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Abstract Measurements of neuronal signals during human seizure activity and
evoked epileptic activity in experimental models suggest that, in these pathological
states, the individual nerve cells experience an activity driven depolarization block,
i.e. they saturate. We examined the effect of such a saturation in the Wilson–Cowan
formalism by adapting the nonlinear activation function; we substituted the com-
monly applied sigmoid for a Gaussian function. We discuss experimental recordings
during a seizure that support this substitution. Next we perform a bifurcation analysis
on the Wilson–Cowan model with a Gaussian activation function. The main effect
is an additional stable equilibrium with high excitatory and low inhibitory activity.
Analysis of coupled local networks then shows that such high activity can stay lo-
calized or spread. Specifically, in a spatial continuum we show a wavefront with
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inhibition leading followed by excitatory activity. We relate our model simulations to
observations of spreading activity during seizures.

Keywords Focal epilepsy · Activation function · Depolarization block · Bifurcation
analysis

1 Introduction

Epilepsy is a neurological disease characterized by recurrent spontaneous seizures,
i.e. episodes of abnormal excessive brain activity. Although epilepsy is one of the
most prevalent neural diseases, affecting about 1% of the world population, the mech-
anisms governing seizure activity are not well understood and consequently treatment
is unsuccessful for a significant fraction (1/3) of patients [1]. According to the clin-
ical classification, epilepsy is a heterogeneous disease [2]. In spite of this hetero-
geneity in the pathology, there is also commonality between different seizure events
suggesting that a variety of mechanisms may lead to a final common process, the
seizure [3]. For example, in studies of brain slices it was demonstrated that seizure-
like activity is characterized by spatial propagation, defined as failure of an inhibitory
veto in neocortex [4], or failure of a dentate gate function in case of hippocampal
driven events [5]. This shows that, in addition to a temporal evolution of a developing
seizure, its spatial component at this mesoscopic level may be critically important.
In fact, recently described micro-electrode array recordings in patients with epilepsy
confirmed that propagation of neural activity occurs at a spatial scale below the size
of a conventional cortical or scalp electroencephalogram (EEG) electrode [6]. At the
microscopic level, intracellular measurements in human brain slices during evoked
seizure activity show that neurons go into a depolarization block, i.e. they saturate,
e.g. [7]. A recent report [8] describes an important role of the depolarization block
in inhibitory cells in human cortical areas where seizures propagate, leading to the
failed inhibition scenario described by [4]. In addition, it can be expected that under
these high levels of activity, synaptic resources deplete, also contributing to a satura-
tion effect. These data indicate that during high levels of seizure activity, hyperactive
neurons may operate close to what can be described as an upper threshold of its
input–output relationship. Such an epileptiform state would be in contrast to normal
physiological operation of neuronal networks where the neurons operate around a
lower activation threshold.

The goal of this study is to examine focal seizures propagating in cortex employing
a modeling approach that includes details of the network under the EEG electrode.
The tissue under the EEG electrode can be modeled by coupled neuronal populations
[9–11]. Each population consists of an excitatory and inhibitory component. Many
previous experimental [12] and theoretical [10, 13, 14] studies have shown that dis-
inhibition can lead to traveling wave activity via blocking inhibition, assuming no
synaptic inhibition or including a non-specific afferent affecting the inhibitory cur-
rent. An important component in these studies is the sigmoidal activation function
that describes the nonlinear relationship between the population’s input current re-
flected partially in the local field potential (LFP) and its output firing rate. In this
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study, we modified the equations to include a Gaussian firing rate function to reflect
an upper-threshold phenomenon specific to the epileptiform network state. In Sect. 2
we present experimental evidence that such a function exists during seizures in the
human cortex, and we incorporate this into the existing Wilson–Cowan formalism.
Bifurcation analysis of single E-I neuron populations and a pair of coupled E-I pop-
ulations is described in Sects. 3.1 and 3.2. In Sect. 3.3, we report simulation results
showing the effect of the altered activation function on a network. In Sect. 4 we dis-
cuss the relevance of our new findings to our understanding of seizure propagation.

