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This paper studies the sampled-data based consensus of multiagent system with general linear time-invariant dynamics. It focuses
on looking for a maximum allowable sampling period bound such that as long as the sampling period is less than this bound,
there always exist linear consensus protocols solving the consensus problem. Both fixed and randomly switching topologies are
considered. For systems under fixed topology, a necessary and sufficient sampling period bound is obtained for single-input
multiagent systems, and a sufficient allowable bound is proposed formulti-input systems by solving the𝐻

∞
optimal control problem

of certain systemwith uncertainty. For systems under randomly switching topologies, tree-type and complete broadcasting network
with Bernoulli packet losses are discussed, and explicit allowable sampling period bounds are, respectively, given based on the
unstable eigenvalues of agent’s system matrix and packet loss probability. Numerical examples are given to illustrate the results.

1. Introduction

In recent years, coordination of distributed dynamic systems
operating over relative sensing/communication networks has
attracted the attention of researchers in system theory, biol-
ogy, and statistical physics, and so forth [1–5]. Consensus is
an important problem in coordination ofmultiagent systems.

The insertion of the communication network among
agents makes the analysis and design of multiagent systems
more complex. One of the challenging problems associated
with the multiagent systems is the influence of the sampling
period. There are many researchers studying sampled-data
consensus problem for first and second order multiagent
systems. For first-order systems, Olfati-Saber andMurray [3]
pointed out that the maximum allowable sampling period
is the reciprocal of the maximum out-degree. Xie et al. [6]
studied the first-order system via delayed sampled control
and gave consensus conditions on delay and sampling period.
Liu et al. [7] studied first-order consensus problem with
logarithmic quantization and gave sufficient conditions on
the sampling interval to ensure the 𝛽-asymptotic average

consensus. For second-order integrator agents, Cao and
Ren [8] proposed a necessary and sufficient condition on
the sampling period, the control gain, and the communi-
cation graph. Gao and Wang [9] proposed an allowable
bound of sampling period for a given protocol through
solving a set of LMIs. Yu et al. [10] gave a necessary
and sufficient consensus condition based on the sampling
period, the coupling gains, and the spectra of the Laplacian
matrix. Xiao and Chen [11] studied the state consensus
of multiple double integrators in a sampled-data setting
with the assumption that the position-like states were the
only detectable information transmitted over the network
and gave a necessary and sufficient condition and a suf-
ficient condition for the uniform and nonuniform data-
sampling cases, respectively. All the aforementioned litera-
ture concentrate on first or second order integrator agents.
Nevertheless, the consensus problem of high-order agents
is important and has been recently considered by many
researchers [12–17]. Zhang and Tian [14] pointed out that for
high-order multiagent systems the sampling period should
be bounded and proposed an allowable bound based on
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given consensus protocol. In [15], Gao et al. studied the
consensusability of sampled-data multiagent systems with
general linear dynamics and gave some sufficient and nec-
essary conditions for consensusability in the case of state
feedback.

The other challenging problem associated with multia-
gent systems is the influence of packet losses. Consensus
of discrete-time first and second-order systems in random
networks has been studied in some works [18–21].They show
that for low-order integrator agents the solvability of the
consensus problem just depends on the connectivity of the
mean topology while it is independent of link weights and
link existence probabilities. Zhang and Tian [22] studied the
influence of packet loss probabilities on the consensus ability
of discrete-time high-order multiagent systems and provided
a maximum allowable sampling period bound. Although
many efforts have been made on studying the consensus of
multiagent systems with switching topologies or sampled-
data, there is limitedwork investigating both the influences of
packet losses and sampling period for high-order multiagent
systems. Zhang and Tian [14] studied this problem, but the
proposed allowable sampling period bound was not explicit
and was based on given protocol gain.

This paper studies the consensus problem for high-order
multiagent systems with sampled data and packet losses and
focuses on looking for amaximumallowable sampling period
such that as long as the sampling period is less than this
period bound, there always exists a state feedback proto-
col solving the consensus problem. Firstly, fixed topology
is discussed. For single input system, by using algebraic
graph theory and nonsingular matrix transformation, the
consensus problem is converted to the simultaneous stabi-
lizing problem of subsystems, and a necessary and sufficient
sampling period bound is obtained. For multi-input system,
by solving the𝐻

∞
optimal control problem of certain system

with uncertainty, an allowable bound of sampling period is
proposed. Both bounds depend on the eigenvalues of agents’
system matrix and the Laplacian matrix and are easily com-
puted. Secondly, randomly switching topology case is studied.
When the topology is a rooted directed spanning tree with
Bernoulli link losses, a sampling period bound is given by
studying the spectral radius of expected value of multiagent
system matrix. When the network is a complete topology
with broadcasting schemes and Bernoulli packet losses,
a sampling period bound is given by applying Lyapunov
functional analysis. Both bounds are explicitly composed of
unstable eigenvalues of agents’ systemmatrix and packet loss
probability.

Notations. 𝐼
𝑛
denotes the identity matrix with 𝑛 dimensions.

𝜌(⋅) represents the spectral radius of a matrix. Re(⋅) and
Im(⋅) represent the real part and imaginary part of a number,
respectively. ⊗ denotes Kronecker product of matrixes. Pr(⋅)
and 𝐸(⋅) denote the probability and expected value of a
random process, respectively. ‖𝑥‖

𝑃
is the Euclidian norm

(𝑥
𝑇

𝑃𝑥)
1/2.

2. Preliminaries

Let G = (V,E,A) be an undirected graph of order 𝑛 with
the set of nodesV = {1, 2, . . . , 𝑛}, edge set E ⊆ V ×V, and
adjacency matrix A = [𝑎

𝑖𝑗
]
𝑛×𝑛

which describes the linkages
of nodes. If the edge (𝑖, 𝑗) ∈ E, that is, vehicle 𝑗 can obtain
information from vehicle 𝑖, then 𝑎

𝑗𝑖
> 0, otherwise 𝑎

𝑗𝑖
= 0.

