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Background
Nowadays, quality is one of the most important consumer decision factors. It has 
become one of the main strategies to increase the productivity of industries and ser-
vice organizations. Therefore, the companies are trying to enhance the quality of their 
products by using various statistical techniques and tools. Acceptance sampling plans 
are important tools that have been widely used for lot sentencing in the industries. 
The inspection of the final product is always done on the basis of acceptance sampling 
scheme. There are two major types of acceptance sampling plans: attribute sampling 
plans and variable sampling plans. The major advantage of a variable sampling plan is 
that it has the same protection as an attribute acceptance sampling plan with a smaller 
sample size. When destructive testing is employed, variables sampling is particularly 
useful in reducing the costs of inspection. For more detail about the applications of the 
acceptance sampling plan can be found in Wu (2012), Liu et al. (2014), Kurniati et al. 
(2015), Yen and Chang (2009), and Sheu et al. (2014).

The coefficient of variation (CV), which is defined as the ratio of the standard devi-
ation to the mean, is widely used to measure the relative variation of a variable to its 
mean. CV has been widely used in many practical applications. It is used as a measure 
of the reliability of an assay in chemistry and medicine (Reed et  al. 2002), to quantify 
the riskiness of stocks in finance (Miller and Karson 1977), in clinical trials to account 
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for baseline variability of measurements (Pereira et  al. 2004), in physical therapy to 
determine sincerity of effort (Robinson et al. 1997), in quality control to seek produc-
tion processes with minimal dispersion (Box 1988). Recently, Parsons et al. (2009) con-
cluded that it was important to use CVs to assess the quality of metabonomics datasets. 
Kang et al. (2007) developed a Shewhart-type control chart for monitoring the CV using 
rational subgroups and showed the CV to be a very attractive tool in quality control.

In the literature, either the mean or the standard deviation (SD) of the quality charac-
teristics are usually considered to measure the quality of products. However, in certain 
scenarios, the practitioner is not interested in the changes in the mean or the stand-
ard deviation but is instead interested in the relative variability compared with the mean 
(see for Yeong et al. 2015). This relative variability is called the CV. Verrill and Johnson 
(2007) have pointed that building materials are often evaluated not only on the basis 
of mean strength but also on relative variability, but laboratory techniques are often 
compared on the basis of their CVs. In many laboratories, the variability of the chemi-
cal assay that produces continuous-type values is summarized not by the SD but by the 
CV, because the SDs of such assays generally increase or decrease proportionally as the 
mean increases or decreases (refer to Reed et al. 2002). Therefore, acceptance sampling 
plans considering the CV as the reliability parameter can complement each other with 
the other acceptance sampling plans, so as to control the product quality and improve 
the management level.

CV can be applied not only characteristic analysis of ultimate strength or fatigue limit, 
failure rates and structural/material reliability, but also for both the reliability-based 
design of mechanical systems or components and the evaluation of an existing product 
(see for He and Oyadiji 2001). In the fields of materials engineering and manufacturing, 
Castagliola et al. (2015) have stated that some quality characteristics related to the physi-
cal properties of products often have a standard deviation that is proportional to their 
population mean. Tool cutting life and several properties of sintered materials are some 
typical examples. In such scenarios, the CV remains constant even though the mean and 
standard deviation may change from one sample to another. Zhang (1989) pointed that 
the CV can be predetermined from the long term of engineering practice in the research 
of structural reliability design, evaluation, and inspection.

CV is a good measure of the reliability of experiments, that is, the smaller the CV 
value, the higher the reliability (Steel and Torrie 1980; Taye and Njuho 2008). Recently, 
Ma and Zhang (1997) deduced the CV method for structural reliability inspection using 
the CV as the quality control parameter, under the condition of the CV being known. 
The inspection efficiency of CV method is higher than S method and σ method. Tong 
and Chen (1991) proposed a variable single sampling plan using CV to evaluate the qual-
ity stability of normally distributed products. Yan et al. (2016) developed a variable two 
stage sampling plan based on CV, which is more efficient than the single sampling plan 
proposed by Tong and Chen (1991).