2 Experimental Observations and Modeling

2.1 Observations During Human Seizures

Both in vitro and in vivo electrophysiologic measurements suggest using an alterna-
tive to the commonly employed sigmoidal activation function in the Wilson–Cowan
equations [9, 10] in our seizure model. One experimental component supporting this
alternative function stems from single cell recordings obtained from human brain tis-
sue resected from patients with drug-resistant epilepsy. During evoked seizures in
cortical slices prepared from this brain tissue, single neurons show a strong parox-
ysmal depolarization, indicating an arrest of neuronal firing after high-level synaptic
input exceeds an (upper) threshold; see e.g. [7].

A technique, recently approved for use in humans, allows application of micro-
electrode recordings, during seizure activity [6]. Study participants consisted of
adults with pharmaco-resistant focal epilepsy who underwent chronic invasive EEG
studies to help identify the epileptogenic zone for subsequent removal. A 96, 4 mm ×
4 mm, micro-electrode array (also known as Utah array) was implanted along with
subdural electrodes with the goal of recording from seizure onset sites; see Fig. 1A.
The study was approved by the Institutional Review Board of the Columbia Univer-
sity Medical Center, and informed consent was obtained from each patient prior to
implantation. Signals from the micro-electrode array were acquired continuously at
30 kHz per channel (0.3 Hz–7.5 kHz bandpass, 16-bit precision, range ±8 mV). The
reference was either subdural or epidural, chosen dynamically based on recording
quality. See also [6] for details of study enrollment, surgical procedures and signal
recording.

The signals in Fig. 1B were recorded from a single micro-electrode around seizure
onset in a patient with intractable epilepsy. This in vivo recording shows the local
field potential (LFP) that represents the weighted space-averaged electrical activity
surrounding the electrode. The broadband signal from the micro-electrode can be
filtered to examine its low-frequency component (L-LFP, 2–50 Hz) as well as the
multi-unit spike activity (300–3000 Hz). We have examined the relationship between
L-LFP and spike activity to study the population’s activation function. An index of
the overall activity (firing rate index, FRI) was obtained by rectifying and integrat-
ing the spike traces (Fig. 1B, two bottom traces) [15]. The leaky integrator’s time
constant employed here is 50 ms, which was chosen because it is close to the time
constant of a cortical pyramidal cell [16]. We found that during seizure activity in
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Fig. 1 Experimental data supporting the use of a Gaussian population response function during human
seizure activity. A: Recording setup depicting the multi-electrode array situated in between the standard
electrocorticography electrodes numbered 22, 23, 30, and 31. B: Example recordings of the low-frequency
component of the local field potential (2–50 Hz, L-LFP, upper trace), the rectified signal filtered for spikes
(300–3000 Hz, middle trace), and the integrated version thereof, using a leaky integrator with a 50 ms
time constant (bottom trace) generating a firing rate index (FRI) for the multi-unit spike activity. The
relationship between L-LFP and FRI is plotted in panel C; the error bars indicate SEM values

focal areas where seizures are initiated, a plot of the FRI versus L-LFP is not a stan-
dard sigmoidal relationship, but rather is a mixture of sigmoid and Gaussian with a
clear maximum; see Fig. 1C. To interpret this relationship properly, it should be noted
that by convention, the L-LFP polarity is reversed, i.e. negative, relative to intracellu-
lar depolarization (positive). This relationship reflects contributions from inhibitory
and excitatory neurons. We assume that the smaller neurons, especially the small in-
hibitory cells are saturated at high L-LFP levels which would explain the maximum.

The comparison between activation function and spike activity versus L-LFP is
an approximation, based on a number of assumptions. First, the L-LFP is generated
by multiple types of cellular current [17]. However, it is reasonable to assume that
during the high levels of activity during seizures, the synaptic component will be
the principal contributor [4, 6, 18]. In addition, a significant part of the non-synaptic
sources of the L-LFP will be proportional to synaptic activity. In this context, it should
be noted that such a relationship between synaptic activity and field potential has
been the basis of many models of the electroencephalogram (EEG) as well, e.g. [19].
Next, we use the spike signal as a metric for network output while the multi-unit spike
activity in a micro-electrode recording contains both input as well as output spikes
of the local population. This is plausible since, due to geometry, the probability of
picking up an output spike from an active neuron is much higher than recording from
a thin afferent axon. Furthermore, if we assume the input spikes are proportional
to the synaptic potentials they generate, they could only destroy the Gaussian-like
result that we obtained in Fig. 1C. Another significant fact is that we only found
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Fig. 2 Constructing sigmoidal and Gaussian firing rate functions. Left: Heterogeneity in firing onset for
individual cells leads to a sigmoidal population activation function. Middle: Including the effect of het-
erogeneous thresholds for depolarization block leads to a population activation function with a maximum.
Right: The activation functions used in this paper Gaussian (solid) and sigmoid (dashed) for excitatory
(blue) and inhibitory (black) populations