Suppose that each node has no self-edge; that is, 𝑎
𝑖𝑖
= 0 for all

𝑖. For the edge (𝑖, 𝑗), 𝑖 is the parent node and 𝑗 is the child node.
A directed path is a sequence of edges in a directed graph
of the form (𝑖, 𝑗

1
), (𝑗
1
, 𝑗
2
), . . . ∈ E. A graph is connected if

there is a directed path from every node to every other node.
A complete graph is a simple graph in which every pair of
distinct vertices is connected by a unique edge; that is, 𝑎

𝑖𝑗
> 0

for all 𝑖 ̸= 𝑗. A rooted directed spanning tree is a directed
graph in which every node has exactly one parent except for
one node, called the root, which has no parent and which has
a directed path to every other node. If for any 𝑖 and 𝑗, 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
,

we say the graph is undirected.The Laplacianmatrix of graph
G is denoted by 𝐿 = [𝑙

𝑖𝑗
]
𝑛×𝑛

with 𝑙
𝑖𝑖
= ∑
𝑛

𝑗=1
𝑎
𝑖𝑗
and 𝑙
𝑖𝑗
= −𝑎
𝑖𝑗

for 𝑖 ̸= 𝑗.

Lemma 1 (see [1, 3]). For an undirected graph, 𝐿 is symmetric
and semipositive definite. Moreover, 0 is a simple eigenvalue of
𝐿, if and only if the undirected graph is connected. For a directed
graph, 0 is a simple eigenvalue of𝐿 if the directed graph contains
rooted directed spanning trees.

3. Problem Formulation

Consider there are 𝑛 agents in the communication network.
Each agent in the network has identical continuous-time
linear dynamics:

�̇�
𝑖
= 𝐴𝑥
𝑖
+ 𝐵𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (1)

where 𝑥
𝑖
∈ 𝑅
𝑝 is the state of agent 𝑖, 𝑢

𝑖
∈ 𝑅
𝑞 is the consensus

protocol, and (𝐴, 𝐵) are constant matrices with appropriate
dimensions and are completely controllable.

By consensus, we mean a scenario where all states of
agents in the network agree on a particular value; that is, 𝑥

𝑖
=

𝑥
𝑗
, for all 𝑖, 𝑗. Consensus is an important even fundamental

problem in multiple agent coordination. It is of interest in
studying flocking, swarming, and attitude alignment.

Since state information can be used, here we apply a state
feedback consensus protocol:

𝑢
𝑖
(𝑡) = 𝐾

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)) , (2)

where𝐾 is the protocol parameter to be designed. In practical
applications, the topology is often varying due to communi-
cation packet losses and communication range constraints,
and thus 𝑎

𝑖𝑗
is varying.

Suppose all agents are clock synchronized and each agent
transfers its state information periodically. Let 𝑇 denote the
sampling period, then at each transfer instant 𝑘𝑇, 𝑘 =

0, 1, 2, . . ., each agent sends its sampled information 𝑥
𝑖
(𝑘𝑇)

by network. If agent 𝑖 receives 𝑗’s information 𝑥
𝑗
(𝑘𝑇) at
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the 𝑘th sampling period, then 𝑎
𝑖𝑗
(𝑘𝑇) > 0 and agent 𝑖 updates

its control input 𝑢
𝑖
. ZOH is applied in the actuator of agents.

Thus for 𝑡 ∈ [𝑘𝑇(𝑘 + 1)𝑇),

𝑢
𝑖
(𝑡) = 𝐾

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑘𝑇) (𝑥

𝑗
(𝑘𝑇) − 𝑥

𝑖
(𝑘𝑇)) . (3)

And then

�̇�
𝑖
= 𝐴𝑥
𝑖
+ 𝐵𝐾

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑘𝑇) (𝑥

𝑗
(𝑘𝑇) − 𝑥

𝑖
(𝑘𝑇)) . (4)

Denote 𝐿 = [𝑙
𝑖𝑗
] as the Laplacian matrix of the topology;

define 𝑥 = [𝑥𝑇
1
⋅ ⋅ ⋅ 𝑥
𝑇

𝑛
]
𝑇

; then for 𝑡 ∈ [𝑘𝑇(𝑘 + 1)𝑇)

�̇� = (𝐼
𝑛
⊗ 𝐴) 𝑥 (𝑡) − (𝐿 (𝑘𝑇) ⊗ 𝐵𝐾) 𝑥 (𝑘𝑇) . (5)

Discretizing the above system we obtain that

𝑥 ((𝑘 + 1) 𝑇) = (𝐼
𝑛
⊗ 𝑒
𝐴𝑇

− 𝐿 (𝑘𝑇) ⊗ ∫

𝑇

0

𝑒
𝐴𝜏

𝑑𝜏𝐵𝐾)𝑥 (𝑘𝑇) .

(6)

This paper studies the consensus problem defined as follows.

Definition 2. The multiagent system (1), (3) converges to
consensus, if lim

𝑡→∞
(𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)) = 0 holds for all 𝑖 ̸= 𝑗.

Zhang and Tian [14] have revealed that for high-order
multiagent systems, the sampling period should be bounded.
In the following sections, we investigate the maximum allow-
able sampling periods bound (MASPB) for systems under
fixed topology and randomly switching topologies such that
as long as the sampling period is less than this period bound,
there exists a state feedback protocol solving the consensus
problem.

4. MASPB of Systems under Fixed
Undirected Topology

This section will look for a MASPB for multiagent systems
under fixed undirected topology. To study the system, firstly
perform some system transformations.

For Laplacian matrix 𝐿, there exists a nonsingular matrix
𝑈 = [1

𝑛
𝑈
1
] such that 𝑈−1𝐿𝑈 = [

0 0

0 𝐿
], 𝐿 is a diagonal

matrix with diagonal elements 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 − 1. From

Lemma 1, if the topology is connected, we have 𝜆
𝑖
> 0.

Applying nonsingular transformation𝑈−1⊗𝐼 to both sides of
(6) we have that system (6) achieves consensus, if and only if
𝜌(𝐼
𝑛−1
⊗𝑒
𝐴𝑇

−𝐿⊗∫
𝑇

0

𝑒
𝐴𝜏

𝑑𝜏𝐵𝐾) < 1. 𝐼
𝑛−1
⊗𝑒
𝐴𝑇

−𝐿⊗∫
𝑇

0

𝑒
𝐴𝜏

𝑑𝜏𝐵𝐾

is a block diagonal matrix. Thus the following lemma can be
obtained.

Lemma 3. The sampled-data multiagent system (1), (3) under
fixed and undirected connected topology converges to consen-
sus, if and only if

𝜌(𝑒
𝐴𝑇

− 𝜆
𝑖
∫

𝑇

0

𝑒
𝐴𝜏

𝑑𝜏𝐵𝐾) < 1 (7)

holds for 𝑖, where 𝜆
𝑖
are the eigenvalues of 𝐿 except the zero

eigenvalue corresponding to the eigenvector 1
𝑛
, 𝑖 = 1, 2, . . . ,

𝑛 − 1.

