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Abstract

Background: Changes in DNA methylation are among the mechanisms contributing to the ageing process. We
sought to identify ageing-associated DNA methylation changes at single-CpG-site resolution in blood leukocytes
and to ensure that the observed changes were not due to differences in the proportions of leukocytes. The association
between DNA methylation changes and gene expression levels was also investigated in the same individuals.

Results: We identified 8540 high-confidence ageing-associated CpG sites, 46% of which were hypermethylated in
nonagenarians. The hypermethylation-associated genes belonged to a common category: they were predicted to be
regulated by a common group of transcription factors and were enriched in a related set of GO terms and canonical
pathways. Conversely, for the hypomethylation-associated genes only a limited set of GO terms and canonical pathways
were identified. Among the 8540 CpG sites associated with ageing, methylation level of 377 sites was also associated with
gene expression levels. These genes were enriched in GO terms and canonical pathways associated with immune system
functions, particularly phagocytosis.

Conclusions: We find that certain ageing-associated immune-system impairments may be mediated via changes in
DNA methylation. The results also imply that ageing-associated hypo- and hypermethylation are distinct processes:
hypermethylation could be caused by programmed changes, whereas hypomethylation could be the result of
environmental and stochastic processes.

Keywords: Epigenetics, Methylome, DNA methylation, Ageing, PBMCs, Gene expression, Molecular ageing,
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Background
Ageing can be described as a functional decline that leads
to a diminished ability to respond to stress, increased
homeostatic instability and an increased risk of diseases
such as cancer and inflammatory diseases. Ultimately, these
changes lead to death [1]. The molecular basis of ageing is
multifactorial, including changes in energy metabolism,
alterations in DNA repair mechanisms, increased inflam-
mation and changes in leukocyte proportions (changes in
CD4+/CD8+ ratio, increase of costimulatory CD28 receptor-
deficient T cells [2]). Consequently, several theories exist
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regarding the mechanisms underlying ageing. Whether
the ageing process itself consists of the accumulation of
molecular damage due to environmental and stochastic
effects or is a truly programmed or pseudo-programmed
process that stems from development remains to be deter-
mined, yet a process as complex as ageing most likely in-
volves aspects of all these phenomena [3-5].
Ageing leads to both global and local changes in the

DNA methylation profile. Global hypomethylation has been
shown to occur across tissues, and promoter-specific hyper-
methylation has been demonstrated for various tissues and
genes [6]. Several ageing-relates diseases, such as cancer,
Alzheimer’s disease and type 2 diabetes, have also been
shown to be associated with changes in DNA methylation
[7]. The role of epigenetics in ageing-associated processes
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could be significant, as genetics appears to explain only a
small portion of the observed variation in lifespan and
healthspan [8]. As the epigenome is modified throughout
life by varying environmental conditions, the accumulated
effects of these changes could be most prominent in the
aged population.
DNA methylation was suggested to control the activity

of genes as early as 1975 [9,10] and has since been dem-
onstrated to control the expression of single genes and
the silencing of large sections of chromatin. DNA
methylation mainly occurs on CpG-dinucleotides, which
form CpG islands containing above-average CpG con-
tent. These CpG islands overlap the transcription start
sites (TSSs) of the majority of human genes, and the
classical role of DNA methylation is transcriptional in-
hibition, with the methylation of TSSs preventing the
initiation of transcription [11,12]. The role of methyla-
tion in the gene body is less clear; methylation does not
appear to block transcriptional elongation but may actu-
ally enhance it, and methylation may have a role in alter-
native splicing. Furthermore, DNA methylation is required
for the suppression of transposable elements [13]. DNA
methylation controls gene expression by directly inhibiting
the binding of transcription factors (TFs), by recruiting
methyl-binding proteins that prevent TFs from binding
to DNA [14], or by affecting the conformation of the
surrounding chromatin [15].
The relationship between ageing and DNA methyla-

tion has been studied previously by measuring the DNA
methylation level of repetitive elements (global DNA
methylation [6]) as well as with Illumina Golden Gate
array [16] and the Infinium HumanMethylation27 Bead-
Chip (27 K array) [17-22]. These arrays included a severely
biased set of CpGs located in known cancer-associated
genes and CpGs located almost exclusively in CpG island
promoter regions, respectively. The Illumina Infinium
HumanMethylation450 BeadChip (450K array) offers
an improvement in this area, as the probes span 99%
of the RefSeq genes and are distributed more evenly
across the genome, such as on the shores and shelves
of CpG islands and in non-CpG islands (non-CGIs), as
well as in gene bodies and untranslated regions (UTRs)
[23-28]. However, the majority of previous studies did not
take into consideration the prominent ageing-associated
changes in the proportions of leukocytes, thereby introdu-
cing possible bias into the analyses [29].
In this study, our aim was to identify ageing-associated

DNA methylation changes that are independent of
changes in leukocyte proportions. We also examined
gene expression data from the same individuals from
whom the methylation data were obtained, and we were
therefore able to explore the relationship between gene
expression and DNA methylation in these elderly
individuals.
Results
Ageing-associated DNA methylation changes
Our study population consisted of the Vitality 90+ study
population: there was a total of 146 nonagenarians and
30 young controls, from whom we extracted peripheral
blood mononuclear cells (PBMCs). The methylation data
were produced with the 450K array, and the expression
data were obtained with the Illumina HumanHT12v4
BeadChip. Our aim was to identify ageing-associated
changes in the level of DNA methylation. Our approach
was two-sided, as we sought to concentrate on CpG sites
that showed a large enough difference in the level of
methylation to have a plausible biological significance
but also to ensure that the identified differences were
not due to changes in the proportions of leukocyte
populations.
The proportions of different leukocytes differed between

the nonagenarians and young controls in our study popu-
lation, as reported previously [30]. A principal component
analysis (PCA) revealed that the first principal component
accounted for 20.5% of the observed variation in methyla-
tion levels detected in our data (Figure 1). This compo-
nent was strongly associated with leukocyte proportions,
indicating that the analysis needs to be adjusted for the
proportions of leukocytes.
First, we compared the methylation levels at individual

CpGs in the nonagenarian group (n = 122) with those in
the young control group (n = 21) using the Wilcoxon
rank-sum test and identified 10083 CpG sites that were
differentially methylated between these two groups (with
a Benjamini-Hochberg-corrected p-value <0.05 and a
difference between absolute M-value medians >1). Sec-
ond, age group-associated methylation sites were identi-
fied with a beta regression model, with sex and different
leukocyte populations (the ratio of CD4+ and CD8+ T
cells and the proportions of CD4 + CD28-, CD8 + CD28-
and CD14+ cells) as covariates. This method identified
45507 CpG sites for which age group was a significant
covariate (Bonferroni-corrected p-value <0.05). The 10083
CpG sites identified via the group comparison were en-
riched at the top of the list of the 45507 ageing-associated
CpGs. However, 1543 of the 10083 CpG sites showed no
statistical significance in the regression analysis, indicating
that the perceived difference in methylation was due to
differences in leukocyte proportions rather than ageing
per se. We now report the 8540 CpG sites, which ex-
hibit a large, statistically significant difference in the
level of methylation between the nonagenarians and
young controls and remain significant after adjusting
for differences in leukocyte populations in the regres-
sion analysis, as truly ageing-associated methylation
changes (for a list of all ageing-associated CpGs, see
Additional file 1). Sex chromosomes were excluded from
the analysis.