Gaussian-like functions as in Fig. 1C within the epileptic core and not outside that
area. This suggests that (inhibitory) cells reach depolarization block only within the
core. Thus, although the relationship between L-LFP and multi-unit activity is not an
exact measure of the population’s activation function, it is a reasonable proxy for it.

2.2 Behavior of Single Cells During Seizures and in Biophysically Plausible
Models

The activation function turns synaptic activity into a population firing rate, and is
therefore also referred to as the firing rate function (FRF). Cells within a popula-
tion have a slightly different firing threshold. In this simplified approach, we assume
that the number of spikes does not depend on the input current, i.e. each cell has a
Heaviside firing function. Summing all individual contributions, the jitter in thresh-
olds leads to a sigmoidal function; see Fig. 2. In this regard, neurons do not only
have a minimal value for the input current to spike, but also a maximal value where
the membrane potential experiences a depolarization block. See, for instance, a dy-
namical systems explanation in [20], where it is called excitation block. Likewise,
the precise critical value for the block will differ from cell to cell. Hence, for every
cell, there is a finite range of input currents that results in spikes. Summing over the
whole population leads to a Gaussian population activation function. This fundamen-
tal reasoning, based on the observation that the depolarization block occurring during
evoked seizures represents an upper threshold for neuronal firing, also supports re-
placing a sigmoidal nonlinearity by a Gaussian-like activation function. There is some
early work [21] supporting such a procedure.

The range of thresholds differs between cell types. For example, due to differences
in the size, inhibitory neurons are activated by relatively small depolarizing inputs,
whereas larger pyramidal neurons have a higher threshold. As inhibitory neurons
are smaller, they have a propensity to reach depolarization block earlier than larger
excitatory neurons during seizure activity. This is reflected in our choice of thresholds
Eθ , Iθ , and standard deviations Esd, Isd; see also Fig. 2.

We noted above that there is a range of thresholds associated with both the excita-
tory and inhibitory populations. In the first Wilson–Cowan paper, it was assumed that



Page 6 of 17 H.G.E. Meijer et al.

Fig. 3 Overview of the local and global connections. Each excitatory population projects to the local
inhibitory population and its neighboring excitatory population. Inhibitory populations only project to
local excitatory populations. A model EEG output is defined as the average of the input currents to three
excitatory populations

these threshold distributions were either Poisson-like, or Gaussian. It then followed
that the integrals of such curves would lead to an expression for the firing rate curves
as the fraction of neurons receiving at least threshold excitation. In the distributions
cited above, both integrals give rise to sigmoidal firing rate curves. Within this ap-
proach, it follows that a legitimate way of deriving a non-monotonic firing rate curve
involves an additional threshold mechanism to express the effects of depolarization
block.

2.3 Modeling

We model local microcircuits with an excitatory and an inhibitory population with
weights for the connection strengths. We couple them to neighboring pairs via long
range excitatory connections projecting to the excitatory population; see Fig. 3. The
model is given by the following equations:

τXX′
k = −Xk + (1 − Xk)FX(JXk

), (1)

FX(JXk
) = exp

(
−

(
JXk

− Xθ

Xsd

)2)
− exp

(
−

(−Xθ

Xsd

)2)
, (2)

JEk
= wEEEk − wIEIk + B + αwEE(Ek+1 + Ek−1), (3)

