)

where RSSI
𝑉
𝑛
,𝑉
𝑛+1

is the average RSSI between 𝑉
𝑛
and 𝑉

𝑛+1
,

which can be calculated as

RSSI
𝑉
𝑛
,𝑉
𝑛+1

=
1

𝑁
𝑉
𝑛

∑

𝑖∈𝑉
𝑛

RSSI
𝑖,𝑉
𝑛+1

, (9)

where𝑁
𝑉
𝑛

is the number of cooperative nodes in 𝑉
𝑛
.

The averageRSSI betweennode 𝑖 and𝑉
𝑛+1
, RSSI

𝑖,𝑉
𝑛+1

, can
be calculated as

RSSI
𝑖,𝑉
𝑛+1

=
1

𝑁
𝑉
𝑛+1

∑

𝑗∈𝑉
𝑛+1

RSSI
𝑖,𝑗
. (10)

2.4.4. Data Dissemination Phase. When a data packet is
received by a CN group 𝑉

𝑛
, each node will compare its own

total payoff, regarding all its opponents, with those of other
cooperative nodes.

The node which determines that it has the highest total
payoff will forward the data packet to 𝑉

𝑛+1
, and other nodes

in𝑉
𝑛
will deduce whether the packet forwarding is successful

or not, by overhearing the packet transmission from 𝑉
𝑛+1

to
𝑉
𝑛+2

.

(i) 𝑄-value update: the updating of 𝑄-value iterates at
each node in each forwarding procedure. For 1-hop
forwarding, at iteration 𝑡, node 𝑖 ∈ 𝑉

𝑛
forwards a

packet to 𝑉
𝑛+1

and nodes 𝑖; neighbors of 𝑖 in 𝑉
𝑛

monitor the packet forwarding. Then, 𝑗 ∈ 𝑉
𝑛+1

is elected to continue packet forwarding. Therefore,
node 𝑖updates its 𝑄-values as

𝑄
𝑡+1

𝑖

,𝑖
(𝑠
𝑡

𝑖
, 𝑎
𝑡

𝑓
, 𝑎
𝑡

𝑚
)

= (1 − 𝛼)𝑄
𝑡

𝑖

, 𝑖
(𝑠
𝑡

𝑖
, 𝑎
𝑡

𝑓
, 𝑎
𝑡

𝑚
)

+ 𝛼 (𝑟
𝑡+1

𝑖
(𝑠
𝑡+1

𝑖
) + 𝛾 ⋅ 𝜔

𝑠
𝑡

𝑖

𝑉(𝑠
𝑡

𝑖
) + 𝛾𝜔

𝑠
𝑡

𝑗

𝑉(𝑠
𝑡

𝑗
)) ,

(11)

where 𝜔
𝑠
𝑡

𝑖

and 𝜔
𝑠
𝑡

𝑗

are, respectively, factors that weigh the
total payoff in 𝑉

𝑛
and 𝑉

𝑛+1
and 𝑉(𝑠𝑡) is the maximum payoff

expressed by

𝑉(𝑠
𝑡
) = max
𝑎
𝑡

𝑓

∑

𝑎
𝑡

𝑚

𝐶
𝑡

𝑖
 (𝑠
𝑡
, 𝑎
𝑡

𝑚
)

𝑁 (𝑠)
𝑄
𝑡

𝑖

, 𝑖
(𝑠
𝑡
, 𝑎
𝑡

𝑓
, 𝑎
𝑡

𝑚
) , (12)

where𝐶𝑡
𝑖
(𝑠
𝑡
, 𝑎
𝑡

𝑚
) counts the number of times agent 𝑖 observed

agent 𝑖 taking action 𝑎
𝑚
in state 𝑠 at packet 𝑡 and 𝑁(𝑠) is

the total counts for all agents taking action 𝑎
𝑚

in state 𝑠.
Therefore, 𝐶𝑡

𝑖
(𝑠
𝑡
, 𝑎
𝑡

𝑚
)/𝑁(𝑠) is the probability in which the

nodes other than 𝑖will select joint action 𝑎
𝑚
for packet 𝑡 based

on past experience.
So, for 𝑖 ∈ 𝑉

𝑛
if agent 𝑖 chooses 𝑎

𝑚
action, then

𝐶
𝑡+1

𝑖
 (𝑠
𝑡
, 𝑎
𝑡

𝑚
) = 𝐶

𝑡

𝑖
 (𝑠
𝑡
, 𝑎
𝑡

𝑚
) + 1,

𝑁(𝑠) = 𝑁(𝑠) + 1.

