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Abstract
In this paper, we investigate the radial addition and Blaschke addition and get some
new Brunn-Minkowski inequalities associated with dual quermassintegrals and chord
integral for star bodies.
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1 Introduction
The Brunn-Minkowski theory, which is the so-called mixed-volume theory, is the classical
core of the geometry of convex bodies. This theory originated from the thesis of Hermann
Brunn in , and in its essential part is the creation of Hermann Minkowski around the
turn of the century. The well-known survey of Bonnesen and Fenchel collected an impres-
sive body of results in , though important developments, by the work of Aleksandrov
and others in the s, were still to come. In recent years, the theory of convex bodies was
expanded considerably, new topics have been developed rapidly, and originally neglected
branches of the subject have gained in interest. For example, the Brunn-Minkowski theory
has remained of constant interest owing to its various new applications and connections
with other fields.

The classical Brunn-Minkowski theory forms a central part of Brunn-Minkowski theory
of convex bodies and arises naturally if one combines the two fundamental concepts of
Minkowski addition and volume (see [, ]). The famous Brunn-Minkowski inequality
implies that, for two convex bodiesin the Euclidean space R

n (see []),

V (K + L)

n ≥ V (K)


n + V (L)


n , (.)

where V denotes the volume, with inequality if and only if K and L are homothetic. This
geometric inequality means that if each of K , L has volume , then the Minkowski sum

 (K + L) has volume at least , and its volume is equal to  only if K and L are translates.

During the last three decades, the Brunn-Minkowski theory has achieved important de-
velopments. In the s, Lutwak’s dual Brunn-Minkowski theory had come out, which
helped to achieve major breakthrough of solving the Busemann-Petty problem in the
s. In the dual theory, compared with the Brunn-Minkowski theory, convex bodies
are replaced by star-shaped bodies, and projections onto subspaces are replaced by inter-
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sections with subspaces. The machinery of the dual theory includes dual mixed volumes
and intersection bodies (see [, , –]).

The radial addition and Blaschke addition are still playing a crucial role in the Brunn-
Minkowski theory. In this article, we continue to investigate the radial addition and
Blaschke addition and get some new Brunn-Minkowski inequalities associated with dual
quermassintegrals and chord integral for star bodies.

2 Preliminaries
A set K of points in the Euclidean space Rn is convex if for any x, y ∈ K , we have  ≤ λ ≤ 
and λx + ( – λ)y ∈ K . A domain is a set with nonempty interiors. A convex body is a
compact convex domain. The set of convex bodies in R

n is denoted by Kn. Let Kn
o be the

class of members of Kn containing the origin in their interiors. We write V for the n-
dimensional Lebesgue measure and Hn– for the (n – )-dimensional Hausdorff measure.
We denote by Sn– the surface of the unit ball in R

n.
A convex body K ⊂ R

n is uniquely determined by its support function hK : Rn → R,
where hK (x) = max{x · y : y ∈ K} for x ∈ R

n. The support function of the dilate cK = {cx :
x ∈ K} of a convex body K satisfies the equality

hcK = chK , (.)

where c > . Note that support functions are positively homogeneous of degree one and
subadditive. It follows immediately from the definition of support functions that, for con-
vex bodies K and L, we have

K ⊆ L ⇐⇒ hK ≤ hL. (.)

For a convex body K and each Borel set ω ⊂ Sn–, the reverse spherical image τ (K ,ω) of
K at ω is the set of all boundary points of K that have their outer unit normal belonging to
the set ω. Associated with each convex body K ∈Kn

o , there is a Borel measure SK on Sn–,
called the Aleksandrov-Fenchel surface area measure of K , which is defined as

SK (ω) = Hn–(τ (K ,ω)
)

for each Borel set ω ⊆ S
n–. For the surface area measure of the dilate cK of K , we have

ScK = cn–SK ,

where c > . The Minkowski sum of convex sets K, . . . , Km can be defined as

K + · · · + Km = {y + · · · + ym : y ∈ K, . . . , ym ∈ Km}.