In advanced manufacturing processes, supplier production is frequently continuous, 
so the quality of preceding and/or successive lots is expected to be homogeneous and 
dependent (Kuraimani and Govindaraju 1992). But the single sampling plan and the 
two stage sampling plan only consider the present state of a lot, that is, they accept or 
reject a lot based on the present lot quality. In order to compensate for this weaknesses, 
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Wortham and Baker (1976) introduced the multiple dependent state (MDS) sampling 
plan, which examines a lot based on not only the sample information from the current 
lot but also the quality of preceding lots. So the MDS sampling plan can be used in the 
case that lots are submitted for inspection serially. Recently, Balamurali and Jun (2007) 
proposed MDS sampling plan by variables for the assessment of normally distributed 
quality characteristics. Aslam et al. (2015) proposed a mixed MDS sampling plan using 
the process capability index, and Aslam et al. (2014) considered MDS sampling for the 
development of a new attribute control chart. To the best of our knowledge, there exist 
no studies about the MDS plan based on the CV. Therefore, assuming that the quality 
characteristic follows the normal distribution, we will develop the MDS sampling plan 
using the CV with expectation that it is more efficient than the single plan proposed by 
Tong and Chen (1991) in this article.

Multiple dependent state (MDS) sampling plan
The coefficient of variation (CV) is a statistic defined as the ratio of the standard devia-
tion σ to the mean µ. Suppose that the quality of interest X follows a normal distribution 
with the mean of µ and the variance of σ 2, the CV of the random variable X is defined as

Assume that X1,X2, . . . ,Xn is a sample of the normal distribution N (µ, σ 2), then the 
sample coefficient of variation is defined as

where S =
√

1
n−1

∑

n

i=1 (Xi − X̄)2 is the sample standard deviation, X̄ =
∑

n

i=1 Xi/n is 
the sample mean.

Iglewicz et al. (1968) noticed that the statistic 
√
n/γ̂ follows the noncentral t distribu-

tion, i.e. 
√
n/γ̂ ∼ t(n− 1,

√
n/γ ), where n − 1 is the degrees of freedom, and 

√
n/γ is 

the noncentrality parameter. Denote the cumulative distribution function (cdf ) of γ̂ as

where Ft(·) is the cdf of the t(n− 1,
√
n/γ ) distribution.

Steel and Torrie (1980), Taye and Njuho (2008) point that the CV is a good measure 
of the reliability of the experiment. Here we use the CV as the quality benchmark for 
acceptance of a product lot. Let v1 and v2 denote the quality level of AQL (acceptable 
quality level) and LQL (limiting quality level) based on the CV, respectively. Then the 
operating procedure of the proposed plan based on the CV is stated as follows:

Step 1: Choose the values of (v1, v2) based on the CV at producer’s risk α and con-
sumer’s risk β.
Step 2: Select a random sample of size n, (X1,X2, . . . ,Xn), from the lot, then compute 
the sample CV γ̂ defined in (2).

(1)γ = σ
/

µ

(2)γ̂ = S

X̄

(3)Fγ̂ (u|n, γ ) = 1− Ft

(√
n
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∣

∣

∣

∣
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√
n
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Step 3: Accept the entire lot if γ̂ ≤ ka, reject the lot if γ̂ > kr; if ka < γ̂ ≤ kr, then 
accept the current lot provided that the proceeding m lots have been accepted under 
the condition of γ̂ ≤ ka, otherwise reject the lot. Note that ka and kr are acceptance 
constant and rejection constant, respectively.

The proposed plan is characterized by four parameters ka, kr, m and n. If ka = kr, then 
it reduces to an ordinary variable single sampling plan proposed by Tong and Chen 
(1991) .

