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This paper examines the effect of the yield criterion of the matrix on brittle fracture of the fibre in continuous fibre reinforced metal
matrix composites subjected to tension in the direction parallel to the fibres. It is assumed that the matrix obeys quite a general
isotropic yield criterion. An approximate approach to predicting the tensile load at which the fibre breaks previously proposed in
the literature is adopted. It is shown that this tensile load is practically independent of the yield criterion of the matrix. This is a
great advantage for engineering applications since an analytic solution is available in the case of Tresca yield criterion.This solution
can be used for a wide range of matrix materials with no loss of the accuracy of the prediction of the tensile load at which the fibre
breaks.

1. Introduction

There are many applications in which continuous and short
fibre reinforced metal matrix composites are required. There
is a class of such composites in which the fibre is made
of brittle material and the matrix of ductile material [1–3].
Failure of such composites involves variousmechanisms such
as fibre fracture, interfacial debonding, and matrix plastic-
ity. The effect of short fibre reinforcement on the fracture
toughness of metal matrix composites has been studied in
[4, 5]. Interfacial debonding has been investigated in [6–
8]. Computational methodologies for modeling fracture in
continuous fibre reinforced metal matrix composites and in
laminated composites at themicromechanical level have been
proposed in [7–10]. It has been shown in [11] that the interfa-
cial conditions strongly affect tensile fracture characteristics
of a boron-fibre-reinforced aluminum composite.

In the present paper the brittle fracture of fibres in con-
tinuous fibre reinforced metal matrix composites subjected
to uniaxial tension is predicted using the approach proposed
in [1]. In the latter work, this approach has led to a simple
analytic solution for the axial force at which the fibre breaks.
In particular, the solution predicts the influence of the volume

fraction of fibres on the strength of composites, which is well
known from experiment [12]. Tresca’s yield criterion has been
adopted for the matrix in [1]. However, it is known that the
strength of metal matrix composites is influenced by many
factors including matrix strength [13]. Moreover, the in situ
flow properties of the matrix of metal matrix composites
differ from the properties of the matrix bulk material and
the experimental scatter is much larger for experiments in
the matrix than in the corresponding bulk material [14]. It
is therefore of importance to extend the approach proposed
in [1] to generalized yield criteria. Such criteria have been
proposed, for example, in [15, 16]. In the present paper,
the criterion proposed in [15] is used. It is shown that the
predicted magnitude of the axial force at which the fibre
breaks is almost independent of the yield criterion of the
matrix.Therefore, the analytical expression derived in [1] can
be used for a large class of continuous fibre reinforced metal
matrix composites. The main result of the present paper can
be used in conjunction with methods developed to study the
behaviour of composites in the presence of fractured fibres
(e.g., [17]).

The rigid plastic solution found in the present paper is of
academic interest as well. To the best of authors’ knowledge,
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Figure 1: Typical cross section of the idealized composite.

the only available nontrivial axisymmetric semianalytic rigid
plastic solution for the generalized yield criterion has been
outlined in [18]. In this paper, flow through an infinite conical
channel has been analyzed. An alternative solution to this
problem and quantitative results have been presented in [19],
where the yield criterion proposed in [15] was adopted. The
present paper provides another solution. It is also worthy to
note that the solution given in [1] has been extended to the
double shearing model in [20] and to a viscoplastic model in
[21]. The fracture of fibres has not been considered in these
works. A description of the double shearing model can be
found in [22].