Figure 1 The association of cell type proportions with DNA
methylation. The global DNA methylation was decomposed into a set
of linearly independent principal component (PC) patterns. Components
were used to examine the relationships between global DNA
methylation and biological or non-biological covariates (e.g., gender, the
batch effect and cell types). (a) The top 5 components (PC1-PC5) with
the largest proportion of explained variance from the data. The
percentages of explained variance are shown above the bars. (b) The
association of the proportion of CD8 + CD28- cells with the first principal
component (Spearman’s rank correlation coefficient -0.594 (p = 4.1e-22))
and (c) the association of the proportion of CD4 + CD28- cells with the
first principal component (Spearman’s rank correlation coefficient -0.710
(p = 2.5e-14)).
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Among the 8540 ageing-associated CpG sites, 3925
(46%) were hypermethylated, while 4615 (54%) were
hypomethylated, in the nonagenarians. The most signifi-
cant hits, based on the p-values obtained using the site-
specific regression models, were cg16867657 (ELOVL2),
cg16762684 (MBP), cg11344352 (ERCC1), cg17110586
and cg04875128 (OTUD7A). The largest differences in
the level of methylation were observed for cg07211259
(PDCD1LG2), cg18826637 and cg26063719 (VIM), which
were hypomethylated in the nonagenarians, and for
cg06352730, cg00674365 (ZNF471) and cg21402921
(GABRA5), which were hypermethylated in the nona-
genarians. The top-ranking hits are presented in Tables 1,
2 and Figure 2.

Genomic location of the ageing-associated methylation
sites
The ageing-associated CpGs were not uniformly dis-
tributed across chromosomes, CpG islands or genes.
Chromosomes 2, 3, 4, 5 and 18 contained more ageing-
associated methylation sites than expected, whereas chro-
mosomes 16, 17, 19 and 22 had fewer ageing-associated
methylation sites than expected (Hypergeometric test
p < 0.05, Additional file 2). On the majority of these chro-
mosomes, the proportion of hypermethylated sites com-
pared with the proportion of hypomethylated sites was
roughly equal or was slightly biased towards an excess of
hypomethylated sites, as in the overall data. Interestingly,
on chromosomes 18 and 19, there were considerably more
hypermethylated sites than expected: among the identified
ageing-associated methylation sites on these chromo-
somes, 72% and 75% were hypermethylated, constituting a
clear overrepresentation compared with the 46% of hyper-
methylated sites identified in the total data.
The CpG sites that were hypermethylated with advan-

cing age were enriched at CpG islands, rather than on
island shores or shelves or in non-CGIs. By contrast, the
hypomethylated CpG sites were enriched in non-CGIs;
their absence from CpG islands was striking, as only
1.2% of all hypomethylated sites were located in CpG
islands, whereas 31.5% of the total probes were located



Table 1 Top 10 age-group associated CpG sites from the regression model

ProbeID Gene betareg estimate betareg p-value Δβ Wilcoxon p-value

cg16867657 ELOVL2 1.023 6.38E-66 0.243 1.53E-10

cg16762684 MBP -1.486 4.74E-64 -0.168 1.53E-10

cg11344352 ERCC1 -1.202 9.15E-63 -0.153 1.53E-10

cg17110586 na 0.895 1.46E-59 0.200 1.53E-10

cg04875128 OTUD7A 1.514 7.2E-58 0.279 1.53E-10

cg08262002 LDB2 -0.710 2.72E-55 -0.197 1.53E-10

cg18618815 COL1A1 -0.941 1.78E-52 -0.225 1.53E-10

cg00748589 na 0.864 1.36E-51 0.179 1.53E-10

cg15416179 MAP2K3 -1.131 2.38E-51 -0.187 1.53E-10

cg12065799 RRAGC -0.823 8.15E-51 -0.088 1.53E-10

cg23479922 MARCH11 0.940 4.07E-49 0.263 1.53E-10

cg07544187 CILP2 1.541 2.35E-48 0.252 1.53E-10

cg09038267 C10orf26 1.227 1.48E-47 0.150 1.53E-10

cg13033938 IP6K1 -0.699 7.54E-47 -0.061 1.53E-10

cg19283806 CCDC102B -1.253 9.82E-47 -0.267 1.53E-10

cg07547549 SLC12A5 0.900 5.02E-46 0.245 1.53E-10

cg01949403 APOL3 0.807 7.53E-46 0.111 1.53E-10

cg01243823 NOD2 -1.280 7.9E-46 -0.232 1.53E-10

cg22242842 na -0.952 1.99E-44 -0.206 1.53E-10

cg06007201 FAM38A -0.932 5.65E-44 -0.156 1.53E-10

CpG sites with most significant association to age group in the beta regression models (betareg). To clarify, Δβ refers to difference in the median of DNA methylation
values between nonagenarians and young controls (difference in β-value), whereas betareg estimate refers to the estimate obtained from a regression model termed
beta regression. Thus the absolute value of betareg estimate and the absolute value of Δβ for a given CpG site are not directly comparable, only the signs of the
values are.
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in CpG islands (Figure 3). In regard to gene regions,
hypermethylated CpGs were enriched in regions near the
TSSs and the 1st exons of genes, whereas hypomethylated
sites were scarce in these areas and were enriched in the
gene body and, more strongly, in the regions outside of
genes (Figure 3).

Functional annotation of the ageing-associated
methylation sites
The locations of ageing-associated hyper- and hypome-
thylation differ, thus it can be assumed that their origins
and/or functions also differ. Therefore, we performed the
functional analyses separately for hypermethylated and
hypomethylated sites and genes harbouring these ageing-
associated methylation sites. The 3925 hypermethylated
sites were annotated to 1832 different genes, and the 4615
hypomethylated CpG sites were annotated to 2057 differ-
ent genes.
GOrilla (Gene Ontology enRIchment anaLysis and

visuaLizAtion tool) [31,32] was used to identify the GO
functions and processes associated with ageing-associated
hyper- and hypomethylation-associated genes. For both
categories, we identified more significant GO terms for
hypermethylation-associated genes, even though there
were fewer hypermethylation-associated genes compared
with hypomethylation-associated genes. For the hyperme-
thylation-associated genes, 36 enriched GO function terms
were identified (Bonferroni corrected p < 0.05), whereas
for the hypomethylation-associated genes, 27 enriched
GO function terms were identified; 11 of these terms were
common to the two groups (Additional file 3). The top GO
function terms for the hypermethylation-associated genes
were unique to these genes; these terms were associated
with sequence-specific DNA binding and transcription
factor binding (also presented as a diagram in Additional
file 4). The GO terms that were enriched only for hypo-
methylated sites did not reveal similar enrichment for a
common process (Additional file 4). The GO function
terms that were common to hypermethylation- and
hypomethylation-associated genes also formed a group
and were clustered around channel function-associated
GO terms. The results for GO process terms was similar
to that for GO functions, as we identified 265 significant
GO terms for hypermethylation-associated genes, whereas
for hypomethylation-associated genes, we identified only
53 significant GO terms; 41 of these terms were com-
mon to hyper- and hypomethylation-associated genes.
(Additional file 5). The top-ranking hypermethylation-



Table 2 Top 10 CpG sites with the largest Δβ between
nonagenarians and young controls

ProbeID Gene betareg
estimate

betareg
p-value

Δβ Wilcoxon
p-value

cg07211259 PDCD1LG2 -1.086 3.24E-30 -0.290 1.53E-10

cg18826637 na -1.280 2.23E-32 -0.289 1.53E-10

cg26063719 VIM -1.036 6.09E-25 -0.284 1.53E-10

cg08548498 SLPI -0.767 1.24E-15 -0.278 1.66E-10

cg19283806 CCDC102B -1.253 9.82E-47 -0.267 1.53E-10

cg13591783 ANXA1 -0.826 5.17E-22 -0.266 1.53E-10

cg27192248 na -1.246 2.57E-20 -0.265 1.59E-10

cg03274391 na -1.263 1.18E-15 -0.264 1.54E-10

cg23654401 VOPP1 -0.781 2.94E-16 -0.262 1.54E-10

cg26269881 BHLHE40 -1.005 4.25E-25 -0.261 1.53E-10

cg18952796 NPTX2 1.121 6.89E-26 0.264 1.56E-10

cg17688525 L3MBTL4 0.865 1.36E-11 0.265 5.86E-10

cg27526665 THRB 0.940 2.64E-22 0.266 2.0E-10

cg09555124 IGF2R 0.944 4.34E-23 0.277 1.53E-10

cg23160016 GABRA2 1.041 1.01E-17 0.277 2.49E-10

cg10568066 RNF39 0.973 4.68E-13 0.278 1.60E-8

cg04875128 OTUD7A 1.514 7.2E-58 0.279 1.53E-10

cg21402921 GABRA5 0.868 4.90E-17 0.285 5.58E-10

cg00674365 ZNF471 1.033 6.27E-24 0.288 3.65E-10

cg06352730 na 1.437 1.26E-23 0.288 1.76E-10

CpG sites with the largest difference in the methylation level (Δβ) between
nonagenarians and controls. To clarify, Δβ refers to difference in the median of
DNA methylation values between nonagenarians and young controls (difference
in β-value), whereas betareg estimate refers to the estimate obtained from a
regression model termed beta regression. Thus the absolute value of betareg
estimate and the absolute value of Δβ for a given CpG site are not directly
comparable, only the signs of the values are.