(13)

Equation (11) shows that the 𝑄-value of node 𝑖 is a
weighed sum of the 𝑄-value of node 𝑖 at the previous state,
the action’s immediate reward and the maximum payoff of
the group 𝑉

𝑛+1
and the maximum payoff of the group 𝑉

𝑛
.

(i) Reward function: the reward function is defined as
follows:

𝑟
𝑖
=

((∑
𝑗∈𝑉
𝑛

𝐸
𝑗
/𝑁
𝑉
𝑛

) − 𝐸
𝑖
)

((∑
𝑗∈𝑉
𝑛

𝐸
𝑗
/𝑁
𝑉
𝑛

) −min
𝑗∈𝑉
𝑛

𝐸
𝑗
)

, (14a)

𝑟
𝑖
=

RSSI
𝑖,𝑉
𝑛+1

RSSI
𝑉
𝑛
,𝑉
𝑛+1

− 𝜎 ⋅ 𝑁
𝑉
𝑛

. (14b)

Equation (14a) is used to calculate the reward when
the packet forwarding is successful, where 𝐸

𝑖
represents the

consumed energy for node 𝑖 of the group 𝑉
𝑛
. So, nodes with

less energy consumption will receive positive rewards, and
nodes with more energy consumption will receive negative
rewards.

Equation (14b) is used to calculate the reward when the
packet forwarding fails. The parameter 𝜎 takes 1 for the node
that failed to forward data packet, whereas for the other
nodes, it takes 0. So, the forwarding-node will receive a
negative reward. The other nodes in 𝑉

𝑛
will receive positive

reward according to their RSSI values.
In the opponent modeling case, all nodes in𝑉

𝑛
are acting

in a fully competitive task. So, the total sum of the attributed
rewards to all cooperative nodes is zero.

After a certain number of iterations, nodes in 𝑉
𝑛
are able

to use the learned policy to take appropriate actions.

2.5. Complexity Analysis. As noticed in the previous subsec-
tions, RL algorithms are composed of two main phases:

(i) updating phase of the 𝑄-values for each agent;
(ii) node election for data forwarding.

For the 𝑄-learning algorithm, the updating phase is realized
through (4). The algorithm complexity concerning the 𝑄-
value updating is then equal to𝑁2.

For the node election phase, the node with the highest𝑄-
value is elected for data forwarding:

𝑎
𝑓
= argmax

𝑖

𝑄
𝑖
. (15)
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So, the algorithm complexity concerning node election
equals 𝑁. Therefore, the algorithm complexity of the 𝑄-
learning algorithm equals to𝑁 +𝑁

2.
For the opponent modeling algorithm, the updating

phase is realized through (11). The algorithm complexity
concerning the𝑄-value updating is then equal to𝑁⋅ (𝑁−1).

For the node election phase, the node with the highest
payoff is elected for data forwarding:

𝑎
𝑓
= argmax

𝑖

∑

𝑎
𝑡

𝑚

𝐶
𝑖
 (𝑠
𝑡
, 𝑎
𝑡

𝑚
)

𝑁 (𝑠)
𝑄
𝑡

𝑖

,𝑖
(𝑠
𝑡
, 𝑎
𝑡

𝑓
, 𝑎
𝑡

𝑚
) . (16)

So, the algorithm complexity concerning node election
equals 𝑁2. Therefore, the algorithm complexity of the 𝑄-
learning algorithm equals 2𝑁2 − 𝑁.

3. Performance Evaluation

3.1. Simulation Environment. For performance evaluation,
we use TOSSIM simulation platform in order to evaluate
parameters of interest such as energy consumption. TOSSIM
is a discrete event simulator for TinyOS sensor networks that
builds directly from the same TinyOS code written for the
actual motes.

We simulate different topologies, sizes of WSN, and
channel environment parameters (path loss and shadowing
effects). The sink node is also placed in different positions.
Simulation results concern network lifetime, packet delay
(average delay to the sink, percentage of delayed packets, and
percentage of lost packets), and energy consumption (net-
work energy consumption andmaximal energy consumption
per node). Performance of RSSI/energy-CC algorithm is
compared each time to MRL-CC algorithm.

The application of wildfire requires special measurement
and transmission of temperature. Other parameters may be
useful as moisture but are not considered in this paper. The
amount of information transmitted is therefore likely to be
low data rate. The area to cover, the forest, can be of different
shapes. It can even be sparse. In this paper, we consider two
different deployment architectures: uniform deployment and
circular deployment.

In the forest environment, the transmission of informa-
tion between different sensors can be significantly affected by
the presence of trees. To evaluate the effect of this distortion
on the quality of the proposed approach, we have also
simulated the network in the presence of shadowing effect
modeling this type of fading.