4.1. MASPB for Single Input Systems. To provide the max-
imum allowable sampling period for single input sampled-
data multiagent systems, an important lemma is given firstly.

Lemma 4 (see [16]). Let 0 < 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑁
be given.

There exists a common control gain 𝐾 ∈ 𝑅
1×𝑝 such that 𝜌(𝐺 −

𝜆
𝑖
𝐻𝐾) < 1 hold for all 𝑖, if and only if
(a) (𝐺,𝐻) is stabilizable;
(b) the degree of instability of 𝐺 is strictly upper bounded

as follows:

∏

𝑗


𝜆
𝑢

𝑗



2

<
𝜆
𝑁
+ 𝜆
1

𝜆
𝑁
− 𝜆
1

, (8)

where 𝜆𝑢
𝑗
are the unstable eigenvalues of 𝐺, |𝜆𝑢

𝑗
| ≥ 1.

From Lemma 4 we can obtain the following theorem.
Here we ignore the case when the discretized system
(𝑒
𝐴𝑇

, ∫
𝑇

0

𝑒
𝐴𝜏

𝑑𝜏𝐵) is uncontrollable.

Theorem 5. For single input sampled-data multiagent systems
(1) in fixed and connected undirected communication topology,
there exists a linear consensus protocol asymptotically solving
the consensus problem of the multiagent system, if and only if

𝑇 <
ln (𝜆
𝑛−1

+ 𝜆
1
) − ln (𝜆

𝑛−1
− 𝜆
1
)

2∑
𝑗
Re (𝜆𝑢

𝑗
)

, (9)

where 0 < 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛−1
are the nonzero eigenvalues

of Laplacian matrix and 𝜆𝑢
𝑗
are the unstable eigenvalues of

continuous-time system matrix 𝐴 satisfying Re(𝜆𝑢
𝑗
) ≥ 0.

Proof. From Lemma 3, consensus is reached if and only if
𝜌(𝐴 − 𝜆

𝑖
𝐵𝐾) < 1, 𝑖 = 1, 2, . . . , 𝑛 − 1.

Here we ignore the case when the discretized system is
uncontrollable. Since (𝐴, 𝐵) is completely controllable, the
discretized system (𝐴, 𝐵) is also completely controllable.

The degree of instability of 𝐴 is ∏
𝑗
|𝜆
𝑢

𝑗
|
2

, where 𝜆
𝑢

𝑖
are

unstable eigenvalues of 𝐴; that is, |𝜆
𝑢

𝑖
| ≥ 1. Moreover, it is

easy to obtain that 𝜆
𝑢

𝑖
= 𝑒
𝜆
𝑢

𝑗
𝑇; then

∏

𝑗


𝜆
𝑢

𝑗



2

= ∏

𝑗


𝑒
𝜆
𝑢

𝑗
𝑇


2

= exp(2∑
𝑗

Re (𝜆𝑢
𝑗
) 𝑇) . (10)

Obviously, let 0 < 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛−1
; then ∏

𝑗
|𝜆
𝑢

𝑗
|
2

<

(𝜆
𝑛−1

+ 𝜆
1
)/(𝜆
𝑛−1

− 𝜆
1
) is equivalent to that 𝑇 < (ln(𝜆

𝑛−1
+

𝜆
1
) − ln(𝜆

𝑛−1
−𝜆
1
))/2∑

𝑗
Re(𝜆𝑢
𝑗
). From Lemma 4,Theorem 5

has been proved.

Remark 6. Theorem 5 shows that for first-order, second-
order, even high-order integrator multiagent systems, the
allowable sampling period can be arbitrarily large but
bounded. It conforms to the results in [8].
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4.2. MASPB for Multi-Input Systems. For multi-input sys-
tems, the degree of instability of the system matrix cannot
be presented by the unstable eigenvalues directly. Here, we
look for the allowable sampling period bound by studying the
robust control of uncertain system.

From Lemma 3, the consensus problem is simplified to
the simultaneous stabilization of 𝑛 − 1 specific systems like

𝑧
𝑖
(𝑘 + 1) = (𝐴 − 𝜆

𝑖
𝐵𝐾) 𝑧

𝑖
(𝑘) 𝑖 = 1, 2, . . . , 𝑛 − 1, (11)

where 𝐴 = 𝑒
𝐴𝑇, 𝐵 = ∫𝑇

0

𝑒
𝐴𝜏

𝑑𝜏𝐵.
Define

𝜇min = min
𝑖
{
𝜆𝑖
} , 𝜇max = max

𝑖
{
𝜆𝑖
} ,

𝜇
∗

=
𝜇min + 𝜇max

2
, 𝛿

𝑖
=
𝜇
∗

− 𝜆
𝑖

𝜇∗
;

(12)

then it can be easily obtained that 𝜆
𝑖
= 𝜇
∗

(1 − 𝛿
𝑖
), and |𝛿

𝑖
| ≤

𝛿
𝑚
, where 𝛿

𝑚
= max

𝑖
{|(𝜇
∗

− 𝜆
𝑖
)/𝜇
∗

|}.
Define 𝐵

𝜇
= 𝜇
∗

𝐵; then the simultaneous stabilization
problem of systems (11) can be solved by studying the robust
control of the following system with uncertain parameters

𝑧 (𝑘 + 1) = (𝐴 − (1 − Δ) 𝐵
𝜇
𝐾) 𝑧 (𝑘) , (13)

where the uncertainty Δ satisfies that |Δ| ≤ 𝛿
𝑚
.

Denote system (13) by a linear model as follows:

𝑧 (𝑘 + 1) = (𝐴 − 𝐵
𝜇
𝐾) 𝑧 (𝑘) + 𝐵

𝜇
𝜔 (𝑘) ,

𝑦 (𝑘) = 𝐾𝑧 (𝑘) ,

𝜔 (𝑘) = Δ𝑦 (𝑘) ,

(14)

where Δ is the uncertain parameter in the model and satisfies
that |Δ| ≤ 𝛿

𝑚
.

The uncertain system (14) is quadratic stable, if and only
if

‖𝑇(𝑧)‖
∞
< 𝛿
−1

𝑚
, (15)

where𝑇(𝑧) is the transfer function of system (14) whenΔ = 0;
that is,

𝑇 (𝑧) = 𝐾(𝑧𝐼 − 𝐴 + 𝐵
𝜇
𝐾)
−1

𝐵
𝜇
. (16)

Next, we study the condition of sampling period by solving
the optimal𝐻

∞
function problem.