Figure 2 The top ageing-associated CpG sites. The level of DNA methyla
and in CpG sites with the strongest association to age group (cg16867657 (EL
CpG sites with the largest methylation differences (cg07211259 (PDCD1LG2), c
shown where applicable. See also Tables 1 and 2.
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specific GO terms were clustered around two types of
processes: development and morphogenesis; and metabolic
processes, gene expression and nucleotide metabolism
(Additional file 6). Again, the significant GO terms asso-
ciated with hypomethylation did not belong to a specific
group (Additional file 6). The hypermethylation-specific
GO terms that formed specific clusters are presented in
Tables 3, 4 and 5.
PScan [33] was used to identify transcription factors

that could be common regulators of the identified genes.
For the hypermethylation-associated genes, 24 common
transcription factors were identified (Additional file 7),
whereas for the hypomethylation-associated genes, only
one TF (EWSR1-FLI1, p-value 1.502e-5), was identified.
Among the 24 transcription factors that were common
to hypermethylation-associated genes, half (12) were
zinc-coordinating transcription factors.
We also identified canonical pathways related to hypo-

and hypermethylation-associated genes through Ingenuity
pathway analysis (IPA) [34]. For the hypermethylation-
associated genes, we identified 19 affected canonical
pathways (Benjamini-Hochberg-corrected p-value <0.05),
whereas for the hypomethylation-associated genes, 3
pathways were identified, 1 of which was common to
both groups of genes (Additional file 8). The canonical
pathways associated with hypermethylation in nonagenar-
ians belonged to signalling pathway categories such as
Organismal growth & development, Cellular growth and
Proliferation and development (Figure 4).
Effect of sex on ageing-associated DNA methylation
changes
Among the 8540 ageing-associated, high-confidence
CpG sites, only 7 showed a statistically significant asso-
ciation with sex in our beta regression analysis in which
age group, sex and leukocyte proportions were included
tion presented as a box plot in the control and nonagenarian groups
OVL2), cg16762684 (MBP), cg111344352 (ERCC1) and cg17110586) and in
g18826637, cg00674365 (ZNF471) and cg06352730). Gene annotation is



Figure 3 Locations of the ageing-associated methylation sites
identified in the nonagenarians. Ageing-associated hyper- and
hypomethylated probes are distributed differently across the genome.
The distribution of ageing-associated CpGs in relation to (a) genes
and (b) CpG islands. Ageing-associated hypermethylation is mainly
located in CpG islands, TSSs and the 1st exons of genes, whereas
ageing-associated hypomethylation occurs mainly in non-CGIs, gene
bodies and areas outside of genes. In the figure, array denotes the
distribution of probes in the 450K array.
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as covariates. The sex-associated sites that were also
ageing-associated are listed in Additional file 9.

Association between ageing-associated DNA methylation
changes and gene expression
We performed a correlation analysis between the level of
methylation at ageing-associated CpGs and the expression
level of genes in which these CpG sites were located. In
Table 3 Hypermethylation-specific GO function terms in nona

GO term Description

GO:0043565 Sequence-specific DNA binding

GO:0001071 Nucleic acid binding transcription factor activity

GO:0003700 Sequence-specific DNA binding transcription factor activity

GO:0003677 DNA binding

GO:0000981 Sequence-specific DNA binding RNA polymerase II transcrip

GO:0000976 Transcription regulatory region sequence-specific DNA bind

GO:0044212 Transcription regulatory region DNA binding

GO:0000975 Regulatory region DNA binding

GO:0001067 Regulatory region nucleic acid binding

This table includes only the hypermethylation-specific GO function terms that form a c
p-values are unadjusted and the threshold for significance is 1.27e-5 (Bonferroni). The
terms. For all statistically significant GO function terms, see Additional file 3.
nonagenarians, we identified 422 correlation pairs (Pearson
correlation, Benjamini-Hochberg-corrected p-value < 0.05)
that consisted of 377 individual CpG sites and 233 individual
genes (Additional file 10). The apparent discrepancy
in these numbers is because a single CpG can be lo-
cated in a region of overlapping transcripts, and there
can be several CpGs within the coding region of a
single transcript. In the young controls, we identified
50 expression-methylation correlation pairs (Pearson
correlation, Benjamini-Hochberg-corrected p-value < 0.05),
consisting of 43 individual CpGs and 37 individual genes.
In nonagenarians, 255 (60%) of these correlated CpG-gene
pairs showed an inverse correlation, and 167 (40%) exhib-
ited a direct correlation. In the young controls, these num-
bers were 46 (92%) and 4 (8%), respectively. Among the
genes whose expression level was correlated with the level
of DNA methylation, 23 were common to the nonagenar-
ians and young controls, and in all cases, the direction of
correlation was the same. We previously showed that 14 of
the 233 genes identified in the present study were differen-
tially expressed with age in both sexes and that an add-
itional 14 were differentially expressed with age in either
sex [35] (For details, see Additional file 10).
The correlated CpGs did not exhibit a similar distribu-

tion in the genome to the ageing-associated methylation
sites. Those CpG sites whose methylation level corre-
lated with the level of gene expression were concen-
trated in non-CGIs and on CpG island shores and
shelves, whereas only a few (14.6%) were located in CpG
islands. In the non-CGIs, the majority of correlations
were direct, whereas the opposite situation was observed
in CpG islands and on island shores and shelves. With
regard to regions within genes, the correlated CpGs were
relatively evenly distributed. However, we identified an
abundance of correlated CpGs within gene bodies (55% of
all correlated sites), where the majority of sites were directly
correlated. In regions near a TSS (TSS200, from TSS
genarians

P-value FDR q-value Rank (out of 36)

1.18E-32 4.65E-29 1

9.38E-31 1.85E-27 2

2.22E-30 2.92E-27 3

6.48E-16 6.38E-13 4

tion factor activity 2.6E-15 2.05E-12 5

ing 4.8E-13 2.7E-10 7

7.92E-12 3.47E-9 9

2.22E-11 8.75E-9 10

2.22E-11 7.96E-9 11

ommon cluster, associated with DNA binding and transcription. The presented
rank denotes the placement of a given GO term in the list of all significant GO



Table 4 Hypermethylation-specific GO process terms in nonagenarians

GO term Description P-value FDR q-value Rank (out of 265)