JIk
= wEIEk − wII Ik, (4)

where X = E,I and k = 1, . . . ,N . At the boundary the excitatory populations E1 and
EN get only input from E2 and EN−1, respectively. We use τE = τI = 1, wEE = 16,
wEI = 18, wII = 3, wIE = 12, Eθ = 7, Iθ = 5, Esd = 2.1, and Isd = 1.5. We use
B = 3, but vary this parameter throughout the paper. These values of the parameters
are chosen as in previous modeling studies [9, 10, 22, 23], except for an increased
value of Eθ and a different Esd. All bifurcation diagrams have been computed using
MATCONT [24] and phase planes using [25]. For terminology on bifurcations we refer
to [26, 27]. To compare our Gaussian FRF with the standard sigmoidal FRF, we also
use

FX(JXk
) = (

1 + exp
(−Xs(JXk

− Xθ)
))−1 − (

1 + exp(XsXθ )
)−1

, (5)

with Eθ = 5.2516, Es = 1.5828, Iθ = 3.7512 and Is = 2.2201. With these values,
the Gaussian and sigmoid have the same slope at half activation. A model EEG is
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computed as the average of the synaptic inputs to three neighboring excitatory popu-
lations; see Fig. 3.

Finally, we also consider a spatially continuous model where we replace Xk(t) by
X(y, t) where y ∈ [0,L] and L = 1000 µm. For this we replace the input currents by

JE(y, t) = λE

∫ L

0

(
wEEe|y−z|/σEEE(z, t) − wIEe|y−z|/σIE I (z, t)

)
dz

+ B(y, t),

JI (y, t) = λI

∫ L

0

(
wEI e

|y−z|/σEI E(z, t) − wII e
|y−z|/σII I (z, t)

)
dz,

(6)

where wEE = 2.0, wIE = 1.65, wEI = 1.5, wII = 0.01, σEE = 70 µm, σIE =
90 µm, σEI = 90 µm, σII = 70 µm, Eθ = 18, Esd = 6.7, Iθ = 10, Isd = 3.2. For
the comparison to a sigmoid we use Eθ = 12.41, Esd = 2, Iθ = 7.33, and Isd = 0.95.
These parameters are similar to the neural mass model used above, but scaled as
we do not have normalized connectivity weights due to the finite domain. In this
setup, tissue near the boundary receives less input. Furthermore, we set the den-
sities of excitatory or inhibitory neurons in homogeneous and isotropic tissue as
λE = λI = 1 µm−1. The input B(y, t) consists of a constant background of 1 and
a 100 µm wide, 10 ms square-wave pulse with amplitude 10.

3 Bifurcation Analysis

3.1 A Single E-I Pair

For the reference values of the parameters we have done a phase-plane analysis; see
Fig. 4. The excitatory nullcline for both Gaussian and sigmoid have a similar shape,
although the Gaussian E-nullcline turns for high values of E. The I -nullclines differ
more. For the sigmoidal activation function, the curve is monotonic, whereas for the
Gaussian it has a hump. It has two more intersections with the E-nullcline yielding
two more steady states, one saddle and one stable node, the latter with high excitatory

Fig. 4 Phase planes for Gaussian (left) and sigmoid (right) activation function. Excitatory (blue) and in-
hibitory (black) nullclines and directions are shown for parameters as in Sect. 2 with B = 3 and wEI = 18.
Note the additional steady states for the Gaussian
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Fig. 5 Bifurcation diagrams for
Gaussian (top) and sigmoid
(bottom) activation function.
The background input B and the
coupling parameter wEI are
varied. Other parameters as in
Sect. 2. Bifurcation curves are
indicated with color:
saddle-node (blue), Hopf (red),
limit point of cycles (black),
homoclinic to saddle (green).
The red dashed line indicates a
neutral saddle, which is not a
bifurcation but here an LPC
emerges from a homoclinic
bifurcation. Note that our
diagram for the sigmoid differs
from [22] as we have modified
the activation functions

activity and lower inhibitory activity. This additional stable equilibrium does not exist
for the sigmoid. In this region, due to the depolarization block, the inhibitory cells
reduce their output, while the excitatory cells generate sufficient recurrent excitation
to maintain a high level of activity.