Theorem7. Formulti-input sampled-datamultiagent systems
(1) in a fixed communication topology, the topology is undi-
rected and connected. If 𝑇 < 𝑇∗, where

𝑇
∗

= max𝑇

𝑠.𝑡. 𝛾
∗

(𝑇) < 𝛿
−1

𝑚
,

(17)

where 𝛾∗(𝑇) is obtained by solving the following optimal
problem

𝛾
∗

(𝑇) = min 𝛾 (18)

subject to the following inequality

[
[

[

𝑄 (𝐴𝑄 − 𝐵
𝜇
𝑌)
𝑇

𝑌
𝑇

(𝐴𝑄 − 𝐵
𝜇
𝑌) 𝑄 − 𝛾

−2

𝐵
𝜇
𝐵
𝑇

𝜇
0

𝑌 0 𝐼
𝑞

]
]

]

> 0; (19)

then there exists a linear consensus protocol asymptotically
solving the consensus problem of the multiagent system.

Proof. From Bounded Real Lemma, ‖𝑇(𝑧)‖
∞
< 𝛾 if and only

if there exists symmetric positive definite matrix 𝑃 > 0 such
that

(𝐴 − 𝐵
𝜇
𝐾)
𝑇

(𝑃
−1

− 𝛾
−2

𝐵
𝜇
𝐵
𝑇

𝜇
)

−1

(𝐴 − 𝐵
𝜇
𝐾)

+ 𝐾
𝑇

𝐾 − 𝑃 < 0.

(20)

Left- and right-multiplying the both sides of by𝑃−1, we obtain
that

𝑃
−1

(𝐴 − 𝐵
𝜇
𝐾)
𝑇

(𝑃
−1

− 𝛾
−2

𝐵
𝜇
𝐵
𝑇

𝜇
)

−1

(𝐴 − 𝐵
𝜇
𝐾)𝑃
−1

+ 𝑃
−1

𝐾
𝑇

𝐾𝑃
−1

− 𝑃
−1

< 0.

(21)

Define 𝑄 = 𝑃
−1 and 𝐾𝑃−1 = 𝑌; then by applying Schur

Complement Lemma, the above inequality is equivalent to
(19). Solving the optimal 𝐻

∞
control problem, we obtain

the minimum 𝐻
∞

spectrum 𝛾
∗ and optimal control gain 𝐾.

Therefore, if 𝛾∗ < 𝛿−1
𝑚
, the optimal control gain 𝐾 can always

simultaneously stabilize systems (11).
For a given communication topology, 𝛿

𝑚
is fixed. If a

sampling period 𝑇 guarantees that the obtained minimum
𝐻
∞

spectrum 𝛾
∗

(𝑇) for this sampled-data system matrix
(𝐴, 𝐵) is less than 𝛿−1

𝑚
, then under this sampling period there

exists control gain 𝐾 simultaneously stabilizing systems (11).
We look for the maximum allowable sampling period by
searching the maximum 𝑇 under which there holds 𝛾∗(𝑇) <
𝛿
−1

𝑚
. So, as long as the sampling period 𝑇 < 𝑇

∗, there exists
a common control gain𝐾 simultaneously stabilizing systems
(11), and hence from Lemma 1 there exists a linear consensus
protocol solving the consensus problem of the sampled-data
multiagent system. This theorem has been proved.

Remark 8. Zhang and Tian [14] studied the consensus of
general linear dynamical multiagent systems and gave allow-
able sampling period bounds based on given protocol gain.
Comparing with their results, the bound inTheorem 7 is less
conservative since the bound is obtained by finding optimal
protocol gain.

5. MASPB of Systems under Randomly
Switching Topologies

This section focuses on looking for MASPBs for multiagent
systems under randomly switching topologies. Two types of
topology are discussed.
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5.1. Rooted Directed Spanning Tree with Bernoulli Link Losses.
Firstly we consider systems under tree-type topology. Due
to communication constraints, the links between agents are
time-varying and driven by a Bernoulli process. Assume all
links in the network are independent. For an edge (𝑖, 𝑗) ∈ E
in the tree, 𝑎

𝑖𝑗
(𝑘𝑇) is varying between 0 and 1. Define 𝑟 (0 <

𝑟 < 1) as the packet loss probability of the network; then
Pr(𝑎
𝑖𝑗
(𝑘𝑇) = 0) = 𝑟.

For a tree-type graph, number the agents such that each
agent’s parent node in the graph is lower numbered than itself.
Then the Laplacian matrix is a lower triangular matrix with
diagonal elements 𝑙

11
(𝑘𝑇) ≡ 0 and 𝑙

𝑖𝑖
(𝑘𝑇) (𝑖 > 1) is switching

among 0 and 1 with probability Pr(𝑙
𝑖𝑖
(𝑘𝑇) = 0) = 𝑟. 𝐿(𝑘𝑇) can

be denoted as [ 0 0
∗ 𝐿(𝑘𝑇)

], where 𝐿(𝑘𝑇) is a (𝑛−1)-dimensional
lower triangular matrix.

For multiagent system (1)–(3), let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

1
(𝑡), 𝑖 =

2, . . . , 𝑛, 𝑒 = [𝑒𝑇
2
, . . . , 𝑒

𝑇

𝑛
]
𝑇; then the system achieves consen-

sus in mean square sense, if and only if lim
𝑡→∞

𝐸(‖𝑒(𝑡)‖
2

) =

0. From system (4) and discretization, we can obtain that

𝑒 ((𝑘 + 1) 𝑇) = (𝐼
𝑛
⊗ 𝐴 − 𝐿 (𝑘𝑇) ⊗ 𝐵𝐾) 𝑒 (𝑘𝑇) . (22)

To obtain the result, an important lemma from [23–25] is
firstly given.