GO:0048598 Embryonic morphogenesis 1.25E-22 8.85E-20 17

GO:0048729 Tissue morphogenesis 2.99E-19 1.64E-16 22

GO:0002009 Morphogenesis of an epithelium 6.94E-18 3.22E-15 26

GO:0001763 Morphogenesis of a branching structure 1.84E-17 7.65E-15 29

GO:0048754 Branching morphogenesis of an epithelial tube 1.26E-15 3.09E-13 49

GO:0048562 Embryonic organ morphogenesis 6.12E-14 1.1E-11 67

GO:0009887 Organ morphogenesis 1.13E-13 1.92E-11 71

GO:0035107 Appendage morphogenesis 2.17E-12 2.85E-10 92

GO:0035108 Limb morphogenesis 2.17E-12 2.82E-10 93

GO:0030326 Embryonic limb morphogenesis 7.07E-12 8.7E-10 98

GO:0035113 Embryonic appendage morphogenesis 7.07E-12 8.61E-10 99

GO:0048704 Embryonic skeletal system morphogenesis 2.25E-11 2.56E-9 106

GO:0048705 Skeletal system morphogenesis 1.04E-10 1.11E-8 113

GO:0048732 Gland development 2.37E-10 2.3E-8 124

This table includes only the hypermethylation-specific GO process terms that form a common cluster, associated with development and morphogenesis. The presented
p-values are unadjusted and the threshold for significance is 4.15e-6 (Bonferroni). The rank denotes the placement of a given GO term in the list of all significant GO terms.
For all statistically significant GO process terms, see Additional file 5.
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to -200 nucleotides upstream of TSS), directly correlated
CpGs were almost completely absent (Additional file 11).
To analyse the processes associated with the genes that dis-

played a correlation between expression and methylation
levels, we performed GO term analysis and IPA for the nona-
genarians. We identified 20 GO process terms (Bonferroni-
corrected p-value <0.05), of which 6 (30%) were immune sys-
tem associated. Numerous immune system pathways were
also identified when considering GO process terms that were
more loosely associated with these genes (Benjamini-Hoch-
berg-corrected p-value <0.05), where 39 of 121 (32%) statisti-
cally significant GO process terms were immune system
associated (Additional file 12). Only one GO function term
(GO:0005515 Protein binding) was associated with the corre-
lated CpGs. In addition to the immune system, pathways re-
lated to the reaction to the environment were affected.
Ingenuity canonical pathway analysis revealed 15 canonical
pathways (Benjamini-Hochberg-corrected p-value <0.05)
(Table 6), the majority of which were directly immune system
associated (Crosstalk between Dendritic Cells and Natural
Killer Cells, Antigen Presentation Pathway, Fcγ Receptor-
mediated Phagocytosis in Macrophages and Monocytes, T
Helper Cell Differentiation) or associated with cytoskeleton
remodelling and endocytosis (Integrin Signalling, Actin
Cytoskeleton Signalling, Tec Kinase Signalling, Paxillin
Signalling, Caveolar-mediated Endocytosis Signalling).

Discussion
Ageing-associated DNA methylation changes; single CpG
sites and their location and function
Here, we present the results of our ageing-associated DNA
methylation analysis. In summary, our results were
obtained with a 450K array using PBMCs collected from
nonagenarians and young controls. The study subjects
were analysed as two age groups, and we used two differ-
ent statistical methods to verify that the ageing-associated
methylation sites identified had a prominent difference in
the level of methylation between the age groups and that
this difference was not due to changes in leukocyte propor-
tions. The proportions of leukocytes were measured via
FACS. We also added a layer of information by including
gene expression data from the same individuals. The small
number of young controls is a potential limitation in our
study; thus, the results should be interpreted accordingly.
In previous ageing-methylation studies, the age range of

the oldest study subjects has typically been from 70 to
80 years of age [17,19-22,25,26], and the youngest age
group to be included has ranged from new-borns [22,28]
to 50 years of age [20,25]. In studies in which subjects over
90 years old have been analysed, these individuals repre-
sented a minority of the study population or the overall
sample size has been small [18,27,28,36]. Hence, a
strength of our study is the large number of the oldest-old
individuals homogenous in terms of age. In addition, our
study population represents the two extremities of adult-
hood, and as age was used as a dichotomous variable we
were able to identify both changes occurring linearly with
age as well as changes that occur in either end of the
spectrum. The DNA methylation studies performed with
27K arrays [17-22] fail to capture methylation changes
outside gene promoters, yet our results, as well as those of
others [25,28,36], show that ageing-associated changes are
not restricted to gene promoters. In contrast to our study,
previous reports combining methylation and expression



Table 5 Hypermethylation-specific GO process terms in nonagenarians

GO term Description P-value FDR q-value Rank (out of 265)

GO:0045935 Positive regulation of nucleobase-containing compound metabolic process 7.07E-17 2.37E-14 36

GO:0051173 Positive regulation of nitrogen compound metabolic process 1.06E-16 3.44E-14 37

GO:0031328 Positive regulation of cellular biosynthetic process 2.74E-16 8.47E-14 39

GO:0009891 Positive regulation of biosynthetic process 3.61E-16 1.06E-13 41

GO:0045893 Positive regulation of transcription, DNA-templated 5.05E-16 1.35E-13 45

GO:0019219 Regulation of nucleobase-containing compound metabolic process 7.72E-16 2.02E-13 46

GO:0010628 Positive regulation of gene expression 1.11E-15 2.78E-13 48

GO:0006357 Regulation of transcription from RNA polymerase II promoter 5.05E-15 1.15E-12 53

GO:0031326 Regulation of cellular biosynthetic process 1.07E-14 2.27E-12 57

GO:0051171 Regulation of nitrogen compound metabolic process 1.28E-14 2.66E-12 58

GO:0009889 Regulation of biosynthetic process 1.45E-14 2.96E-12 59

GO:0051254 Positive regulation of RNA metabolic process 1.8E-14 3.56E-12 61

GO:0006355 Regulation of transcription, DNA-templated 1.98E-14 3.85E-12 62

GO:1902680 Positive regulation of RNA biosynthetic process 2.06E-14 3.93E-12 63

GO:0045944 Positive regulation of transcription from RNA polymerase II promoter 2.94E-14 5.45E-12 65

GO:0010557 Positive regulation of macromolecule biosynthetic process 6.72E-14 1.19E-11 68

GO:0031323 Regulation of cellular metabolic process 1.09E-13 1.87E-11 70

GO:2001141 Regulation of RNA biosynthetic process 1.37E-13 2.29E-11 72

GO:0031325 Positive regulation of cellular metabolic process 2.22E-13 3.57E-11 75

GO:0045934 Negative regulation of nucleobase-containing compound metabolic process 2.8E-13 4.39E-11 77

GO:0031327 Negative regulation of cellular biosynthetic process 3.75E-13 5.8E-11 78

GO:0009893 Positive regulation of metabolic process 3.84E-13 5.85E-11 79

GO:0009890 Negative regulation of biosynthetic process 3.84E-13 5.78E-11 80

GO:0000122 Negative regulation of transcription from RNA polymerase II promoter 5.25E-13 7.72E-11 82

GO:0051252 Regulation of RNA metabolic process 9.69E-13 1.39E-10 84

GO:0051172 Negative regulation of nitrogen compound metabolic process 1.07E-12 1.52E-10 85

GO:2000112 Regulation of cellular macromolecule biosynthetic process 1.14E-12 1.6E-10 86

GO:0080090 Regulation of primary metabolic process 1.39E-12 1.92E-10 87

GO:0010629 Negative regulation of gene expression 2.02E-12 2.68E-10 91

GO:0010556 Regulation of macromolecule biosynthetic process 3.09E-12 3.96E-10 94

GO:0045892 Negative regulation of transcription, DNA-templated 4.17E-12 5.29E-10 95

GO:1902679 Negative regulation of RNA biosynthetic process 4.83E-12 6.07E-10 96

GO:0019222 Regulation of metabolic process 1.56E-11 1.84E-9 102

GO:0051253 Negative regulation of RNA metabolic process 1.94E-11 2.25E-9 104

GO:0010468 Regulation of gene expression 1.35E-10 1.39E-8 117

GO:0010558 Negative regulation of macromolecule biosynthetic process 1.39E-10 1.41E-8 119

GO:0010604 Positive regulation of macromolecule metabolic process 1.49E-10 1.46E-8 123

GO:2000113 Negative regulation of cellular macromolecule biosynthetic process 3.62E-10 3.38E-8 129

This table includes only the hypermethylation-specific GO process terms that form a common cluster, associated with nucleotide metabolism, RNA metabolism
and transcription. The presented p-values are unadjusted and the threshold for significance is 4.15e-6 (Bonferroni). The rank denotes the placement of a given GO
term in the list of all significant GO terms. For all statistically significant GO process terms, see Additional file 5.