According to Balamurali and Jun (2007), the OC function of the proposed MDS sam-
pling plan is

The lot acceptance probability using single sampling and the probability of rejecting the 
lot directly based on the CV are respectively given as follows

So,

Then the OC function of the MDS sampling plan can be rewritten as

Determination of the proposed sampling plan parameters
Yen and Chang (2009) stated “A well-designed sampling plan must provide a probability 
of at least (1− α) of accepting a lot if the product quality level is v1 and a probability of 
no more than β of accepting a lot if the level of the product quality is v2.” Thus, the OC 
curve of the proposed variables MDS plan will be designed to pass through two desig-
nated points, (v1, 1− α) and (v2, β). For the specified α, β, v1 and v2, the proposed MDS 
sampling plan parameters must satisfy the following two inequalities

Since there are several combinations of the parameters for the proposed plans which 
satisfy the above two inequations, we choose the designed parameters which minimize 

(4)Pa(v) = P
{

γ̂ ≤ ka|γ = v
}

+ P{ka < γ̂ ≤ kr |γ = v }[P{γ̂ ≤ ka|γ = v }]m
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(6)Pa(v1) = Pr{Accepting the lot|γ = v1 } ≥ 1− α

(7)Pa(v2) = Pr{Accepting the lot|γ = v2 } ≤ β
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the sample size. The parameters ka, kr and n of the proposed plan can be obtained by 
solving the following optimization problem:

In order to investigate the effect of different m values on the required sample size of 
the proposed MDS sampling plan, we vary m from 1 to 8. Figure 1 shows the required 
sample size n varies with the m value under (v1, v2) = (0.05, 0.07), (α,β) = (0.05, 0.10), 
(0.10, 0.05) and (0.10, 0.10). From Fig. 1, we see that the required sample size n decreases 
with the increase of β value (or α value) for fixed the value of α(or β). That is to say, the 
larger the risk tolerance, the smaller the sample size required to ensure the same quality 
level. In addition, the required sample sizes do not change much under the different m 
values for each set of risk values.

 Referring to the values of CV selected by Kang et al. (2007) and Tong and Chen (1991), 
we consider v1 = 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, v2 = 0.06 ~ 0.12 here. The proposed 
sampling plan parameters (n, ka, kr) with schemes m = 1, 2, 3 are respectively displayed 
in Tables 1, 2 and 3 for (α, β) = (0.05, 0.10), (0.10, 0.05) and (0.10, 0.10). From the results 
of Tables 1, 2 and 3, we note that the corresponding sample size n decreases when v2 
value increases for fixed values of α, β and v1. On the other hand, for fixed α, β and v2 , 
the corresponding sample size n increases when v1 value increases. For example, when 
m = 3, v1 = 0.06, (α, β) = (0.05, 0.10), n = 127 as v2 = 0.07, and for all other same values, 
n = 8 when v2 = 0.12. On the other hand, when m = 3, v2 = 0.08, (α, β) = (0.05, 0.10), 
n = 16 as v1 = 0.05, and for all other same values, n = 167 when v1 = 0.07.  

(8)

Minimize n
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Fig. 1 Required sample size n of MDS sampling plan with m = 1–8
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Advantages of the MDS plan
In this section, we will use these two criteria, the OC curves and the sample size required 
for inspection, to demonstrate the advantages of the proposed MDS plan over the single 
plan proposed by Tong and Chen (1991).

OC curves

In order to show the efficiency of the proposed sampling plan, Fig. 2 displays the OC 
curves of the MDS plan (m = 1, 2, 3) and the single sampling plan for two cases: (a) (v1 , 
v2) = (0.06, 0.09), (α, β) = (0.05, 0.10), (b) (v1, v2) = (0.09, 0.12), (α, β) = (0.10, 0.05). In 
Fig. 2, we can see that the four curves of the sampling plans are very similar in case (a) 

Table 1 The proposed plan parameters under (α, β) = (0.05, 0.10), (0.10, 0.05), (0.10, 0.10) 
(m = 1)

v1 v2 (α, β)