In Table 1, we give the parameters fixed for simulating the
different versions of the algorithms.

3.2. Simulation Results

3.2.1. Uniform Deployment. We simulate a WSN where 81
sensor nodes are uniformly distributed in a 80m × 80m area
(distance between 2 successive nodes is 10m). The sink node
is placed according to three different topologies (Figure 4).

Table 1: Simulation parameters.

Packet delivery every 200milliseconds
Packet size 17 Bytes
Reforwarding time 10ms
Communication range 30m
Initial battery energy 2 Li-ion AA batteries
Path-loss exponent 2
Shadowing standard deviation 2 dB
MAC object CSMA protocol
Node used for simulation Mica2 platform

Table 2: Network lifetime (in days) till the first node dies.

Network architecture A B C
MRL-CC 52 69 205
RSSI/energy CC 58 77 232

(a) Packet Delay Analysis. We compute in Figure 5 the
average delay to the sink, percentage of delayed packets, and
percentage of lost packets.

The simulation results show that for noncooperative
algorithm, the percentage of lost packets is huge compared to
the MRL-CC algorithm and the RSSI/energy CC algorithm.
However, in terms of percentage of delayed packets and
average delay to the sink, the RSSI/energy-CC algorithm is
lower than theMRL-CC algorithm.This is due to the fact that
RSSI/energy-CC algorithm relies on the average link quality
between the CN groups, which is performing at the same
time in a competitive context. This competitive task allows
a CN group to elect the node with the best RSSI for packet
transmission.

(b) Energy Consumption in a Cooperative Node Group.
Figure 6 presents the selected CN groups for data transmis-
sion from node 4 to the sink node (topology B is considered).

We display the residual battery energy for each selected
CN group in Figure 7, and we compare energy consump-
tion behavior between the MRL-CC algorithm and the
RSSI/energy-CC algorithm.

Figure 7 shows that the behavior of energy consumption
for each CN group is different when comparing MRL-CC
algorithm and RSSI/energy-CC algorithm. For nodes which
belong to the same CN group, the residual energy is more
balanced for the RSSI/energy-CC algorithm. Thus, energy
consumption is saved for each node in each CN group.

(c) WSN Lifetime. Network lifetime is defined as the time
when the first node’s battery is out of energy. For our case, we
have compared the MRL-CC algorithm to the RSSI/energy-
CC algorithm, computing at the same time the total energy
consumed in the WSN (in J). Results are given in Table 2.

We also present in Table 3 the maximal lifetime during
which all sensors can transmit to the sink node.

We can notice from Tables 2 and 3 that network life-
time is enhanced when comparing MRL-CC algorithm to
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(A) (B) (C)

Figure 4: Sink node (in black) placement for topologies (A), (B), and (C).
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Figure 5: Average delay to the sink, percentage of delayed packets, and percentage of lost packets by averaging on the number of nodes being
away with the same number of hops from the sink node.

Table 3: Network lifetime (in days) till theWSN cannot transmit to
the sink node.

Network architecture A B C
MRL-CC 100 178 251
RSSI/energy CC 101 187 275

RSSI/energy-CC algorithm. This enhancement is certainly
due to some energy savings in the network.

(d) WSN Energy Consumption. We first investigate energy
consumption in the whole network. A comparison between

the different network architectures for the two algorithms is
presented in Figure 8.

Comparing network architectures, we conclude thatChas
the lowest energy consumption compared to A and B. So,
network lifetime for C is the longest.

Simulation results also show that when comparing net-
work energy consumption between the two algorithms for
the same network architecture, network energy consumption
is saved for the RSSI/energy CC algorithm compared to the
MRL-CC algorithm. This is because the RSSI is considered
for the decision of the node election for packet forwarding.
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Figure 6: Selected CN groups for data transmission from source
node 4 (in red) to sink node 76 (in black).
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Figure 7: Energy consumption comparison for each selected CN
group betweenMRL-CC algorithm and RSSI/energy-CC algorithm.

Network energy consumption is saved from 3.33% to 5.19%
for network A, from 2.28% to 6.23% for network B, and from
5.38% to 9.76% for network C.

At the same time, we compare the maximum energy
consumption per node in the network, for the two algorithms.
For each architecture, we obtain the charts presented in
Figure 9.

The simulation results show that the maximum energy
consumption per node is reduced for the RSSI/energy CC
algorithm compared to MRL-CC algorithm. This is due to
taking into account the energy consumption for the coopera-
tive group before making the decision for node election. The
maximal energy consumption is saved from 9.56% to 10.6%
for network A, from 12.5% to 13.23% for network B, and from
10.79% to 14.76% for network C.
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Figure 8: Network energy consumption, comparison between
network architectures for MRL-CC and E/RSSI CC algorithm.