Marttila et al. BMC Genomics  (2015) 16:179 Page 8 of 17
data have relied on individuals from different study co-
horts [27,36]. A group of studies have also tried to identify
a small set of methylation sites that could be used to con-
struct an ageing signature [22,23,25,27]. However, by
focusing on a broader set of ageing-associated methylation
sites, the mechanisms of ageing can be more thoroughly
examined. Given that published ageing-methylation stud-
ies have been conducted using various age ranges and



Figure 4 Canonical pathway categories associated with
differentially methylated genes in the nonagenarians.
Hypomethylation-associated genes are enriched in only three canonical
pathways, thus corresponding to only a few pathway categories.
Hypermethylation-associated genes are enriched in canonical pathways
associated mainly with organismal and cellular growth and development.
One canonical pathway can belong to several categories; for the individual
pathways, see Additional file 8.
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statistical methods, discrepancies in the results are most
likely due to both biological and statistical factors.
The main characteristics of the ageing-associated methy-

lation sites identified in the present study are presented in
Table 7. We identified 8540 high-confidence CpG sites that
show a large difference in methylation levels between no-
nagenarians and young controls and that present high
Table 6 Canonical pathways associated with genes whose exp
methylation in nonagenarians

Ingenuity canonical pathways p-value (B-H corrected) Ratio

Integrin signalling 0.016 0.054

Actin cytoskeleton signalling 0.017 0.048

Tec kinase signalling 0.019 0.051

Agrin interactions at
neuromuscular junction

0.019 0.090

Paxillin signalling 0.020 0.064

Reelin signalling in neurons 0.026 0.073

Phospholipase C signalling 0.030 0.041

Germ cell-sertoli cell junction signalling 0.030 0.051

Crosstalk between dendritic cells and
natural killer cells

0.030 0.066

Protein kinase A signalling 0.030 0.035

Antigen presentation pathway 0.030 0.100

Fcγ receptor-mediated phagocytosis in
macrophages and monocytes

0.030 0.063

T helper cell differentiation 0.037 0.073

Ephrin receptor signalling 0.038 0.041

Caveolar-mediated endocytosis signalling 0.044 0.062

Canonical pathways (IPA [34]) associated with genes whose expression levels correlate
Ratio = number of identified genes/number of genes in the pathway. Molecules refer t
statistical significance in a regression model adjusted for
the leukocyte proportion. A slight majority (54%) of the
identified sites were hypomethylated in the nonagenarians.
Among the top-ranking ageing-associated methylation
changes that have been reported with a high frequency,
ELOVL2 (cg16867657, cg24724428), PENK (cg04598121),
FHL2 (cg22454769, cg24079702, cg06639320) EDARADD
(cg09809672), KLF14 (cg04528819, cg07955995) and
OTUD7A (cg04875128) were also identified in our study.
Of these genes, only EDARADD was hypomethylated in
the nonagenarians compared with the controls. As re-
ported by Steegenga et al. [24], among 8 previous studies
analysing the association of ageing and DNA methylation
changes in PBMCs [17,19-21,25-28], only 529 probes were
reported to be affected by age by more than one research
group. Of these probes, our analysis identified 105. Inter-
estingly, the majority of frequently reported CpG sites are
hypermethylated with increasing age. Among the 151 CpG
sites (148 of which are present in 450K) reported to be as-
sociated with ageing by more than 3 groups [24], 77% were
hypermethylated. Of the 105 CpG sites that are frequently
reported and were identified in our study, 79% (83/105)
were hypermethylated.
The functional roles of the 10 most frequently reported

ageing-associated methylation sites are currently unclear, as
they are not associated with a common, ageing-related
process. According to our results, the genes associated with
these sites are not enriched under a common GO term or
ression levels correlate with the level of DNA

Molecules

ITGB1,PTK2,RAP2A,FYN,PAK1,RALA,ACTA2,ITGA6,CAPN2,ITGAL,ACTN1

ITGB1,PTK2,TIAM1,PAK1,F2R,ACTA2,TRIO,PDGFD,GSN,ARHGAP24,ACTN1

STAT4,ITGB1,PTK2,FYN,GNAI3,GNB4,PAK1,ACTA2,HCK

ITGB1,PTK2,PAK1,ACTA2,ITGA6,ITGAL

ITGB1,PTK2,PAK1,ACTA2,ITGA6,ITGAL,ACTN1

ITGB1,FYN,HCK,ITGA6,ARHGEF11,ITGAL

ITGB1,FYN,GNB4,RALA,AHNAK,SYK,MEF2C,ARHGEF11,PLD6,CREB5

ITGB1,PTK2,TGFBR2,PAK1,ACTA2,ITGA6,GSN,ACTN1

IFNG,ACTA2,CD86,HLA-F,ITGAL,CCR7

TGFBR2,PTK2,GNB4,GNAI3,TCF4,PTPN7,YWHAG,DUSP10,
RYR1,LEF1,CREB5,PTPRM,SIRPA

PSMB9,IFNG,HLA-F,HLA-DPB1

FYN,PAK1,SYK,ACTA2,HCK,PLD6

STAT4,TGFBR2,IFNG,IFNGR2,CD86

ITGB1,PTK2,FYN,GNAI3,GNB4,PAK1,PDGFD,CREB5

ITGB1,FYN,ACTA2,ITGA6,ITGAL

with the level of DNA methylation. P-values are Benjamini-Hochberg corrected.
o genes affected in our analysis present in the given pathway.



Table 7 Characteristics of ageing-associated methylation
sites

Hypermethylated Hypomethylated

n 3925 4615

CpG island location CpG islands Non-CGI

Genomic location TSS, 1st exon Gene body,
outside genes

Associated genes 1832 2057

GO function terms 36 27

GO process terms 265 53

Canonical pathways (IPA) 19 3

Transcription factors 24 1

The CpG island location and genomic location refer to the sites where hyper- and
hypomethylated sites are most abundant. Notably, there are more hypomethylated
CpG sites compared with hypermethylated CpG sites and therefore also more
hypomethylation-associated genes, yet the hypermethylation-associated genes are
enriched in more GO terms and canonical pathways, and they share more common
transcription factors.
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in common canonical pathways. Only FHL2, PENK and
OTUD7A are included in any identified GO term, and none
of them are included in affected canonical pathways. The
methylation levels of frequently reported CpGs are not cor-
related with the expression levels of the corresponding
genes. For EDARADD, we identified an additional CpG site
(cg18964582) that was differentially methylated between no-
nagenarians and young controls, located within TSS1500,
where there is an inverse correlation between the methyla-
tion level and the expression level. However, based on previ-
ous findings and our results, it appears that the frequently
reported ageing-associated CpG sites are not strongly asso-
ciated with known ageing-related mechanisms but could in-
stead represent a cellular chronological clock mechanism.
Our results revealed an enrichment of ageing-associated

hypermethylation at CpG islands, whereas hypomethylation
was enriched in non-CGIs and was almost totally absent
from CpG islands. These findings are in line with previ-
ously reported results [16,24,25,28,36,37]. The majority of
CpG sites are not initially methylated in CpG islands, and
the change observed during ageing is hypermethylation.
The opposite is true for regions with few CpG sites that ini-
tially are heavily methylated, and the non-CGIs are associ-
ated with hypomethylation. These results support the
notion that the normal maintenance of DNA methylation
patterns is disrupted with ageing [38]. As both hypomethy-
lation and hypermethylation occur with ageing, it appears
that both de novo methylation processes, mediated by
DNMT3A and DNMT3B methyltransferases, and the
maintenance of existing DNA methylation, mediated by
DNMT1, are disrupted with ageing. Interestingly, our re-
sults identified 4 CpG sites in DNMT3A that were ageing
associated (cg00050692, which was hypomethylated, and
cg15302376, cg15843262 and cg26544247, which were
hypermethylated in the nonagenarians). However, there
was no correlation between the level of methylation and
DNMT3A expression.
Our results showed that not only are ageing-associated