Lemma 9. Consider a controllable system with packet loss

𝑥 (𝑘 + 1) = 𝐺𝑥 (𝑘) + 𝐻𝑢 (𝑘) , 𝑢 (𝑘) = −𝛼 (𝑘)𝐾𝑥 (𝑘) ,

(23)

where 𝛼(𝑘) ∈ {0, 1} denotes packet loss process and is driven
by an i.i.d. process with loss probability 𝑟. Then the closed-loop
system 𝑥(𝑘 + 1) = (𝐺 − 𝛼(𝑘)𝐻𝐾)𝑥(𝑘) is mean square stable, if
and only if 𝜌(𝐸((𝐺−𝛼(𝑘)𝐻𝐾)⊗ (𝐺−𝛼(𝑘)𝐻𝐾))) < 1. And it is
stabilizable inmean square sense, if the packet loss probability 𝑟
satisfies 𝑟 < 1/∏

𝑗
|𝜆
𝑢

𝑗
|
2, where 𝜆𝑢

𝑗
are the unstable eigenvalues

of 𝐺. Moreover, If the packet loss probability 𝑟 < 1/∏
𝑗
|𝜆
𝑢

𝑗
|
2,

then there exist 𝑄 > 0 and 𝐾 such that

(1 − 𝑟) (𝐺 − 𝐻𝐾)
𝑇

𝑄 (𝐺 − 𝐻𝐾) + 𝑟𝐺
𝑇

𝑄𝐺 < 𝑄. (24)

Theorem 10. For multiagent systems (1)–(3) under tree-type
lossy network, there exists a linear consensus protocol solving
the mean square consensus problem, if

𝑇 <
− ln 𝑟

2∑
𝑗
Re (𝜆𝑢

𝑗
)

, (25)

where 𝜆𝑢
𝑗
are the unstable eigenvalues of 𝐴.

Proof. System (25) is a Bernoulli switching system. It is mean
square stable, if and only if 𝜌(𝐸(Γ(𝑘𝑇))) < 1, where Γ(𝑘𝑇) =
(𝐼
𝑛
⊗ 𝐴 − 𝐿(𝑘𝑇) ⊗ 𝐵𝐾) ⊗ (𝐼

𝑛
⊗ 𝐴 − 𝐿(𝑘𝑇) ⊗ 𝐵𝐾).

Obviously, 𝐼
𝑛
⊗𝐴−𝐿(𝑘𝑇)⊗𝐵𝐾 is a lower block triangular

matrix with diagonal blocks 𝐴 − 𝑙
𝑖𝑖
(𝑘)𝐵𝐾. Then Γ(𝑘𝑇) is also

a lower block triangular matrix with diagonal blocks (𝐴 −

𝑙
𝑖𝑖
(𝑘)𝐵𝐾)⊗(𝐴−𝑙

𝑗𝑗
(𝑘)𝐵𝐾).Thus by applying the approach used

in [22], 𝜌(𝐸(Γ(𝑘𝑇))) < 1 if and only if for 𝑖, 𝑗 ∈ {2, . . . , 𝑛},

𝜌(𝐸((𝐴 − 𝑙
𝑖𝑖
(𝑘)𝐵𝐾) ⊗ (𝐴 − 𝑙

𝑗𝑗
(𝑘)𝐵𝐾))) < 1. Since the edges

of network are independent, there have that the mean square
consensus condition is equivalent to 𝜌(𝐸((𝐴−𝑙

𝑖𝑖
(𝑘)𝐵𝐾)⊗(𝐴−

𝑙
𝑖𝑖
(𝑘)𝐵𝐾))) < 1. Since Pr(𝑙

𝑖𝑖
(𝑘𝑇) = 0) = 𝑟, then

Φ = 𝐸 ((𝐴 − 𝑙
𝑖𝑖
(𝑘) 𝐵𝐾) ⊗ (𝐴 − 𝑙

𝑖𝑖
(𝑘) 𝐵𝐾))

= 𝑟𝐴 ⊗ 𝐴 + (1 − 𝑟) (𝐴 − 𝐵𝐾) ⊗ (𝐴 − 𝐵𝐾) .

(26)

By applying Lemma 9, there exists 𝐾 mean square sta-
bilizing Φ, if 𝑟 < 1/∏

𝑗
|𝜆
𝑢

𝑗
|
2

, where 𝜆
𝑢

𝑗
are the unstable

eigenvalues of 𝑒𝐴𝑇. Denote 𝜆𝑢
𝑗
as the unstable eigenvalue

of continuous-time system matrix 𝐴, then ∏
𝑗
|𝜆
𝑢

𝑗
|
2

=

∏
𝑗
|𝑒
𝜆
𝑢

𝑗
𝑇

|
2

= exp(2∑
𝑗
Re(𝜆𝑢
𝑗
)𝑇). Thus if 𝑇 < (− ln 𝑟)/

2∑
𝑗
Re(𝜆𝑢
𝑗
), there exists 𝐾 mean square stabilizing Γ(𝑘𝑇),

and there exists a linear consensus protocol solving the mean
square consensus problem.Theorem 10 has been proved.

5.2. Complete Network with Broadcasting Schemes and
Bernoulli Link Losses. This subsection considers a network
of agents with complete graph and broadcasting schemes.
At each sampling instant, all agents compete for the com-
munication channel with the same opportunity. Just one of
the agents can succeed and broadcast its information to all
other agents. Due to communication constraints, when the
agent broadcasts its information, the links between itself and
other agents may be lost. The process is driven by a Bernoulli
process. Assume all links in the network are independent.
Thus at each sampling instant 𝑘𝑇, agent 𝑖 broadcasts its
information to other 𝑛 − 1 agents with probability 1/𝑛. When
agent 𝑖 sends its information to agent 𝑗, the edge (𝑖, 𝑗)may be
lost due to packet losses. Then 𝑎

𝑗𝑖
(𝑘𝑇) is varying between 0

and 1. Define 𝑟 (0 < 𝑟 < 1) as the packet loss probability of
the network, then Pr(𝑎

𝑗𝑖
(𝑘𝑇) = 0) = 𝑟.

Denote A
𝑖
(𝑘𝑇) = [𝑎

𝑖

𝑗𝑠
(𝑘𝑇)]
𝑛×𝑛

, 𝐿
𝑖
(𝑘𝑇) as the adjacency

and Laplacianmatrix of the topology when agent 𝑖 broadcasts
its information, then for 𝑗 ̸= 𝑖, 𝑎𝑖

𝑗𝑖
(𝑘𝑇) ∈ {0, 1}, for 𝑠 ̸= 𝑖,

𝑎
𝑖

𝑗𝑠
(𝑘𝑇) ≡ 0. In this network, 𝐿(𝑘𝑇) = ∑

𝑛

𝑖=1
𝑝
𝑖
(𝑘𝑇)𝐿

𝑖
(𝑘𝑇),

where 𝑝
𝑖
(𝑘𝑇) ∈ {0, 1}, ∑𝑛

𝑖=1
𝑝
𝑖
(𝑘𝑇) = 1, and Pr(𝑝

𝑖
(𝑘𝑇) = 1) =

1/𝑛. Then the system can be given as

𝑥 ((𝑘 + 1) 𝑇) = (𝐼
𝑛
⊗ 𝐴 −

𝑛

∑

𝑖=1

𝑝
𝑖
(𝑘𝑇) 𝐿

𝑖
(𝑘𝑇) ⊗ 𝐵𝐾)𝑥 (𝑘𝑇) .