(0.05, 0.10) (0.10, 0.10) (0.10, 0.05)

ka kr n ka kr n ka kr n

0.05 0.06 0.05318 0.05849 85 0.05166 0.06078 95 0.05216 0.05888 70

0.07 0.05561 0.06530 28 0.05342 0.06279 30 0.05336 0.06758 22

0.08 0.05693 0.07151 15 0.05412 0.06777 17 0.0557 0.0667 13

0.09 0.05771 0.08538 10 0.05466 0.07324 12 0.05759 0.06885 9

0.10 0.05867 0.09885 8 0.05475 0.09235 9 0.05665 0.08375 7

0.11 0.05970 0.10620 7 0.05611 0.09931 8 0.05527 0.09801 6

0.12 0.06081 0.12030 6 0.05821 0.10770 7 0.05941 0.07568 5

0.06 0.07 0.06314 0.06938 120 0.06181 0.06947 132 0.06247 0.06793 95

0.08 0.06516 0.07975 36 0.06311 0.07612 40 0.06381 0.07678 29

0.09 0.06732 0.08352 19 0.06470 0.07958 22 0.06485 0.08342 16

0.10 0.06850 0.09399 13 0.06588 0.08128 14 0.06787 0.08078 11

0.11 0.06975 0.10900 10 0.06528 0.10460 11 0.0661 0.1106 9

0.12 0.07055 0.11010 8 0.06558 0.10500 9 0.06854 0.1005 7

0.07 0.08 0.07302 0.08102 159 0.07232 0.07648 172 0.07233 0.07918 128

0.09 0.07551 0.08876 46 0.07370 0.08416 52 0.07395 0.0871 38

0.10 0.07792 0.09311 25 0.07471 0.08945 27 0.07599 0.09193 21

0.11 0.07916 0.10670 16 0.07535 0.09831 17 0.07595 0.1029 13

0.12 0.08030 0.11050 12 0.07572 0.11050 13 0.07692 0.1063 10

0.08 0.09 0.08329 0.08939 203 0.08204 0.08777 218 0.08249 0.0885 161

0.10 0.08558 0.09992 60 0.08342 0.09748 64 0.08397 0.1000 48

0.11 0.08772 0.10650 30 0.08491 0.10060 33 0.08519 0.1085 25

0.12 0.09045 0.10820 19 0.08521 0.11070 22 0.08751 0.1056 16

0.09 0.10 0.09318 0.09987 255 0.09218 0.09861 273 0.09244 0.09902 197

0.11 0.09646 0.10590 73 0.09346 0.10820 78 0.09414 0.1087 57

0.12 0.09829 0.11530 37 0.09476 0.11360 40 0.09587 0.1149 30

0.10 0.11 0.10320 0.10990 307 0.10210 0.10840 330 0.1023 0.1103 240

0.12 0.10580 0.12160 89 0.10380 0.11560 94 0.1046 0.1162 69
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or in case (b), but the sample size required by the MDS sampling plan is much fewer. For 
example, the single plan requires n = 28 while the MDS plan with m = 1 requires n = 19 
in case (a). In addition, all of the OC curves show that the probability of acceptance will 
become smaller as the value of CV increases, which is as expected from the theory. Since 
the MDS sampling plan requires fewer sample size to give the desired protection, the 
cost of inspection will greatly be reduced. Therefore, it is reasonable to conclude the 
MDS plan has a better performance.

Sample sizes required for inspection

In order to compare the sample sizes required for inspection in the MDS plan (m = 1, 
3) and the single plan with different values of v1 and v2, the v1 value is fixed at 0.05 and 
v2 value increases from 0.06 to 0.12. The results are showed in Fig. 3 (α = 0.05, β = 0.10) 
and Fig. 4 (α = 0.10, β = 0.05). From Figs. 3 and 4, the required sample size n of three 
sampling plans all decreases as the value of v2 rises from 0.06 to 0.12. Clearly, the 

Table 2 The proposed plan parameters under (α, β) = (0.05, 0.10), (0.10, 0.05), (0.10, 0.10) 
(m = 2)

v1 v2 (α, β)