By the definition of support function we have

h(λK + · · · + λrKr , ·) = λh(K, ·) + · · · + λrh(Kr , ·).
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The mixed volume V (K, . . . , Kn) of compact convex sets K, . . . , Kn is defined by

V (K, . . . , Kn) =

n!

n∑

j=

(–)n+j
∑

i<···<ik

V (Ki + · · · + Kik ).

The radial function ρM = ρ(M, ·) : Rn \ {} → [,∞) of a compact star-shaped (about
the origin) M ⊂R

n can be defined as (see [, ])

ρ(M, y) = max{λ ≥  : λy ∈ M}.

We call M a star body (about the origin) if ρM is positive and continuous. We write Sn
o

for the set of star bodies about the origin in R
n. Two star bodies M and N are dilates (of

one another) if ρM(u)/ρN (u) is independent of u ∈ Sn–. For s > , we have

ρ(sM, y) = sρ(M, y) for all x ∈R
n \ {}. (.)

The radial Minkowski addition and scalar product of the sets M, . . . , Mr ∈ Sn
o and

λ, . . . ,λr ∈R is defined by (see [, ])

λM+̃ · · · +̃λrMr = {λy+̃ · · · +̃λryr : yi ∈ Ki, i = , , . . . , r}.

For M, N ∈ Sn
o and λ,μ ≥ , aM +̃ bN can be defined as the star body such that

ρλM +̃μN (u) = λρM(u) + μρN (u) for all u ∈ Sn–. (.)

The volume formula of a compact set M can be represented by the polar coordinate as
follows:

V (M) =

n

∫

Sn–
ρn

M(u) dS(u), (.)

where S is the Lebesgue measure on Sn– (i.e., the (n – )-dimensional Hausdorff measure).
For M, . . . , Mr ∈ Sn

o and λ, . . . ,λr ≥ , the volume of λM+̃ · · · +̃λrMr is defined by

V (λM+̃ · · · +̃λrMr) =
∑

Ṽi,...,in (M, . . . , Mr)λi · · ·λin ,

where Ṽi,...,in (M, . . . , Mr) is the dual mixed volume of Mi , . . . , Min ; we also denote

Ṽ (Mi , . . . , Min ) =
∫

Sn–
ρ(M, u) · · ·ρ(Mn, u) dS(u).

Let M = · · · = Mn– = M and Mn–i+ = · · · = Mn = N . Then

Ṽ (M, . . . , M︸ ︷︷ ︸
n–i

, N , . . . , N︸ ︷︷ ︸
i

)

is written as Ṽi(M, N), and so

Ṽi(M, N) =
∫

Sn–
ρ(M, u)n–iρ(N , u)i dS(u).
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Let N be the unit ball, then Ṽi(M, B) becomes to the dual quermassintegral W̃i(M), and
the last formula implies that

W̃i(M) =
∫

Sn–
ρ(M, u)n–i dS(u).

By the dual Minkowski inequality we can obtain the dual Brunn-Minkowski inequality
(see []):

For M, N ∈ Sn
o and λ,μ ≥ , we have

V (λM +̃μN)

n ≤ λV (M)


n + μV (N)


n (.)

with equality if and only if M and N are dilates.
For K , L ∈ Kn, by the solution of the Minkowski problem, there exists a convex body C

such that

S(C, ·) = S(K , ·) + S(L, ·). (.)

The body C, denoted by K�L, is called the Blaschke sum of K and L.
For Blaschke addition, a counterpart to the Brunn-Minkowski inequality, is the follow-

ing:

V (K�L)
n–

n ≥ V (K)
n–

n + V (L)
n–

n (.)

with equality if and only if K and L are homothetic.
For M ∈ Sn

o , the half-chord along the direction u ∈ S
n –  passing through y ∈ M,

pM(x, u), is defined by

pM(y, u) =


(
ρM(y, u) + ρM(y, –u)

)
.