The additional steady state is a robust feature that coexists with the normal dy-
namical repertoire of the Wilson–Cowan model with a sigmoid. To show this, con-
sider the bifurcation diagram in the (B,wEI )-parameter plane as shown in Fig. 5.
We have chosen to vary these parameters as this combination controls the level of
activity of the populations and the strength of the feedback loop, and hence the dy-
namics, i.e. stable steady states and periodic oscillations. An earlier study [22] also
presented a bifurcation analysis for the sigmoid case varying these parameters. Hence
we can compare the two diagrams, where most bifurcation curves are similar. Our
shift in thresholds Eθ , Iθ results in a larger region with stable oscillations than in
[22] for both Gaussian and sigmoid. For the Gaussian we see that there is an addi-
tional saddle-node bifurcation curve, not present for the sigmoid, which corresponds
to the additional steady state. It is characterized by high values of wEI and to lower
values of B , such that the excitatory population can drive the inhibitory population
into depolarization block.

For a complete understanding of the bifurcation diagram for the Gaussian case,
we have generated characteristic phase portraits for all 19 parameter regions; see
Fig. 6. Starting in region 1, we find a single low stable equilibrium. Crossing a saddle-
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Fig. 6 Phase portraits for Gaussian FRF. Characteristic phase portraits for all 19 regions for a single local
population. Numbers correspond to parameter values in areas as in Fig. 5. Red indicates equilibrium or
limit cycle, stable manifolds are green, unstable manifolds are blue and orbits yellow

node bifurcation to areas 2 or 5, two equilibria with high excitatory activity appear.
Whereas in area 2 depolarization block plays a role, in area 5 the coupling is too low
for depolarization block to occur and the inhibitory population is active too. Next,
crossing saddle-node bifurcations to area 3, there is a single stable node again, while
in area 4 we have three equilibria, one saddle, one with stable low activity and one
with high excitatory and high inhibitory activity, different from the one in area 2.
On the saddle-node bifurcation curves we find, in total, four Bogdanov–Takens (BT)
bifurcations. From each BT-point a Hopf curve emerges and each of these ends up
in another BT-point. Along a Hopf bifurcation we find degeneracies where the Hopf
bifurcation changes from super- to subcritical. Here a limit point of cycle (LPC) bi-
furcation curve emerges that ends in a point where the saddle along a homoclinic
curve is a neutral saddle (NH). The homoclinic curves either end in saddle-node ho-
moclinics (SNIC) or connect to another BT-point. The parameter region for which we
find stable oscillations, is made up of areas 7, 10, 11, 14, 16, 19, and it is delineated
by Hopf, homoclinic, LPC and SNIC bifurcation curves. All other transitions involve
unstable invariant sets, and therefore we do not discuss them. Phase portraits in areas
1&3, 2&4&5&18, 12&13&17, 9&15, 10&16 and 11&14 are structurally equivalent,
but are shown for completeness as the amount of inhibitory activity varies.

3.2 Two Excitatory Coupled E-I Pairs

Here we discuss the dynamical behavior for two coupled populations. Above we
have discussed the bifurcation diagram for a single excitatory-inhibitory pair. We fix
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Fig. 7 One parameter
bifurcation diagram for
B = 2.45 (top) and B = 3.0
(bottom). Colors indicate
solution types: symmetric
(black) and asymmetric (blue)
steady states and symmetric
(green) and in-phase asymmetric
(red) and anti-phase asymmetric
(light-blue) oscillations.
Bifurcation labels are SN for
saddle-node, PF for pitchfork,
and H for Hopf. For the
asymmetric branches, the upper
part corresponds to one
population, say E1, and then the
lower part corresponds to the
other population E2. The
extremal values of E for
quasi-periodic oscillations are
indicated by purple lines. Thick
lines indicate stable solution
branches, thin dashed lines
correspond to unstable branches

wEI = 18 from now on to ensure the additional steady states exists. We choose two
representative values for B with different dynamics for a single pair. For B = 2.45,
we have two stable equilibria, one with high and the other with low excitatory activ-
ity. For B = 3, the stable high activity equilibrium remains, but the other attractor is
a stable oscillation. This corresponds to areas 8 and 16 in Fig. 6. For both values, we
construct a one parameter diagram by varying α the coupling strength between exci-
tatory populations; see Fig. 7. Here, for continuity, we also show what happens for
negative α, although this is not relevant neurophysiologically. Also, we omit several
bifurcations and unstable branches that would obscure the presentation. The complete
diagrams can be found in the supplementary material.