(0.05, 0.10) (0.10, 0.10) (0.10, 0.05)

ka kr n ka kr n ka kr n

0.05 0.06 0.05361 0.06971 87 0.05257 0.06966 97 0.05298 0.08101 72

0.07 0.05656 0.10760 28 0.05437 0.06490 32 0.05524 0.07025 23

0.08 0.05925 0.09898 16 0.05540 0.08372 18 0.05681 0.08024 13

0.09 0.06141 0.10630 11 0.05707 0.08895 13 0.05754 0.08661 9

0.10 0.06247 0.09962 8 0.05765 0.10510 9 0.06024 0.07335 7

0.11 0.06400 0.11040 7 0.05776 0.11090 8 0.05898 0.1057 6

0.12 0.06360 0.11140 6 0.06097 0.11960 7 0.05969 0.1041 5

0.06 0.07 0.06372 0.07712 121 0.06269 0.07227 134 0.06313 0.07553 98

0.08 0.06673 0.08421 39 0.06455 0.08179 41 0.06534 0.1322 31

0.09 0.06893 0.09754 20 0.06634 0.09493 23 0.06716 0.1025 17

0.10 0.07102 0.09844 13 0.06739 0.10130 16 0.06908 0.09683 11

0.11 0.07373 0.10640 10 0.06842 0.11550 11 0.07035 0.1206 9

0.12 0.07435 0.11480 8 0.06888 0.12110 9 0.07174 0.1052 7

0.07 0.08 0.07374 0.08281 162 0.07260 0.08323 175 0.07309 0.1294 129

0.09 0.07715 0.08884 48 0.07481 0.09545 53 0.07545 0.1254 40

0.10 0.07950 0.10380 25 0.07640 0.09878 29 0.07711 0.1305 22

0.11 0.08203 0.12330 17 0.07739 0.11040 19 0.07909 0.1011 14

0.12 0.08407 0.12380 12 0.07914 0.12240 14 0.07968 0.1198 11

0.08 0.09 0.08393 0.09348 206 0.08274 0.09897 227 0.08312 0.1015 161

0.10 0.08725 0.10110 61 0.08477 0.10510 67 0.08584 0.1188 49

0.11 0.08962 0.12350 31 0.08678 0.11840 35 0.08735 0.114 26

0.12 0.09241 0.12200 20 0.08791 0.12830 23 0.08927 0.1231 17

0.09 0.10 0.09382 0.14880 257 0.09275 0.10150 277 0.09314 0.1126 201

0.11 0.09735 0.11020 74 0.09501 0.11530 81 0.09572 0.12 58

0.12 0.10060 0.11770 38 0.09698 0.12370 42 0.09813 0.1413 32

0.10 0.11 0.10400 0.11200 312 0.10270 0.11970 334 0.1032 0.1441 246

0.12 0.10760 0.1286 90 0.10510 0.12140 97 0.1061 0.121 72
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required sample size n is larger as the value of v2 is closer to the value of v1. Moreover, we 
also find that the single sampling plan requires more samples than the MDS plans when 
v2 takes any value between 0.06 and 0.12. Therefore, the MDS sampling plan is a more 
cost-effective plan while the single plan is relatively uneconomical. 

On the other side, we also list the sample sizes required for the single sampling plan 
and MDS plan (m = 1, 2, and 3) in Table 4 with commonly used values of v1 and v2 when 
(α,β) = (0.05, 0.10), (0.10, 0.05) and (0.10, 0.10). From Table 4, it is obvious that the sam-
ple size required by the MDS plan is fewer than required by the single sampling plan for 
all cases. For example, when v1 = 0.08, v2 = 0.09, (α,β) = (0.10, 0.05), the sample size of 
the MDS plan is 218 for m = 1, 227 for m = 2, and 240 for m = 3, while the single plan is 
318. Therefore, the proposed sampling plan will give the desired protection with the less 
required sample size so that the MDS plan is economically superior to the single plan.

Table 3 The proposed plan parameters under (α, β) = (0.05, 0.10), (0.10, 0.05), (0.10, 0.10) 
(m = 3)

v1 v2 (α, β)