(27)

Theorem 11. For multiagent systems (1)–(3) under complete
and broadcasting lossy network, there exists a linear consensus
protocol solving the mean square consensus problem, if

𝑇 <
− ln (𝛼 + 𝛽)𝜇−1𝛽
2∑
𝜇

𝑖=1
Re (𝜆
𝑖
)
, (28)

where 𝜆𝑢
𝑗
are the unstable eigenvalues of 𝐴, 𝜇 is the number

of unstable eigenvalues of 𝐴, 𝛼 = ((1 − 𝑟)/𝑛)(𝑛 + (𝑛 − 2)𝑟),
𝛽 = (𝑟/𝑛)(2𝑛 − 2 − (𝑛 − 2)𝑟).
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Proof. Firstly, we will show that for agents’ system matrices
𝐴, just unstable parts should be considered. For 𝐴 and
𝐵, there always exists a nonsingular matrix 𝑄 such that
𝑄𝐴𝑄
−1

= [
𝐴
𝑠
0

0 𝐴
𝑢

], 𝑄𝐵 = [𝐵
1
𝐵
2
], and then 𝑄𝐴𝑄

−1

=

[
𝐴
𝑠
0

0 𝐴
𝑢

], 𝑄𝐵 = [
𝐵
1

𝐵
2

], where 𝐴
𝑠
, 𝐴
𝑢
are Hurwitz stable and

unstable matrices, respectively, and 𝐴
𝑠
, 𝐴
𝑢
are Schur stable

and unstable matrices, respectively. Define 𝐾𝑄−1 = [0 𝐾
𝑢
],

then systemmatrix in (6) is similar to [ 𝐼𝑛⊗𝐴𝑠 −𝐿(𝑘𝑇)⊗𝐵1𝐾𝑢
0 𝐼
𝑛
⊗𝐴
𝑢
−𝐿(𝑘𝑇)⊗𝐵

2
𝐾
𝑢

].
Obviously, the system achieves consensus if and only if the
part 𝑥((𝑘 + 1)𝑇) = (𝐼

𝑛
⊗ 𝐴
𝑢
− 𝐿(𝑘𝑇) ⊗ 𝐵

2
𝐾
𝑢
)𝑥(𝑘𝑇)

achieves consensus. Therefore, just unstable part of 𝐴 should
be controlled. For depiction simplicity, in the following we
just consider the unstable matrix 𝐴.

For edge (𝑖, 𝑗), define 𝑒
𝑖𝑗
(𝑘𝑇) = 𝑥

𝑖
(𝑘𝑇)−𝑥

𝑗
(𝑘𝑇),𝑉

𝑖𝑗
(𝑘𝑇) =

𝑒
𝑇

𝑖𝑗
(𝑘𝑇)Pe

𝑖𝑗
(𝑘𝑇),𝑉(𝑘𝑇) = ∑𝑛

𝑖,𝑗=1
𝐸(𝑉
𝑖𝑗
(𝑘𝑇)). For𝑉

𝑖𝑗
(𝑘𝑇), there

are 8 cases.

Case 1. Agent 𝑖 broadcasts and 𝑗 successfully receives its
packet. Then 𝑥

𝑗
((𝑘 + 1)𝑇) = 𝐴𝑥

𝑗
(𝑘𝑇) + 𝐵𝐾(𝑥

𝑖
(𝑘𝑇) − 𝑥

𝑗
(𝑘𝑇))

and 𝑉
𝑖𝑗
((𝑘 + 1)𝑇) = 𝑒

𝑇

𝑖𝑗
(𝑘𝑇)(𝐴 − 𝐵𝐾)

𝑇

𝑃(𝐴 − 𝐵𝐾)𝑒
𝑖𝑗
(𝑘𝑇).

Case 2. Agent 𝑖 broadcasts and 𝑗 doesn’t receive its packet
𝑉
𝑖𝑗
((𝑘 + 1)𝑇) = 𝑒

𝑇

𝑖𝑗
(𝑘𝑇)𝐴

𝑇

𝑃𝐴𝑒
𝑖𝑗
(𝑘𝑇).

Case 3. Agent 𝑗 broadcasts and 𝑖 successfully receives its
packet. Then 𝑉

𝑖𝑗
((𝑘 + 1)𝑇) = 𝑒

𝑇

𝑗𝑖
(𝑘𝑇)(𝐴 − 𝐵𝐾)

𝑇

𝑃(𝐴 −

𝐵𝐾)𝑒
𝑗𝑖
(𝑘𝑇).

Case 4. Agent 𝑗 broadcasts and 𝑖 doesn’t receive its packet.
𝑉
𝑖𝑗
((𝑘 + 1)𝑇) = 𝑒

𝑇

𝑗𝑖
(𝑘𝑇)𝐴

𝑇

𝑃𝐴𝑒
𝑗𝑖
(𝑘𝑇).

Case 5. Agent 𝑠 (𝑠 ̸= 𝑖, 𝑗) broadcasts and both 𝑖 and 𝑗 receive
the packet. Then 𝑥

𝑗
((𝑘 + 1)𝑇) = 𝐴𝑥

𝑗
(𝑘𝑇) + 𝐵𝐾(𝑥

𝑠
(𝑘𝑇) −

𝑥
𝑗
(𝑘𝑇)), 𝑥

𝑖
((𝑘 + 1)𝑇) = 𝐴𝑥

𝑖
(𝑘𝑇) + 𝐵𝐾(𝑥

𝑠
(𝑘𝑇) − 𝑥

𝑖
(𝑘𝑇)), and

𝑉
𝑖𝑗
((𝑘 + 1)𝑇) = 𝑒

𝑇

𝑖𝑗
(𝑘𝑇)(𝐴 − 𝐵𝐾)

𝑇

𝑃(𝐴 − 𝐵𝐾)𝑒
𝑖𝑗
(𝑘𝑇).