Then the chord integral of M can be defined as

Pi(M; y) =

n

∫

Sn–
pM(y, u)n–i dS(u).

For M, N ∈ Sn
o and y ∈ M ∩ N , it is easy to see that

pM +̃ N (y, u) = pM(y, u) + pN (y, u).

We also need the following Minkowski inequality for integrals is needed (see []):
Let f , g : Sn– −→ R be positive continuous functions, and let  < p < ∞. Then we have

(∫

Sn–
(f + g)p dσ

) 
p

≤
(∫

Sn–
f p dσ

) 
p

+
(∫

Sn–
gp dσ

) 
p

, (.)

where equality holds if and only if f and g are proportional.
If p <  or  < p < , the inequality is reverse.
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3 Inequalities of dual quermassintegrals
Theorem  For M, N ∈ Sn

o , we have W̃n(M) 
n + W̃n(N) 

n ≥ W̃n(M +̃ N) 
n with equality

if and only if M and N are the same.

Proof By the Minkowski inequality for integrals we have that

W̃n(M)

n + W̃n(N)


n =

(

n

∫

Sn

(


ρ(M, u)

)n

dS(u)
) 

n
+

(

n

∫

Sn

(


ρ(N , u)

)
dS(u)

) 
n

≥
(


n

∫

Sn

(


ρ(M, u)
+


ρ(N , u)

)n

dS(u)
) 

n

≥ 
(


n

∫

Sn

(


ρ(M, u) + ρ(N , u)

)n

dS(u)
) 

n

= 
(


n

∫

Sn

(


ρ(M +̃ N , u)

)n

dS(u)
) 

n

= W̃n(M +̃ N)

n

with equality if and only if ρ(M, u) = ρ(N , u), that is, M and N are the same. �

For Blaschke addition, we have the following theorem.

Theorem  Let Kj (j = , . . . , m) ∈Kn
o . Then, for i > n or  < i < n, we have

Wi(K� · · · �Kn)
n–
n–i ≥

m∑

j=

Wi(Kj)
n–
n–i

with equality if and only if K, . . . , Km are homothetic.
For i < , we have

( m∑

j=

Wi(Kj)

) n–
n–i

Wi(K� · · · �Kn)
n–
n–i ≤

m∑

j=

Wi(Kj)
n–
n–i

with equality if and only if K, . . . , Km are homothetic.

Proof If i > n or  < i < n, then by the definition of Blaschke linear combination and the
Minkowski inequality for integrals we can get

Wi(K� · · · �Kn)
n–
n–i =

(

n

∫

Sn–
ρ(K� · · · �Kn, u)n–i dS(u)

) n–
n–i

=
(


n

∫

Sn–

((
ρ(K, u)n– + · · · + ρ(Kn, u)n–)n–i) n–i

n+ dS(u)
) n+

n–i

≥
m∑

j=

(

n

∫

Sn–

(
ρ(Kj, u)n–i dS(u)

))
n–
n–i

=
m∑

j=

Wi(Kj)
n–
n–i ,



Yan et al. Journal of Inequalities and Applications  (2016) 2016:145 Page 6 of 8

where equality holds (by Minkowski’s inequality for integrals) if K, . . . , Km are homoth-
etic.

Similarly, for i < , we can get that the reverse inequality of Minkowski’s inequality for
integrals.

Particularly, if i = , then Theorem  implies the following: �

Corollary . Let Kj (j = , . . . , m) ∈ Sn
o . Then

V (K� · · · �Kn)
n–

n ≤
m∑

j=

V (Kj)
n–

n

with equality if and only if K, . . . , Km are homothetic.

4 Inequalities of chord integral of the star body
Theorem  Let M, N ∈ Sn

o , y ∈ K ∩ L. Then

Pn(M; y)
n–

n + Pn(N ; y)
n–

n ≥ Pn(M +̃ N ; y)
n–

n (.)

with equality if and only if M and N are the same.