(0.05, 0.10) (0.10, 0.10) (0.10, 0.05)

ka kr n ka kr n ka kr n

0.05 0.06 0.05395 0.06719 92 0.05288 0.06051 103 0.05339 0.05934 74

0.07 0.05710 0.06966 29 0.05489 0.0814 33 0.05566 0.0761 24

0.08 0.05949 0.08085 16 0.05670 0.08502 19 0.05782 0.0805 14

0.09 0.06236 0.09867 11 0.05753 0.09749 13 0.05911 0.07918 9

0.10 0.06327 0.09177 8 0.05951 0.10750 10 0.06029 0.1294 7

0.11 0.06551 0.11210 7 0.05955 0.11660 8 0.06088 0.1195 6

0.12 0.06732 0.12820 6 0.06107 0.12420 7 0.06602 0.08333 6

0.06 0.07 0.06414 0.07668 127 0.06297 0.07011 142 0.06342 0.1292 101

0.08 0.06735 0.08271 39 0.06518 0.08149 44 0.06608 0.09012 32

0.09 0.06995 0.09504 21 0.06706 0.09177 24 0.06793 0.1465 18

0.10 0.07306 0.09381 14 0.06839 0.09786 17 0.06969 0.09208 12

0.11 0.07423 0.11220 10 0.06969 0.10520 12 0.0723 0.1028 9

0.12 0.07568 0.12390 8 0.07129 0.12060 10 0.07275 0.09233 8

0.07 0.08 0.07419 0.08536 167 0.07303 0.08775 189 0.07346 0.09107 135

0.09 0.07792 0.08845 52 0.07556 0.09699 58 0.07637 0.1125 41

0.10 0.08034 0.09316 27 0.07740 0.10450 31 0.07831 0.1091 22

0.11 0.08359 0.11960 17 0.07901 0.11100 20 0.08043 0.09617 15

0.12 0.08486 0.11550 12 0.08128 0.12160 15 0.08309 0.1181 11

0.08 0.09 0.08421 0.10350 217 0.08304 0.09478 240 0.08354 0.09341 171

0.10 0.08770 0.10430 63 0.08551 0.10920 70 0.08666 0.1078 52

0.11 0.09088 0.11450 32 0.08806 0.11210 38 0.08893 0.1376 27

0.12 0.09319 0.12680 20 0.08932 0.12470 24 0.09183 0.1431 18

0.09 0.10 0.09426 0.10830 266 0.09307 0.11120 299 0.09357 0.1264 214

0.11 0.09768 0.11610 78 0.09557 0.11660 86 0.09656 0.1206 62

0.12 0.10130 0.12490 39 0.09777 0.12680 45 0.09903 0.1442 32

0.10 0.11 0.10430 0.11740 327 0.10310 0.11850 366 0.1036 0.1188 262

0.12 0.10800 0.12940 92 0.10570 0.12870 105 0.1066 0.1477 74



Page 9 of 13Yan et al. SpringerPlus  (2016) 5:1447 

An illustrative example
To illustrate the proposed MDS plan for practical applications, we use the actual data 
as discussed by Aslam et al. (2013). The data is about concrete which is widely used to 
construct buildings, roads, and a variety of other structures. The compressive strength of 
concrete is the most common quality measure used by the engineer in designing build-
ings and other structures. In the contract formulated from the producer and the con-
sumer, suppose that the producer requires the probability of accepting the concrete at 
least 95  % if the CV of the compressive strength is less than 0.08, and the consumer 
require that the probability of accepting the concrete would be no more than 10  % if 
the CV of the compressive strength is larger than 0.12. That is, the values of v1 and 
v2 are set to 0.08 and 0.12 with the producer’s risk α =  0.05 and the consumer’s risk 

Fig. 2 OC curves of MDS plan (m = 1, 2, 3) and single plan for different quality and risk parameters: a (v1, v2
) = (0.06, 0.09), (α, β) = (0.05,0.10). b (v1, v2) = (0.09, 0.12), (α, β) = (0.10,0.05)
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β = 0.10. Therefore, the problem is the determination of the acceptance constants and 
the inspected sample sizes that provide the desired levels of protection for both produc-
ers and consumers.