2. General Approach

An elegant theory of the failure of ductilematerials reinforced
by elastic fibres has been proposed in [1]. This theory is
outlined in this section to formulate the boundary value
problem to be solved. It is assumed that the composite
consists of a large number of equal cells, each of which
is a hexagonal cylinder of the matrix material containing
a concentric circular fibre. A typical cross section of the
idealized composite is illustrated in Figure 1. These cells
are further idealized replacing the hexagonal cylinders with
circular cylinders of the same cross-sectional area. Figure 2
illustrates the cross section of a typical cell that will be used
in the mathematical formulation. In particular, the radius of
the fibre is denoted by 𝑎

0
and the radius of the cell by 𝑏

0
. The

length of the cell will be denoted by 2𝐿.
It is supposed that the composite is subjected to uniaxial

tension applied in the direction parallel to the fibres. The
equations for the cell shown in Figure 2 are referred to a
cylindrical polar coordinate system (𝑟, 𝜃, 𝑧) whose origin is
located at the centre of the cell and 𝑧-axis lies along the axis of
the fibre (Figure 3). The plane 𝑧 = 0 coincides with the plane
of symmetry of the cell. It is assumed that the state of stress is
approximately axially symmetric about the 𝑧-axis. Therefore,
the nonzero stress components referred to the cylindrical
coordinate system are 𝜎

𝑟𝑟
, 𝜎
𝜃𝜃
, 𝜎
𝑧𝑧
, and 𝜎

𝑟𝑧
. The material

of the matrix is isotropic. Therefore, the nonzero strain rate
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Figure 2: Cross section of a typical idealized cell.

components referred to the cylindrical coordinate system are
𝜉
𝑟𝑟
, 𝜉
𝜃𝜃
, 𝜉
𝑧𝑧
, and 𝜉

𝑟𝑧
. Moreover, the circumferential velocity

vanishes everywhere. The radial and axial velocities will be
denoted by 𝑢

𝑟
and 𝑢

𝑧
, respectively.

Since the boundary value problem is symmetric about the
plane 𝑧 = 0, it is sufficient to consider the region 𝑧 ≥ 0. Based
on the assumptions made the following boundary conditions
have been formulated in [1]:

𝑢
𝑟
= −𝑈 (1)

for 𝑟 = 𝑏
0
,

𝑢
𝑟
= 0 (2)

for 𝑟 = 𝑎
0
,

𝑢
𝑧
= 0 (3)

for 𝑧 = 0,

𝜎
𝑟𝑧

= 0 (4)

for 𝑟 = 𝑏
0
,

𝜎
𝑟𝑧

= 𝜏
𝑓 (5)

for 𝑟 = 𝑎
0
, and

∫

𝐿

0

𝜎
𝑟𝑟

󵄨
󵄨
󵄨
󵄨𝑟=𝑏0

𝑑𝑧 = 0. (6)

In (5), 𝜏
𝑓
is the shear yield stress of the matrix.The boundary

conditions (1) to (6) should be used to solve the plasticity
boundary value problem in thematrix. It is also assumed that
the ends of the fibres do not support tensile load (Figure 3).
This load is transferred to the fibre only through the shear
stress on the contact surface.The resulting force acting in the
axial direction at the cross section 𝑧 = 𝐿 is

𝑃 = 2𝜋∫

𝑏0

𝑎0

𝜎
𝑧𝑧

󵄨
󵄨
󵄨
󵄨𝑧=𝐿

𝑟 𝑑𝑟. (7)
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Figure 3: Configuration and coordinate system for a typical cell.

Let 𝑇 be the mean tensile stress at which the fibre breaks.
It has been shown in [1] that failure occurs by plastic flow of
the matrix if 𝐿 < 𝐿

𝑐
and by fracture of the fibre if 𝐿 > 𝐿

𝑐

where

𝐿
𝑐
=

𝑎
0
𝑇

2𝜏
𝑓

. (8)

The approach to determining the tensile load at which the
fibre breaks is as follows. It is assumed that in the matrix

𝜎
𝑧𝑧

𝜎
0

= 1 + 𝐶,

𝜎
𝑟𝑟

𝜎
0

=

𝜎
𝜃𝜃

𝜎
0

= 𝐶,

𝜎
𝑟𝑧

= 0

(9)

in the range 0 ≤ 𝑧 ≤ 𝐿 − 𝐿
𝑐
(Figure 3). Here 𝜎

0
is the yield

stress in tension and 𝐶 is an arbitrary constant. It is evident
that the state of stress given by (9) satisfies any yield criterion.
The state of stress in the matrix in the range 𝐿 − 𝐿