Starting from α = 0 with B = 2.45, we first follow the symmetric low steady state
(black line) around E = 0.01. Increasing α, it becomes unstable at a saddle-node
SN1 at α ≈ 0.33. Following the symmetric branch, we get to the high steady state.
It is stable between the two pitchfork bifurcations PF1 at α ≈ −0.467 and PF2 at
α ≈ 1.13. From PF2 an unstable asymmetric steady state emerges, which becomes
stable at a saddle-node bifurcation SN3 at α ≈ 0.86. For this stable asymmetric equi-
librium with high coupling strength, one excitatory population drives the other into
depolarization block. The asymmetric steady state near PF1 is unstable, but becomes
stable at a saddle-node SN2 at α ≈ 0.502. Then decreasing α from this saddle-node,
we encounter a supercritical Hopf bifurcation H at α ≈ 0.255. Here we find a solu-
tion branch of stable asymmetric in-phase limit cycles which ends in a saddle-node
homoclinic bifurcation. The periodic orbit has small amplitude fluctuations (maximal
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Fig. 8 Dynamics of the asymmetric in-phase oscillation. Left: Time-series of the activity of excitatory
and inhibitory populations of the asymmetric in-phase oscillation for B = 2.3 and α = 0.1. Middle: cor-
responding time-series of the input currents. Right: The dynamical range of input currents J along the
excitatory (blue) and inhibitory (black) activation functions

amplitude ≈ 0.015) with high excitatory activity in one population. The amplitude in
the other population is much larger as large as 0.2; see also Fig. 8 for a time-series.
For this branch we have also plotted the range of input currents JE,I along the acti-
vation functions. It shows for population 1 that the input current is quite high but of
small amplitude. For population 2 the values are lower but the ranges are larger. Since
the EEG does not capture the spikes and filters out the DC-component, in an experi-
ment this would give the counter-intuitive result of high spiking activity accompanied
with low amplitude EEG output, whereas, in contrast, its neighbor has low spiking
activity but a markedly higher amplitude EEG output.

Next we consider the bifurcation diagram for B = 3; see Fig. 7(bottom). Regard-
ing the steady states it is quite similar. The high symmetric steady state is still stable
between PF1 and PF2, but the symmetric low steady state is always unstable. The os-
cillations on the other hand are quite different. The in-phase asymmetric oscillation
is similar starting from H1, but now there is also a stable anti-phase solution. This
periodic orbit emerges from a Hopf bifurcation H2 of the symmetric steady state at
α ≈ 0.083. This oscillation is stable for 0 < α < 0.043, where at α ≈ 0.043 a su-
percritical Neimark–Sacker bifurcation occurs. There is also a Hopf bifurcation H3
leading to symmetric limit cycles. For the quasi-periodic attractor, we determined the
minimal and maximal values of the excitatory activity using simulations; see Fig. 9.
These simulations suggest that the torus first evolves around the anti-phase solution,
then escapes to the symmetric oscillation for some time and returns near the anti-
phase solution, and so on. Increasing α, the torus ends in some global bifurcation
where it jumps to the asymmetric in-phase oscillation.

3.3 Spatial Dynamics

Our analysis revealed a stable asymmetric in-phase oscillation for two populations.
Here we discuss the consequences for a larger network with 25 populations. We set
B = 2.3 and α = 0.1 and put all the populations in a stable low activity equilibrium.
Between t = 1 and t = 5 we give an additional stimulus to E12, i.e. we set B12 →
B12 + 2, and not in the center to keep it asymmetric. This population then switches to
the high activity steady state and forces its neighbors into an oscillatory mode similar
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Fig. 9 Quasi-periodic behavior. Left: Time-series of the activity of excitatory and inhibitory populations
of the quasi-periodic solution for B = 3 and α = 0.115. Right: Projection to the (E1,E2)-plane. When the
torus is close to the symmetric oscillation, this is close to the diagonal

Fig. 10 Local and global activity. Left: Activity of excitatory populations after stimulation between
1 ≤ t ≤ 5 with B = 2.3 (top) and B = 2.45 (bottom) and α = 0.1. Right: Model EEG output

to the asymmetric in-phase oscillation; see Fig. 10. Note that only the direct neighbors
are driven and that the activity of other cells remains very low. Hence, the oscillation
stays localized. Next, we increase the background activity to B = 2.45 and repeat
the simulation and see that the oscillations can spread. Every so many cycles three or
more populations are also recruited into an oscillatory mode. Such emitted waves end
when it reaches the boundary or when several populations are active simultaneously
as occurs around t = 152 or t = 183. So, for this value of B , the activity does not stay
localized and one population continuously drives the whole network.