Case 6.Agent 𝑠 (𝑠 ̸= 𝑖, 𝑗) broadcasts and 𝑖 successfully receives
its packet while 𝑗 doesn’t receive the packet. Then 𝑥

𝑖
((𝑘 +

1)𝑇) = 𝐴𝑥
𝑖
(𝑘𝑇) + 𝐵𝐾(𝑥

𝑠
(𝑘𝑇) − 𝑥

𝑖
(𝑘𝑇)), 𝑥

𝑗
((𝑘 + 1)𝑇) =

𝐴𝑥
𝑗
(𝑘𝑇), and

𝑉
𝑖𝑗
((𝑘 + 1) 𝑇) =


𝑥
𝑖
((𝑘 + 1) 𝑇) − 𝑥

𝑗
((𝑘 + 1) 𝑇)



2

𝑃

≤ (
𝑥𝑖 ((𝑘 + 1) 𝑇) − 𝑥𝑠 ((𝑘 + 1) 𝑇)

𝑃

+

𝑥
𝑠
((𝑘 + 1)𝑇) − 𝑥

𝑗
((𝑘 + 1)𝑇)

𝑃
)
2

≤ 2
𝑒𝑠𝑖 ((𝑘 + 1) 𝑇)



2

𝑃
+ 2


𝑒
𝑠𝑗
((𝑘 + 1) 𝑇)



2

𝑃

= 2𝑒
𝑇

𝑠𝑖
(𝑘𝑇) (𝐴 − 𝐵𝐾)

𝑇

𝑃 (𝐴 − 𝐵𝐾) 𝑒
𝑠𝑖
(𝑘𝑇)

+ 2𝑒
𝑇

𝑠𝑗
(𝑘𝑇)𝐴

𝑇

𝑃𝐴𝑒
𝑠𝑗
(𝑘𝑇) .

(29)

Case 7. Agent 𝑠 (𝑠 ̸= 𝑖) broadcasts and 𝑗 successfully receives
its packet while 𝑖 doesn’t receive the packet. Then

𝑉
𝑖𝑗
((𝑘 + 1) 𝑇) =


𝑥
𝑖
((𝑘 + 1) 𝑇) − 𝑥

𝑗
((𝑘 + 1) 𝑇)



2

𝑃

≤ 2
𝑒𝑠𝑖 ((𝑘 + 1) 𝑇)



2

𝑃
+ 2


𝑒
𝑠𝑗
((𝑘 + 1) 𝑇)



2

𝑃

= 2𝑒
𝑇

𝑠𝑗
(𝑘𝑇) (𝐴 − 𝐵𝐾)

𝑇

𝑃 (𝐴 − 𝐵𝐾) 𝑒
𝑠𝑗
(𝑘𝑇)

+ 2𝑒
𝑇

𝑠𝑖
(𝑘𝑇)𝐴

𝑇

𝑃𝐴𝑒
𝑇

𝑠𝑖
(𝑘𝑇) .

(30)

Case 8. Agent 𝑠 (𝑠 ̸= 𝑖) broadcasts and neither 𝑖 nor 𝑗 receives
the packet. Then 𝑉

𝑖𝑗
((𝑘 + 1)𝑇) = 𝑒

𝑇

𝑖𝑗
(𝑘𝑇)𝐴

𝑇

𝑃𝐴𝑒
𝑇

𝑖𝑗
(𝑘𝑇).

Since agent 𝑖 broadcasts its information with probability
1/𝑛, and the packet loss probability is 𝑟, there is

𝐸 (𝑉
𝑖𝑗
((𝑘 + 1) 𝑇))

≤ (
1

𝑛
(1 − 𝑟) +

𝑛 − 1

𝑛
(1 − 𝑟)

2

)

× 𝐸 (𝑒
𝑇

𝑖𝑗
(𝑘𝑇) (𝐴 − 𝐵𝐾)

𝑇

𝑃 (𝐴 − 𝐵𝐾) 𝑒
𝑖𝑗
(𝑘𝑇))

+ (
1

𝑛
𝑟 +

𝑛 − 1

𝑛
𝑟
2

)𝐸 (𝑒
𝑇

𝑖𝑗
(𝑘𝑇)𝐴

𝑇

𝑃𝐴𝑒
𝑖𝑗
(𝑘𝑇))

+
1

𝑛
(1 − 𝑟) 𝐸 (𝑒

𝑇

𝑗𝑖
(𝑘𝑇) (𝐴 − 𝐵𝐾)

𝑇

𝑃 (𝐴 − 𝐵𝐾) 𝑒
𝑗𝑖
(𝑘𝑇))

+
1

𝑛
𝑟𝐸 (𝑒
𝑇

𝑗𝑖
(𝑘𝑇)𝐴

𝑇

𝑃𝐴𝑒
𝑗𝑖
(𝑘𝑇))

+ 2∑

𝑠 ̸=𝑖,𝑗

1

𝑛
𝑟 (1 − 𝑟) 𝐸 (𝑒

𝑇

𝑠𝑖
(𝑘𝑇))

× ((𝐴 − 𝐵𝐾)
𝑇

𝑃 (𝐴 − 𝐵𝐾) + 𝐴
𝑇

𝑃𝐴) 𝑒
𝑠𝑖
(𝑘𝑇)

+ 2∑

𝑠 ̸=𝑖,𝑗

1

𝑛
𝑟 (1 − 𝑟) 𝐸 (𝑒

𝑇

𝑠𝑗
(𝑘𝑇))

× ((𝐴 − 𝐵𝐾)
𝑇

𝑃 (𝐴 − 𝐵𝐾) + 𝐴
𝑇

𝑃𝐴) 𝑒
𝑠𝑗
(𝑘𝑇) ,

(31)
and then

𝑉 ((𝑘 + 1) 𝑇) =

𝑛

∑

𝑖,𝑗=1

𝐸 (𝑉
𝑖𝑗
((𝑘 + 1) 𝑇))

≤

𝑛

∑

𝑖,𝑗=1

𝐸 (𝑒
𝑇

𝑖𝑗
(𝑘𝑇) (𝛼(𝐴 − 𝐵𝐾)

𝑇

𝑃 (𝐴 − 𝐵𝐾)

+𝛽𝐴
𝑇

𝑃𝐴) 𝑒
𝑖𝑗
(𝑘𝑇)) ,

(32)
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Figure 1: Communication topology among agents.

where

𝛼 =
1

𝑛
(1 − 𝑟) +

1

𝑛
(1 − 𝑟) +

𝑛 − 2

𝑛
(1 − 𝑟)

2

+ 2
𝑛 − 2

𝑛
𝑟 (1 − 𝑟)

=
1 − 𝑟

𝑛
(𝑛 + (𝑛 − 2) 𝑟) ,

(33)

𝛽 =
1

𝑛
𝑟 +

1

𝑛
𝑟 +

𝑛 − 2

𝑛
𝑟
2

+ 2
𝑛 − 2

𝑛
𝑟 (1 − 𝑟)

=
𝑟

𝑛
(2𝑛 − 2 − (𝑛 − 2) 𝑟) .