𝑐
≤ 𝑧 ≤ 𝐿

should be found from the solution satisfying the boundary
conditions (1) to (5). It is then assumed that

[∫

𝑏0

𝑎0

𝜎
𝑧𝑧
𝑟 𝑑𝑟] = 0 (10)

at 𝐿 = 𝐿
𝑐
. Here [ ] denotes the amount of jump in the quantity

enclosed in the brackets. Equations (6) and (10) allow the
axial stress in the matrix to be determined. Then, (7) can be
used to find the tensile load at which the fibre breaks.

The approach outlined in this section has been adopted in
[1] in conjunction with Tresca’s yield criterion in the matrix.
As a result, the dimensionless tensile load at which the fibre
breaks has been found as

𝑃

𝜋𝜎
0
𝑏
2

0

= 𝑞
𝑆

= (1 − 𝑎
2
) [1 −

(2 − 𝑛)

2

𝐿
𝑐

𝐿

] +

𝑇𝑎
2

𝜎
0

(1 −

𝐿
𝑐

2𝐿

) ,

(11)

where 𝑎 = 𝑎
0
/𝑏
0
and 𝑛 is a numerical coefficient. This coef-

ficient is given by

𝑛 = −

1

2

+

𝑎
2

(1 − 𝑎
2
)

ln 𝑎 −

(1 − 𝑎
2
)

𝑎
2

−

(1 + 𝑎
2
)

(1 − 𝑎
2
)

[𝑎
2
𝐹 (𝛾, 𝜙) −

𝐸 (𝛾, 𝜙)

𝑎
2

] .

(12)

Here 𝐹(𝛾, 𝜙) and 𝐸(𝛾, 𝜙) are the incomplete elliptic integrals
of the first and second kinds, respectively, and

𝛾 = √1 − 𝑎
4
,

𝜙 = arctan(

1

𝑎

) .

(13)

Many materials satisfy other yield criteria compared to
that of Tresca. Therefore, it is of interest to correct (11) taking
into account a generalized yield criterion or to show that this
simple equation is accurate enough for predicting the tensile
load at which the fibres breaks. In the present paper, the yield
criterion proposed in [15] is adopted.

3. Rigid Plastic Solution in the Matrix

Let 𝜎
1
, 𝜎
2
, and 𝜎

3
be the principal stresses. With no loss of

generality it is possible to assume that
𝜎
1
≥ 𝜎
2
≥ 𝜎
3
. (14)

Then, the yield criterion proposed in [15] can be written as

[

(𝜎
1
− 𝜎
2
)
𝑚

+ (𝜎
2
− 𝜎
3
)
𝑚

+ (𝜎
1
− 𝜎
3
)
𝑚

2

]

1/𝑚

= 𝜎
0
. (15)

The associated flow rule is
𝜉
1
= 𝜆 [(𝜎

1
− 𝜎
2
)
𝑚−1

+ (𝜎
1
− 𝜎
3
)
𝑚−1

] ,

𝜉
2
= 𝜆 [(𝜎

2
− 𝜎
3
)
𝑚−1

− (𝜎
1
− 𝜎
2
)
𝑚−1

] ,

𝜉
3
= −𝜆 [(𝜎

2
− 𝜎
3
)
𝑚−1

+ (𝜎
1
− 𝜎
3
)
𝑚−1

] ,

(16)
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where 𝜉
1
, 𝜉
2
, and 𝜉

3
are the principal strain rates and 𝜆 is a

nonnegative multiplier. Equations (15) and (16) are supple-
mented with the condition that the principal stress and strain
rate directions coincide. In the case under consideration the
equilibrium equations in the cylindrical coordinate system
are