hyper- and hypomethylation found at different genomic
sites but that these changes are also found in genes associ-
ated with different functions. Our findings further revealed
that ageing-associated hypermethylation is concentrated
in genes associated with developmental processes as well
as DNA-binding and transcription of genes, whereas hy-
pomethylation is not enriched among a specific set of
genes. Johansson et al. [36], Rakyan et al. [19] and Florath
et al. [25] previously reported the association of hyperme-
thylation with developmental processes and DNA binding.
As DNA methylation regulates DNA transcription, it is in-
teresting that the genes required during this process are
differentially methylated with ageing. In comparison
with ageing-associated hypomethylation, hypermethyla-
tion appears to be a more regulated process, as no strongly
hypomethylation-specific functions or processes were
identified in this study.
It is notable that while the individual sites reported to be

ageing associated differ to some extent between studies,
the results regarding their locations in the genome and
the molecular functions with which they are associated are
more uniform. Single highly significant CpG sites have
also been reported in various studies, including sites
located in the ELOVL2 and FLH2 genes. Common
ageing-associated DNA methylation changes can also be
observed across different tissues [6,23]. Thus, it appears
that at least some fraction of ageing-associated DNA
methylation changes is caused by programmed or pseudo-
programmed changes that occur in a similar manner
across tissues and individuals. As certain processes and
sites are reported frequently, it can be hypothesised that
these sites and processes represent clock-like changes as-
sociated with ageing. For example, a strong association
with chronological age has been shown for ELOVL2
(cg16867657) [25,26,36]. However, it remains to be investi-
gated whether these sites are only associated with chrono-
logical age or if there are also associations with phenotypic
changes related to (successful) ageing. If these frequently
reported sites are only markers of chronological age,
markers of biological age are yet to be identified.

The role of cell proportions in DNA methylation studies
The majority of DNA methylation and expression stud-
ies are performed with whole blood or PBMCs due to
the accessibility of these tissue types. However, PBMCs
consist of various cell types, and different individuals
can exhibit differences in the proportions of different
cell populations. Ageing is known to be associated with
changes in the proportions of T cells [2,39]. Further-
more, the different leukocyte subtypes show differences
in their DNA methylation levels [40], and changes in
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DNA methylation are known to be one of the factors
regulating lineage development in leukocytes [41].
Previous reports have claimed that differences in the

proportions of leukocytes do not cause bias in methylation
analyses [17,21,22]. However, contradictory reports have
also been published [42], and recently it has been system-
atically shown that differences in leukocyte proportions
should be taken into consideration when analysing ageing-
associated methylation differences [29]. Our PCA revealed
that the largest percentage of the variation in our methyla-
tion data was associated with the proportions of different
leukocyte subtypes (Figure 1).

The role of sex in ageing-associated DNA methylation
studies
According to our results, sex does not have a large effect
on ageing-associated DNA methylation changes in auto-
somes, as we identified only 7 CpG sites for which sex, in
addition to age group, was a significant covariate in the re-
gression model. However, the small number of male sam-
ples in our control population may have precluded the
identification of ageing-associated sex differences. Never-
theless, Johansson et al. [36] and McClay et al. [37] previ-
ously reported similar findings in studies focusing on
individual sites associated with ageing. In studies where
methylation profiles have been used to predict age, how-
ever, the methylome has been shown to age more rapidly
in men than in women [22,27]. DNA methylation is be-
lieved to mediate the long-term regulation of gene expres-
sion [13], and it is therefore interesting to note that sex
differences appear to be mediated via mechanisms other
than DNA methylation. Apparently, the effects of sex ob-
served in methylome studies predicting age are small glo-
bal effects rather than large changes at a limited number
of sites. We have previously reported [35] that there are
sex-specific differences in the gene expression changes as-
sociated with ageing, but based on the results of
the present study, these expression differences are not
regulated by DNA methylation.

The role of zinc-associated proteins in ageing
We observed a clear enrichment of hypermethylation on
chromosome 19, which seems to be due to the abundance
of zinc finger proteins on this chromosome. The increased
methylation of zinc finger genes on chromosome 19 has
previously been observed in oropharyngeal squamous cell
carcinoma [43], and similarities between the methylation
changes that occur in ageing and cancer have been dem-
onstrated in multiple studies [20,21,23]. It has recently
been proposed that the zinc finger proteins on chromo-
some 19 have specifically evolved to repress endogenous
retroviruses (ERVs) [44]. On the other hand, the expres-
sion of ERVs has been associated with ageing in mice
[45,46]. Hence, the hypermethylation of zinc finger genes
observed with ageing offers an explanation for why ERVs
are able to be expressed with advancing age. One of the
zinc finger genes predicted to repress ERVs by Lukic et al.
[44] was ZNF154. We identified 10 CpGs within this gene
as being hypermethylated in the nonagenarians, and we
identified a strong negative correlation between the level
of methylation and the expression of this gene, indicating
that its expression is truly downregulated in the aged indi-
viduals. Both ageing and cancer are associated with
genomic instability [1], and the role of active ERVs in in-
ducing this genomic instability with increasing age could
be analogous to that proposed in cancer [47].
Zinc-coordinating transcription factors were also enriched

among the TFs predicted to regulate hypermethylation-
associated genes in this study, as 12 out of the 24 identi-
fied TFs were zinc coordinating. Zinc has been associated
with various processes that are known to be regulated
during ageing, such as immune function, DNA repair
mechanisms, cell proliferation, apoptosis and transcrip-
tion [48,49].

The association between ageing-associated DNA
methylation changes and gene expression
We sought to examine the relationship between ageing-
associated DNA methylation changes and gene expression
levels. Compared with previous studies, a key asset of our
study is that methylation and gene expression data were
available from the same samples. Those ageing-associated
methylation sites in which the level of methylation is asso-
ciated with the level of gene expression are concentrated
in non-CGIs and on shores and shelves, as well as in
gene body regions. Similar findings have been reported by
Zilbauer et al. [40]. Gene-body methylation has been pro-
posed to affect gene expression via splicing and alternative
start site usage [13,50]. It is important to note that many
previous studies examining DNA methylation changes
during ageing have been performed using the Illumina
27K array, where the majority of the probes are located
in promoter regions. In these studies, the effects of
gene-body methylation on gene expression levels remained
unidentified.
The identified genes that display expression-methylation

correlations are strongly enriched in immunological pro-
cesses and in cytoskeletal remodelling and endocytosis.
Cytoskeletal remodelling is required for leukocyte activa-
tion, migration and phagocytosis [51]. The results imply
that some fraction of ageing-associated immune system
changes may be regulated by DNA methylation. Defects in
the immune system are a hallmark of ageing, leading to
increased susceptibility to infectious diseases, cancer and
ultimately death [1]. DNA methylation typically regulates
long-term trends in gene expression [11,13], and the pos-
sibility that immune system-related processes may be
locked in a particular state by DNA methylation could
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offer one explanation as to why the immune system of eld-
erly individuals is not able to respond appropriately to
various insults.
We found that only a minority of ageing-associated

CpG sites showed an association between methylation and
expression levels. Furthermore, only a minority of these
genes have been identified as differentially expressed be-
tween nonagenarians and young individuals [35]. Previous
studies have also found a limited number of associations
between ageing-associated DNA methylation changes and
gene expression levels [21,23,27,36,42,52]. Due to the
methods applied in the present study, not all the effects of
DNA methylation on gene expression could be detected;
this limitation is also true for previously reported results.
The textbook case of DNA methylation regulating gene
expression (the methylation of a promoter and silencing
of a gene) remains undetected in many cases because in
an array analysis, an unexpressed gene shows no signal
that can be distinguished from background and is there-
fore typically omitted from the analysis. Additionally, in
the present study, the methylation level of each CpG was
correlated separately with gene expression. In CpG island
regions in particular, the effect of DNA methylation
changes on gene expression could be observed when a
cluster of closely located CpG sites were analysed as a
whole. The effects of CpG sites that are not located in the
regulated gene itself also remain unidentified. The short
list of methylation-gene expression associations linked to
ageing reported herein and previously by others should be
interpreted as a defined set of one type of methylation-
gene expression associations, and it should be assumed
that other types of mechanisms exist and require different
methodologies to be identified.