(34)

If 𝛼(𝐴 − 𝐵𝐾)
𝑇

𝑃(𝐴 − 𝐵𝐾) + 𝛽𝐴
𝑇

𝑃𝐴 < 𝑃, then 𝑉((𝑘 +
1)𝑇) < 𝑉(𝑘𝑇), and mean square consensus is achieved. The
inequality is converted to

𝛼

𝛼 + 𝛽
(√𝛼 + 𝛽𝐴 − √𝛼 + 𝛽𝐵𝐾)

𝑇

𝑃(√𝛼 + 𝛽𝐴 − √𝛼 + 𝛽𝐵𝐾)

+
𝛽

𝛼 + 𝛽
√𝛼 + 𝛽𝐴

𝑇

𝑃√𝛼 + 𝛽𝐴 < 𝑃

(35)

By applying Lemma 9 we have that if 𝛽/(𝛼 + 𝛽) <

1/∏
𝑗
|𝜆
𝑢

𝑗
(√𝛼 + 𝛽𝐴)|

2, then the above LMI is feasible,
𝜆
𝑢

𝑗
(√𝛼 + 𝛽𝐴) are the unstable eigenvalues of√𝛼 + 𝛽𝐴. From

the form of 𝐴, the above inequalities can be simplified as
(𝛼 + 𝛽)

𝜇−1

𝛽𝑒
2∑
𝜇

𝑖=1
Re(𝜆
𝑖
)𝑇

< 1, where the eigenvalue 𝜆
𝑖
of 𝐴

satisfies Re(𝜆
𝑖
) ≥ 0, 𝜇 is the number of unstable eigenvalues.

Thus as long as 𝑇 < (− ln(𝛼 + 𝛽)𝜇−1𝛽)/2∑𝜇
𝑖=1

Re(𝜆
𝑖
), there

exists a linear consensus protocol solving the mean square
consensus problem. Theorem 11 has been proved.

6. Simulation Examples

6.1. Fixed Topology Cases. Firstly consider a network of 5
agents. The topology is undirected and cyclic as given in
Figure 1. Then the eigenvalues of Laplacian matrix are 𝜆

4
=

3.618, 𝜆
1
= 1.382.

Consider a network of agents with single input. The
system matrices are

𝐴 = [

[

0 1 0

0 0 1

0 −2 2

]

]

, 𝐵 = [

[

0

0

1

]

]

. (36)

From Theorem 5, the maximum allowable sampling
period bound is 0.4024 s. Choose 𝑇 = 0.35 s, then by solving
LMIs (𝐴−𝜆

𝑖
𝐵𝐾)
𝑇

𝑄(𝐴−𝜆
𝑖
𝐵𝐾) < 𝑄we obtain a control gain

𝐾 = [0.2183 −0.2537 1.5837]. The trajectories of agents are
given in Figure 2. Obviously, the system reaches consensus
asymptotically.

If𝑇 = 0.45 s, then the LMIs (𝐴−𝜆
𝑖
𝐵𝐾)
𝑇

𝑄(𝐴−𝜆
𝑖
𝐵𝐾) < 𝑄

are infeasible. For a control gain 𝐾 = [0 −0.6643 1.2524],
the trajectory of average consensus errors is given in Figure 3.
Obviously, the system does not achieve consensus.

Next consider a network of agents with multi-input. The
system matrices are

𝐴 = [

[

0 1 0

0 0 1

0 −2 2

]

]

, 𝐵 = [

[

0

0

1

1

1

1

]

]

. (37)

From Theorem 7, the maximum allowable sampling
period bound is 0.85 s. Choose 𝑇 = 0.75 s, then by solving
LMI (19) we obtain a control gain 𝐾 = [

0

0

−0.9836

0.4841

0.7337

0.2499
].

The trajectories of agents are given in Figure 4. Obviously, the
system reaches consensus asymptotically.

6.2. Tree-Type Network with Bernoulli Link Losses. Consider
a network of 5 agents with system matrix (36). The topology
is a rooted spanning tree as shown in Figure 5. The packet
loss probability is 0.1. Then by applying Theorem 10, the
maximum allowable sampling period bound is 0.5756 s.
Choose 𝑇 = 0.5 s, then by solving LMI (1 − 𝑟)(𝐴 −

𝐵𝐾)
𝑇

𝑄(𝐴 − 𝐵𝐾) + 𝑟𝐴
𝑇

𝑄𝐴 < 𝑄 we obtain a control gain
𝐾 = [0.3569 −0.9649 3.1304]. The trajectories of agents are
given in Figure 6. Obviously, the system reaches consensus.
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Figure 3: Average consensus errors with unallowable sampling period.

6.3. Complete Network with Broadcasting Schemes and
Bernoulli Link Losses. Consider a network of 5 agents with
system matrix (36). The network is a complete broadcasting
graph. The packet loss probability is 0.1. Then by applying
Theorem 11, the maximum allowable sampling period bound
is 0.4164 s. Choose 𝑇 = 0.4 s, then by solving LMIs 𝛼(𝐴 −

𝐵𝐾)
𝑇

𝑃(𝐴 − 𝐵𝐾) + 𝛽𝐴
𝑇

𝑃𝐴 < 𝑃 we obtain a control gain
𝐾 = [0.3999 −0.6330 3.6687]. The trajectories of agents are
given in Figure 7. Obviously, the system reaches consensus.

7. Conclusion

This paper focuses on looking for an allowable sampling
period bound such that as long as the sampling period

is less than this period bound, there exists a state feed-
back consensus algorithm solving the consensus problem.
The allowable sampling period bounds for sampled-data
multiagent systems under fixed topology and two specific
Bernoulli lossy networks are provided. Comparing with
existing results, the proposed MASPDs are explicitly related
to unstable eigenvalues of agents’ system matrix and packet
loss probability and can be directly computed.
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