Based on our proposed methodology, we can obtain the plan parameters as (n, ka, 
kr ) =  (20, 0.09241, 0.122) from Table 2 considering the MDS plan with m = 2. Hence, 
the 20 inspected samples are taken from the lot randomly and the compressive strength 
of these 20 concrete mixture specimens is measured and displayed in Table  5. Aslam 

Fig. 3 Required sample sizes of MDS plan (m = 1, 3) and single plan for α = 0.05, β = 0.10, v1 = 0.05

Fig. 4 Required sample sizes of MDS plan (m = 1, 3) and Single plan for α = 0.10, β = 0.05, v1 = 0.05



Page 11 of 13Yan et al. SpringerPlus  (2016) 5:1447 

et al. (2013) have showed that these observed measurements are fairly close to the nor-
mal distribution. Based on the collected 20 measurements, we have

Since ka < γ̂ = 0.1194 < kr, the consumer will accept the lot provided that the proceed-
ing m (= 2) lots have been accepted under the condition of γ̂ ≤ ka, otherwise, reject the 
lot. Moreover, we note that if the single sampling plan (Tong and Chen 1991) based on 
the CV are applied to this case, the sample size required for inspection is 28 under the 
same conditions.

X = 32.19, S = 3.843, and γ̂ = S/X = 0.1194.

Table 4 The comparison of  sample size of  two sampling plans with  (α, β) =  (0.05, 0.10), 
(0.10, 0.05), (0.10, 0.10)

v1 v2 α = 0.05, β = 0.10 α = 0.10, β = 0.05 α = 0.10, β = 0.10

m = 1 m = 2 m = 3 n m = 1 m = 2 m = 3 n m = 1 m = 2 m = 3 n

0.05 0.06 85 87 92 131 95 97 103 134 70 72 74 101

0.07 28 28 29 39 30 32 33 41 22 23 24 31

0.08 15 16 16 20 17 18 19 23 13 13 14 17

0.09 10 11 11 14 12 13 14 15 9 9 9 12

0.10 8 8 8 11 9 9 10 12 7 7 7 9

0.11 7 7 7 9 8 8 8 9 6 6 6 8

0.12 6 6 6 7 7 7 7 8 5 5 6 7

0.06 0.07 120 121 127 182 132 134 142 186 95 98 101 142

0.08 36 39 39 53 40 41 44 56 29 31 32 42

0.09 19 20 21 28 22 23 24 28 16 17 18 22

0.10 13 13 14 17 14 16 17 20 11 11 12 15

0.11 10 10 10 14 11 11 12 15 9 9 9 11

0.12 8 8 8 11 9 9 10 12 7 7 8 9

0.07 0.08 159 162 167 242 172 175 189 248 128 129 135 188

0.09 46 48 52 69 52 53 58 72 38 40 41 55

0.10 25 25 27 35 27 29 31 36 21 22 22 28

0.11 16 17 17 23 17 19 20 25 13 14 15 19

0.12 12 12 12 17 13 14 15 17 10 11 11 14

0.08 0.09 203 206 217 311 218 227 240 318 161 161 171 242

0.10 60 61 63 88 64 67 70 91 48 49 52 69

0.11 30 31 32 44 33 35 38 46 25 26 27 35

0.12 19 20 20 28 22 23 24 30 16 17 18 23

0.09 0.10 255 257 266 327 273 277 299 336 197 201 214 303

0.11 73 74 78 109 78 81 86 112 57 58 62 85

0.12 37 38 39 55 40 42 45 56 30 32 32 44

0.10 0.11 307 312 327 335 330 334 366 343 240 246 262 335

0.12 89 90 92 132 94 97 105 136 69 72 74 103

Table 5 The compressive strength of 20 concrete mixture specimens

36.3 40.1 31.8 33.6 34.9 31.2 32.8 25.8 30.8 32.9

30.9 31.9 35.6 30.9 27.8 24.9 31.6 27.9 33.7 38.4
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Conclusions
In this paper, a multiple dependent state (MDS) sampling plan for accepting a lot whose 
quality characteristic follows a normal distribution based on the coefficient of variation 
(CV) is presented. Several tables are given for practical use. By comparison with the sin-
gle sampling plan propose by Tong and Chen (1991) in terms of the required sample size 
and the OC curve, which show that our proposed MDS plan has a better performance 
than the single plan. Hence, the industrialists can save the inspection cost if they use the 
proposed MDS plan. Finally, a real example shows the application of the proposed plan 
in various industries. The present study can be extended for non-normal distribution as 
future research.
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