Conclusions
Based on the results presented here, it appears that ageing-
associated hyper- and hypomethylation are distinct pro-
cesses, both in terms of their causes and consequences.
We suggest that hypermethylation is an active process,
caused by programmed or pseudo-programmed ageing
processes, and that hypermethylation is strongly associated
with chronological age. Ageing-associated hypomethyla-
tion, however, is a passive process caused by stochastic or
environmental effects and is associated with biological age,
i.e., the phenotype of the individual. Whether the under-
lying cause of ageing is programmed, pseudo-programmed
or due to the accumulation of molecular damage has been
widely discussed in the literature. Given that evidence sup-
porting each theory can be found, it is plausible that these
mechanisms all contribute to the ageing process but pos-
sibly affect different aspects [3-5].
First, hypermethylation is an active process that con-

sumes energy as new methyl groups are added to DNA by
DNA methyltransferases. Hypomethylation can also be an
active process in some cases, but contrary to hyperme-
thylation, it may occur passively as well [53,54]. The most
frequently reported ageing-associated DNA methylation
changes (for example in ELOVL2) that are repeated across
tissues and study populations, thus implying programmed
changes, are hypermethylation events. In studies where
chronological age has been explained in association with
DNA methylation levels, it has been found that at sites
showing the strongest correlation with chronological age,
methylation increases with age [25,26]. The ageing-
associated hypermethylated sites form common groups
with regard to cellular processes and functions. According
to the results of the present study, hypermethylation-
associated genes are predicted to be regulated by a
common group of transcription factors and are also
enriched in common GO terms, whereas hypomethylation-
associated genes do not to appear to form common groups.
The top-ranking ageing-associated sites are hypermethy-
lated, but hypomethylated sites are more numerous. This
difference becomes more significant when the threshold of
significance is lowered; of the 8540 sites identified here,
54% were hypomethylated, but among the 45507 sites iden-
tified with the regression model, 64% were hypomethylated.
Johansson et al. [36] also reported an excess of hypomethy-
lation over hypermethylation with ageing.
Global hypomethylation has been associated with an in-

creasing risk of frailty [55], but very few other associations
between phenotype and DNA methylation have been
reported [17]. However, this may be due to technical
concerns, as the study by Bell et al. [17] was performed
with the 27K array, which almost exclusively contains
promoter-associated probes that are not methylated at
baseline and can therefore primarily acquire hypermethy-
lation. Phenotype association studies performed with the
450K array or using sequencing techniques are necessary
to clarify if hypomethylation is associated with typical
ageing-associated phenotypes.
The role of DNA methylation is known to differ de-

pending on its location in the genome. Thus, it would
not be surprising if different DNA methylation changes
in the genome are affected by different ageing mecha-
nisms. As DNA methylation analyses are complicated by
the different effects of methylation sites at different gen-
omic positions and by the cumulative effects of nearby
CpG sites, all possible known biases, such as the propor-
tions of leukocytes, should be accounted for in DNA
methylation analyses.

Methods
Study population
The study population consisted of 146 nonagenarians
(females n = 103, males n = 43) participating in the
Vitality 90+ study and 30 young, healthy controls (aged
19-30 years, median 22.5 years; females n = 21, males
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n = 9). Gene expression data were available for all the
individuals, and methylation data were available for 122
nonagenarians (n = 89 females and n = 33 males) and 21
young controls (n = 14 females and n = 7 males), and
data on cell proportions were available for 115 nonage-
narians (n = 84 females and n = 31 males) and all 30 of
the young controls. All the study subjects were of West-
ern European descent. The Vitality 90+ study is an on-
going prospective population-based study that includes
both home-dwelling and institutionalised individuals
aged 90 years or more who live in the city of Tampere,
Finland. The recruitment and characterisation of the
participants were performed as previously reported for
earlier Vitality 90+ study cohorts [56]. In this study, we
included only individuals born in 1920, and the evalu-
ated samples were collected in the year 2010. The nona-
genarians included in the study had not had any
infections or received any vaccinations in the 30 days
prior to blood sample collection. The young controls
consisted of healthy laboratory personnel who did not
have any medically diagnosed chronic illnesses, were
non-smokers and had not had any infections or received
any vaccinations within the two weeks prior to blood
sample collection. The study participants provided their
written informed consent. The study has been con-
ducted according to the principles expressed in the dec-
laration of Helsinki, and the study protocol was
approved by the ethics committee of the city of Tampere
(1592/403/1996).

Sample collection
The blood samples were collected into EDTA-containing
tubes by a trained medical student during a home visit. All
the blood samples were drawn between 8 am and 12 am.
The samples were directly subjected to leucocyte separation
on a Ficoll-Paque density gradient (Ficoll-Paque™ Premium,
cat. no. 17-5442-03, GE Healthcare Bio-Sciences AB,
Uppsala, Sweden). The PBMC layer was collected, and a
subset of the cells was suspended in 150 μl of RNAlater so-
lution (Ambion Inc., Austin, TX, USA) for use in a gene ex-
pression microarray analysis. Cells that were to be subjected
to FACS analysis and DNA extraction were suspended in
1 ml of a freezing solution (5/8 FBS, 2/8 RPMI-160
medium, 1/8 DMSO) (FBS cat. no. F7524, Sigma-Aldrich,
MO, USA; RPMI: cat. no. R0883, Sigma-Aldrich, MO, USA;
DMSO: cat. no. 1.02931.0500, VWR, Espoo, Finland).

DNA extraction
DNA was extracted from PBMCs using the QIAamp DNA
Mini kit (Qiagen, CA, USA), following the manufacturer’s
instructions for the spin protocol. The DNA was eluted in
60 μl of AE elution buffer and stored at -20°C. The concen-
tration and quality of the DNA was assessed with the Qubit
dsDNA HS Assay (Invitrogen, Eugene, OR, USA).
RNA extraction
For RNA extraction, equal amounts of PBS and
RNAlater were added to the cell suspension and then re-
moved via centrifugation, leaving only the cell pellet.
RNA was purified using an miRNeasy mini kit (Qiagen,
CA, USA), according to the manufacturer’s protocol,
with on-column DNase digestion (AppliChem GmbH,
Darmstadt, Germany). The concentration and quality of
the RNA were assessed with the Agilent RNA 6000
Nano Kit on an Agilent 2100 Bioanalyzer (Agilent
Technologies, CA, USA).

FACS
The proportions of different lymphocyte populations were
determined through FACS analysis (BD FACSCanto II),
and the results were analysed with BD FACS Diva, version
6.1.3 (BD Biosciences, Franklin Lakes, NJ, USA). The
antibodies employed in this analysis were FITC-CD14
(cat. no. 11-0149), PerCP-Cy5.5-CD3 (45-0037), APC-
CD28 (17-0289) (eBioscience, San Diego, CA, USA),
PE-Cy™7-CD4 (cat. no. 557852) and APC-Cy™7-CD8
(557834) (BD Biosciences).

Expression array
Labelled cRNA was prepared from 330 ng of total RNA
using the Illumina TotalPrep RNA Amplification Kit
(Ambion Inc., TX, USA) with overnight incubation
according to the manufacturer’s protocol. The quality of
the labelled cRNA was determined using a 2100 Bioana-
lyzer (Agilent Technologies). In total, 1500 ng of labelled
cRNA was hybridised overnight to a HumanHT-12 v4
Expression BeadChip (Cat no. BD-103-0204, Illumina
Inc., CA, USA), according to the Illumina protocol, in
the Core Facility of the Department of Biotechnology of
the University of Tartu. Samples were assigned to the
arrays in a randomised order. The chips were scanned
using Beadscan (Illumina Inc.).