Finally, we simulate the spatially continuous model; see Fig. 11. On the top row,
a sigmoid firing rate function produces transient behavior but no traveling pulse. The
middle and bottom rows show a propagating wave associated with the introduction
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Fig. 11 Propagation. Top row: Excitatory (blue) and inhibitory (red) activity with sigmoidal population
activation function. Activity is extinguished by 100 ms. No propagation is present. Middle row: Population
activities with Gaussian firing rate function. Here, a traveling wave pulse forms and begins to propagate.
Bottom row: same as middle but at later times. The traveling wave continues to propagate until it dies at
the boundary. The wavespeed is approximately 1 mm/s. Parameters are the same in each plot

of a Gaussian activation function. Here, we can clearly see a wave originating in
the middle and propagating to the edges. The excitatory activity provides sufficient
input to the inhibitory neurons to drive them into depolarization block and the in-
hibitory activity is not strong enough to keep the activity localized. Thus, we may
conclude that our formalism provides a mechanism for dynamic disinhibition arising
from depolarization block which the sigmoid firing rate function has not been able to
reproduce. One more thing to notice is that, while the input is only to the excitatory
neurons, the excitatory pulse of excitation lags behind inhibition, a finding consis-
tent with detailed recordings of epileptiform activity [8]. In [6] the speed of the wave
was estimated around 0.8 mm/s. We varied the strength of the excitatory coupling to
match the wave speed in the model with this experimental value.

4 Discussion

In this paper, we have investigated the dynamics of a neural network governed by
the Wilson–Cowan equations. In particular, we have chosen a different Gaussian ac-
tivation function, rather than the default sigmoid. We have found the existence of an
additional high excitatory steady state due to the Gaussian and we focused on its con-
sequences for network dynamics. Many of the other attractors in our bifurcation anal-
ysis have been discussed in earlier studies [22, 23]. With multiple local populations
connected, the high activity provided strong drive to the surrounding populations re-
sulting in breather-like dynamics. Beyond critical parameter values, the activity could
spread through the whole network.

The Gaussian activation function was motivated by observations of ictal activity
recorded using a Utah array. An experimental activation function could be determined
using the low-frequency component of the LFP as a measure of synaptic input, and
the high-frequency component as spike output. For some cases this showed a non-
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monotone relationship suggesting the choice for the Gaussian. This relationship re-
flects multiple sources and also represents inhibitory and excitatory cells. As cortical
networks consist of 80% large excitatory neurons and 20% small inhibitory interneu-
rons, one would interpret the graph in Fig. 1C as predominantly originating from the
excitatory population. The experimental curve in Fig. 1C suggests that beyond the
maximum a plateau is reached. It could be that some of the large excitatory cells
still exhibit a sigmoidal relationship at these high L-LFP levels. Then it is not un-
reasonable to assume the inhibitory cells exhibit depolarization block even earlier.
For simplicity, we have modeled the activation functions for both populations as a
Gaussian which approaches zero for high input, but the input may not even achieve
such levels. Indeed, in our simulations the input never went far beyond the maximum
for E. We then found that, for the standard choice of the model parameters, there
is an additional stable equilibrium with high excitatory and low inhibitory activity.
This steady state coexists with the typical low activity equilibrium and oscillations.
For this equilibrium to exist, the precise form of the activation function is not im-
portant as long as the inhibitory FRF has a maximum and then drops sufficiently for
high input, e.g. due to depolarization block. Indeed Fig. 4 shows that the shape of the
inhibitory nullcline is most crucial for generating the additional steady state.