Proof By Minkowski’s inequality for integrals we get

Pn(M; y)
n–

n + Pn(N ; y)
n–

n

=
(


n

∫

Sn

(


pM(y, u)

)n

dS(u)
) n–

n
+

(

n

∫

Sn

(


pN (y, u)

)n

dS(u)
) n–

n

≥
(


n

∫

Sn

(


pM(y, u))
+


pN (y, u)

)n

dS(u)
) n–

n

≥ 
(


n

∫

Sn

(


pM(y, u) + pN (y, u)

)n

dS(u)
) n–

n

= 
(


n

∫

Sn

(


pM+̃N (y, u)

)n

dS(u)
) n–

n

= Pn(M +̃ N ; y)
n–

n

with equality if and only if pM(y, u) = pN (y, u), that is, M and N are the same. �

Theorem  Let Mj (j = , . . . , m) ∈ Sn
o and y ∈ ⋂m

j= Mj. If i > n or n –  < i < n, then

Pi(M+̃ · · · +̃Mn; y)


n–i ≥
m∑

j=

Pi(Mj; y)


n–i (.)

with equality if and only if M, . . . , Mm are homothetic.
If i < n – , then we have

Pi(M+̃ · · · +̃Mn; y)


n–i ≤
m∑

j=

Pi(Mj; y)


n–i (.)

with equality if and only if M, . . . , Mm are homothetic.
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Proof If i > n or n –  < i < n, then by the Minkowski linear combination and Minkowski
inequality for integrals we have

Pi(M+̃ · · · +̃Mn; y)


n–i =
(


n

∫

Sn–
pM+̃···+̃Mn (x, u)n–i dS(u)

) 
n–i

=

(

n

∫

Sn–

( m∑

j=

pMi (y, u)n–i dS(u)

)) 
n–i

≥
m∑

j=

(

n

∫

Sn–
pMi (y, u)n–i dS(u)

) 
n–i

=
m∑

j=

Pi(Mj; y)


n–i ,

where equality holds (by Minkowski’s inequality for integrals) if M, . . . , Mm are homoth-
etic.

Similarly, we can prove the case of i < n –  with the reverse inequality, which follows by
the Minkowski’s inequality for integrals. �

Particularly, if i = n, then by Theorem  we have the following corollary.

Corollary . Let Mj (j = , . . . , m) ∈ Sn
o and y ∈ ⋂m

j= Mj. Then

Pn(M+̃ · · · +̃Mn; y)
–
n ≥

m∑

j=

Pn(Mj; y)
–
n

with equality if and only if M, . . . , Mm are homothetic.

Theorem  Let Kj (j = , . . . , m) ∈Kn
o and y ∈ ⋂m

j= Kj. If i > n or  < i < n, then

Pi(K� · · · �Kn; y)
n–
n–i ≥

m∑

j=

Pi(Kj; y)
n–
n–i

with equality if and only if K, . . . , Km are homothetic.
If i < , then we have

Pi(K� · · · �Kn; y)
n–
n–i ≤

m∑

j=

Pi(Kj; y)
n–
n–i

with equality if and only if K, . . . , Km are homothetic.

Proof If i > n or  < i < n, then by the definition of Blaschke linear combination and
Minkowski’s inequality for integrals we have

Pi(K� · · · �Kn; y)
n–
n–i

=
(


n

∫

Sn–
pK�···�Kn (y, u)n–i dS(u)

) n–
n–i
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=
(


n

∫

Sn–

((
pK (y, u)n– + · · · + pK (y, u)n–i) n–

n–i dS(u)
))

n–
n–i

≥
m∑

j=

(

n

∫

Sn–

(
pKj (y, u)n–i dS(u)

))
n–
n–i

=
m∑

j=

Pi(Kj; y)
n–
n–i ,

where equality holds (by Minkowski’s inequality for integrals) if K, . . . , Km are homothetic.
Similarly, if i < , then we can get that the reverse inequality, which follows by the

Minkowski inequality for integrals. �
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