Table 4: Network lifetime (in days) till the first node dies.

Network architecture 9 × 9 13 × 13 21 × 21

MRL-CC 166 138 126
RSSI/energy CC 192 160 146

Table 5: Network lifetime (in days) till the WSN can not transmit
to the sink node.

Network architecture 9 × 9 13 × 13 21 × 21

MRL-CC 219 206 205
RSSI/energy CC 231 219 205

So, we can conclude that network lifetime enhancement
is due to the enhancement of node’s lifetime with maximal
energy consumption.

In a second analysis of energy consumption, we propose
to show results for extended grid networks where the sink
is placed in the center (alike to topology C). Results about
lifetime are shown in Tables 4 and 5.

We can notice from those tables that network lifetime is
also enhanced for the RSSI/energy-CC algorithm.

We also display results about network energy consump-
tion in Figure 10, and the maximum energy consumption per
node in the network in Figure 11.

Comparing network architecture, we conclude that 9 × 9
network has the lowest energy consumption compared to 13×
13 and 21× 21 networks. So, network lifetime for 9× 9 network
is the longest. Simulation results, in Figure 10, also show
that when comparing network energy consumption between
the two algorithms for the same network architecture, the
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Figure 9: Maximal energy consumption in the whole WSN, com-
parison between MRL-CC and E/RSSI-CC algorithms for different
network architectures.
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Figure 10: Network energy consumption, comparison between
network architectures for MRL-CC and E/RSSI CC algorithms.
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Figure 12: WSN topology in circles; sink node is at the center.

network energy consumption is saved for the RSSI/energy
CC algorithm compared to theMRL-CC algorithm. Network
energy consumption is saved up to 9.49% for 9 × 9 network,
up to 6.78% for 13 × 13 network, and up to 6.08% for 21 × 21
network.

In Figure 11, the simulation results show that the max-
imum energy per node is reduced for the RSSI/energy
CC algorithm compared to MRL-CC algorithm. Thus, the
maximal energy consumption is saved up to 17.17% for 9 ×
9 network, up to 14.12% for 13 × 13 network, and up to 14.01%
for 21 × 21 network.
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Figure 13: Network energy consumption and maximal energy consumption for network in form of circles, for MRL-CC algorithm and
RSSI/energy CC algorithm.
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Figure 14: Network lifetime (architecture C) for different number of path losses, 𝑛, and different shadowing standard deviation, for the
MRL-CC and the RSSI/energy algorithms.

3.2.2. Energy Consumption for Circular Topology. We also
simulated our algorithms in the form of circles presented in
Figure 12. The distance between circles is 10 meters.

Energy simulations for the network in circles for the two
algorithms are presented in Figure 13.

The network lifetime for MRL-CC algorithm is 180 days.
However, for the RSSI/energy CC algorithm, the network
lifetime is 247 days. The gain in network lifetime is very
valuable due to the special network topology. Network energy
consumption savings go from 24.69% up to 39.14%. Also, for
maximal energy consumption, savings are going from 28.16%
up to 35.53%.

3.2.3. Shadowing and Path-Loss Effect. We propose to use the
network architecture C (uniformdeployment) to simulate the
network lifetimewhen path-loss number takes the values: 𝑛 =
3 and 4, and shadowing deviation takes the values: 𝜎 = 2, 4
and 6 dB. Simulation results are shown in Figure 14.

It is obviously clear that the network lifetime is reduced
when the path-loss value increases and when the shadowing
deviation increases. This result is both for the MRL-CC and
the RSSI/energy CC algorithms. From that figure, we can also
conclude that the RSSI/energy CC algorithm performs better
than the MRL-CC algorithm in terms of network lifetime.
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4. Conclusions

To help automatic monitoring of wildfire, we propose in
this paper to deploy WSN. To design and optimize the
routing protocol used for data aggregation in this network,
we propose a new algorithm: the RSSI/energy-CC. This
algorithm corresponds to the reinforcement learning opti-
mization approach taking into account energy consumption
and link quality measured by the RSSI, performing in a
competitive task.

Simulations had shown that this algorithm is efficient
in terms of percentage of lost packets, network energy
consumption, maximal energy consumption per node, and
network lifetime.

In future research, we will consider both the case of
multiple sinks in theWSN in order to better process network
energy consumption and better enhance the network lifetime
and sparse deployment which describes better the forest
environment.
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