The bifurcation analysis for two coupled local populations showed multiple asym-
metric stable attractors. Depending on the value of the coupling parameter α, either
low or high, one population has high and the other low excitatory steady state activ-
ity. For an intermediate range of coupling strengths, there are also stable oscillations
where one pair has small fluctuations around the higher steady state, while the other
has large amplitude oscillations around a lower steady state. In a network with more
pairs, we found that these oscillatory solutions can act as a driver towards neighbor-
ing populations. We should remark that the activity and the synaptic input differ quite
a bit in their time course. Indeed cells with high excitatory activity receive a high
synaptic input of relatively constant amplitude. The nearby populations have oscilla-
tory activity with lower amplitude, but the amplitude of the synaptic input currents
varies much more.

This is consistent with the recent proposal that an epileptic focus consists of a
core and penumbra [4]. The border of the core has a lot of spike activity, whereas
the surrounding has less spiking activity. On the other hand, LFP recordings rep-
resenting synaptic activity, show the reverse situation with high amplitude signals
in the penumbra and low amplitudes in the core. In addition, recent experimental
recordings of seizures showed that spikes from inhibitory cells were nearly absent,
but still many spikes from excitatory cells were observed [8]. If the core receives
high levels of input with relatively little fluctuations, so that the LFP with the DC-
offset filtered away shows little signal, the inhibitory cells may actually experience a
depolarization block. Subsequently, the inhibitory neurons can no longer veto ongo-
ing epileptiform activity similar to observations in experimental seizures [4]. In our
model, we find for our new asymmetric attractors large model-EEG signals in the
penumbra and much smaller in the core. Hence, our model supports the idea of core
and penumbra of an epileptic focus with different levels of activity corresponding to
large and small LFP amplitudes. Also our model predicts that the DC-component of
LFP would show interesting shifts in the core. Recent work by Jirsa [3] also argues
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that the DC-component during a seizure is quite different from normal conditions.
We have only shown data recorded within the core. We have examined the activity
of areas within the penumbra, but the dynamic range was so small that we could not
interpret this data. Hence, it would be interesting to determine in another way the
activation functions outside the areas with epileptiform activity.

In our spatially continuous model, we showed that such a seizure can spread as
a traveling front where inhibition is leading; see Fig. 11. In contrast, the record-
ing in Fig. 1A has been considered in a recent modeling paper [28] using the same
Wilson–Cowan model and a sigmoidal FRF. In that study, a parameter change was
needed to decrease inhibition, whereas our use of a Gaussian FRF leads dynamically
to decreased inhibition. Also their simulations suggest excitatory activity is leading
at the front. In contrast, our simulations agree with the identification of the inhibitory
spikes at the front [4, 8]. There is also an experimental seizure model where a sub-
set of the inhibitory cells enter depolarization block during epileptiform activity [29].
Such experimentally well controlled settings might allow one to observe distinct neu-
ral populations during propagating seizures. In our model, the activity settles to the
high steady state at the rear of the traveling front. A different dynamical mechanism
for the propagation of epileptiform activity has been considered in [30] similarly
modeled as in [28]. Their epileptiform activity invades surrounding tissue also as a
traveling wave front, with multiple pulses emitted from a spatially homogeneously
oscillating core. This oscillating core expands slower than the front. In this paper we
focus on the front, but it would be interesting to consider the rear of the front in future
work. We note that we only simulated our spatially continuous model using insights
from the coupled populations. By approximating the activation function as a product
of Heaviside-step functions, i.e. a blockpulse, we expect that it is possible to find
implicit equations for the various phases of the traveling front and the speed using
techniques as in [14]. This could elucidate the range of thresholds for depolarization
block where our traveling front exists.

We do not attempt to argue that our model describes transitions between normal
and ictal activity. As in many other modeling studies there can be exogeneous pa-
rameter transitions causing these changes [31–33]. The most influential parameters
are the background input B and the local connection wEI . Then already for medium
coupling strength α, rich multi-stable asymmetric dynamics appears. We have also
carried out experiments with noisy input. These show that the low activity steady
state can escape to normal oscillatory behavior and then can further transition to the
high activity steady state depending on the noise amplitude. We found that switches
from low to oscillatory activity and vice versa can occur. Once the activity jumps
to the high activity branch, the dynamics can only return to low activity levels if
B or wEI is decreased substantially. Rather than changing a parameter artificially,
the return to baseline may also be achieved by incorporating additional mechanisms
such as energy consumption [34], de-inactivation of ion channels [35]. These act on
a timescale from seconds to minutes and may be important to describe late phases of
seizure activity.
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