Methylation array
Genome-wide DNA methylation profiling was per-
formed at the Institute for Molecular Medicine Finland
(FIMM) Technology Centre of the University of
Helsinki in two batches (time interval, 6 months).
Bisulfite conversion of 1 μg of DNA was performed
using the EZ-96 DNA Methylation Kit (Zymo Research,
Irvine, CA, USA) according to manufacturer’s instruc-
tions. A 4-μl aliquot of bisulphite-converted DNA was
subjected to whole-genome amplification and then en-
zymatically fragmented and hybridised to the Infinium
HumanMethylation450 BeadChip (Illumina, San Diego,
CA, USA) according to manufacturer’s protocol. Sam-
ples were assigned to the arrays in a randomised order.
The BeadChips were scanned with the iScan reader
(Illumina).
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Preprocessing of the methylation microarray data
The methylation data were preprocessed as a methylumi-
set object using R software with the wateRmelon array-
specific package from Bioconductor [57]. The annotation
information was based on the GRCh37/hg19 genome as-
sembly from February 2009. Prior to any processing, all
unspecific or polymorphic sites (n = 76775) were removed
based on database information [58]. Samples and target
sites of a technically poor quality were filtered out by ex-
cluding sites with a beadcount of <3 in 5% of the samples
(n = 526) and sites for which 1% of the samples showed a
detection p-value >0.05 (n = 740). Background correction
and quantile normalisation via the dasen method were
conducted individually for the two applied chemistries
(Infinium I and II) as well as for the intensities of methyla-
tion (m) and un-methylation (u). After dasen treatment,
the u and m intensities were transformed to beta (β) and
M values. β is the ratio of the methylated probe (m) inten-
sities to the overall intensities (m + u + α), where α is the
constant offset, 100. Thus, β ranges linearly from 0 (non-
methylated, 0%) to 1 (completely methylated, 100%). The
β values were further transformed into M values using the
equation log2(β/(1- β)). Next, the batch effect of the
chemistries was adjusted using the BMIQ method, which
is based on beta mixture models and the EM algorithm
[59]. Several visualisation styles were used to verify the
quality of the preprocessed data, such as boxplots from
the raw intensities, Kernel density plots in the chemistry
correction procedure and PCA plots (see Additional
file 13). The batch effect of two laboratory days (time
interval of 6 months) was confirmed via PCA (PC2
6.8%) to be a cause of severe bias in the data. Thus, the
bias was corrected using an algorithm based on Empir-
ical Bayes methods, as implemented in the R package
Combat [60].

Preprocessing of the gene expression microarray data
The gene expression microarray data were preprocessed
as a Lumibatch object with the lumi pipeline using R
software [61]. Background correction was performed
with the bgAdjust.affy package. The gene expression
values were then transformed with vst and normalised
using the rsn method. Transcripts with transformed ex-
pression values of greater than 7.5 in 20% of the samples
were included in the analysis. Visualisations, boxplots
and PCA plots were used in the pipeline to verify the
quality of the data.

Comparison of age groups
To detect CpG sites showing substantial differences in
DNA methylation between nonagenarians and young
adults, the sites displaying the largest difference in the
absolute value of the methylation level were included in
the analysis (-1 >ΔM> 1, threshold for ΔM based on
[61]). The rank-sums of the methylation values of the
two groups were further compared with the Wilcoxon
rank-sum test, and the nominal Benjamini-Hochberg-
adjusted p-value was set to 0.05.

Multiple regression analyses
To assess the relationship between age- and site-specific
methylation levels in greater detail, a generalised regression
model referred to as variable dispersion beta regression was
utilised in an iterative manner (n = 407 646). Age group
was employed as a predictor of the site-specific methylation
outcome, in the form of β values (ranging from 0 to 1), in
each equation of the mean model with a linker function of
logit. Furthermore, as it was observed through PCA that
the DNA methylation levels fluctuated based on the com-
position of blood cell subtypes, the proportions of CD28-/
CD4+ and CD28-/CD8+ cells showed especially clear cor-
relations with principal component 1, which explained 20%
of the overall variance in DNA methylation. Therefore, the
variables corresponding to cell type proportions (the CD4+
to CD8+ ratio and the proportions of CD28-/CD4+,
CD28-/CD8+ and CD14+ cells) were set as adjustments in
the analysis to determine leukocyte proportions independ-
ent of genome-wide ageing-associated DNA methylation
changes. Sex was used as an additional covariate. The
regression analyses were performed using R software and
with algorithms implemented in the betareg package
[62,63]. The nominal Bonferroni-adjusted p-value was set
to 0.05. See Additional file 14 for a flow chart summary
of the analysis steps to identify the high-confidence
ageing-associated CpG sites.

Correlations with gene expression levels
The associations between gene expression and DNA
methylation levels were separately examined through bi-
variate correlation (Pearson) analyses for young and old
individuals. The correlation analyses were designed for
each transcript and CpG site pair showing identical anno-
tation for a gene. Thus, multiple CpG sites were paired
with the same gene, and several genes were matched with
the same CpG site. In total, 2461 expression-methylation
pairs were tested. The nominal Benjamini-Hochberg-
adjusted p-value was set to 0.05.

Pathway analyses
All the pathway analyses were performed on differen-
tially methylated genes, i.e., genes that harbour at least
one ageing-associated CpG site. There were 1832
hypermethylation-associated genes (3925 CpG sites) and
2057 hypomethylation-associated genes (4615 CpG sites)
included in the dataset. Of the hypomethylated CpG
sites, 1719 were not associated with any known gene,
and of the hypermethylated CpG sites, 720 were not as-
sociated with any known gene.
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IPA [34] was used to identify canonical pathways associ-
ated with our differentially methylated genes. According to
the manufacturer, these canonical pathways are well-
characterised metabolic and cell signalling pathways that
have been curated and hand-drawn by PhD-level scientists.
All the data sources provided by the Ingenuity Knowledge
Base were included in the IPA, and the Ingenuity
Knowledge Base was used as the reference set in all ana-
lyses. For the association of molecules, only experimentally
observed results were accepted, and only human data were
considered. Benjamini-Hochberg multiple testing correction
(FDR) was employed to calculate the p-values for the path-
ways. Canonical pathways were considered significant at
p < 0.05 (-logP > 1.3) and when the pathway contained a
minimum of 3 genes. Pathways associated with cancer and
other disease, as defined by Ingenuity Systems®, were
excluded from the analysis. The IPA for hyper- and
hypomethylation-associated genes was performed on
14.3.2014, and the IPA for genes showing a correlation
between methylation and expression levels was performed
on 12.3.2014.
GOrilla [31,32] was used to identify the enriched GO

terms for the hyper- and hypomethylation-associated
genes and for genes showing a correlation between the
levels of methylation and expression. GO terms were
searched based on two unranked lists (target and back-
ground), and all genes with at least one probe in the 450K
array were used as the background list. A Bonferroni-
corrected p-value of <0.05 was used as the threshold
for significance.
PScan [33] can be used to predict if a group of genes

is regulated by a common transcription factor. The ana-
lysis was performed with the default settings, i.e., using
the Jaspar database and the -450 - +50 bp region around
the TSS. PScan was able to identify 1811 and 2020 of
the total hyper- and hypomethylation-associated tran-
scripts, respectively. This analysis was performed on
11.3.2014. A Bonferroni-corrected p-value of <0.05 was
used as a threshold for significance.
Array data
The array data are available in the GEO database (http://
www.ncbi.nlm.nih.gov/geo/) under the accession numbers
GSE40366 for the gene expression data and GSE58888 for
methylation data.
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