𝜕𝜎

𝜕𝑟

+

𝜕𝜏
𝑟𝑟

𝜕𝑟

+

𝜕𝜏
𝑟𝑧

𝜕𝑧

+

𝜏
𝑟𝑟

− 𝜏
𝜃𝜃

𝑟

= 0,

𝜕𝜏
𝑟𝑧

𝜕𝑟

+

𝜕𝜎

𝜕𝑧

+

𝜕𝜏
𝑧𝑧

𝜕𝑧

+

𝜏
𝑟𝑧

𝑟

= 0,

(17)

where

𝜎 =

𝜎
1
+ 𝜎
2
+ 𝜎
3

3

,

𝜏
𝑟𝑟

= 𝜎
𝑟𝑟

− 𝜎,

𝜏
𝜃𝜃

= 𝜎
𝜃𝜃

− 𝜎,

𝜏
𝑧𝑧

= 𝜎
𝑧𝑧

− 𝜎,

𝜏
𝑟𝑧

= 𝜎
𝑟𝑧
.

(18)

It is reasonable to assume that

𝜎
2
= 𝜎
𝜃𝜃
. (19)

This assumption should be verified a posteriori. It follows
from (15) and (16) that

𝜏
𝑓

=

𝜎
0

𝑚
√1 + 2

𝑚−1
. (20)

The basic assumption concerning the velocity field is [1]

𝑢
𝑟

𝑈

= −𝜂 (𝜌) , (21)

where 𝜂(𝜌) is a function of 𝜌 and 𝜌 = 𝑟/𝑏
0
. Using (21) the

radial and circumferential strain rates are found as

𝜉
𝑟𝑟

= −

𝑈

𝑏
0

𝑑𝜂

𝑑𝜌

,

𝜉
𝜃𝜃

= −

𝑈

𝑏
0

𝜂

𝜌

.

(22)

Then, the axial strain rate is determined from the incompress-
ibility equations as

𝜉
𝑧𝑧

=

𝑈

𝑏
0
𝜌

𝑑 (𝜂𝜌)

𝑑𝜌

. (23)

Since 𝜉
𝑧𝑧

= 𝜕𝑢
𝑧
/𝜕𝑧 and the right hand side of (23) is inde-

pendent of 𝑧, this equation can be immediately integrated to
give

𝑢
𝑧

𝑈

=

𝜁

𝜌

𝑑 (𝜂𝜌)

𝑑𝜌

+ 𝜇 (𝜌) , (24)

where 𝜁 = 𝑧/𝑏
0
and 𝜇(𝜌) is an arbitrary function of its

argument. It follows from (21) and (24) that the shear strain
rate in the cylindrical coordinate system is

𝜉
𝑟𝑧

=

𝑈

2𝑏
0

𝑑

𝑑𝜌

[

𝑑 (𝜂𝜌)

𝜌𝑑𝜌

] 𝜁 +

𝑈

2𝑏
0

𝑑𝜇

𝑑𝜌

. (25)

Let 𝜑 be the inclination of the 𝜎
1
principal stress direction

to the 𝑟-axis, measured anticlockwise. Then,

tan 2𝜑 =

2𝜏
𝑟𝑧

𝜏
𝑟𝑟

− 𝜏
𝑧𝑧

=

2𝜉
𝑟𝑧

𝜉
𝑟𝑟

− 𝜉
𝑧𝑧

. (26)

It follows from (22), (25), and (26) that

tan 2𝜑 = −

(𝑑/𝑑𝜌) [𝑑 (𝜂𝜌) /𝜌 𝑑𝜌] 𝜁 + 𝑑𝜇/𝑑𝜌

[𝑑𝜂/𝑑𝜌 + (1/𝜌) (𝑑 (𝜌𝜂) /𝑑𝜌)]

. (27)

The solution derived in [1] suggests that 𝜑 is independent of
𝑧. Then, it follows from (27) that 𝑑(𝜂𝜌)/𝑑𝜌 = 2𝐶𝜌 where 𝐶 is
constant. Integrating this equation gives

𝜂 = 𝐶𝜌 +

𝐶
1

𝜌

, (28)

where 𝐶
1
is constant of integration. It is seen from (21) that

the boundary conditions (1) and (2) are equivalent to the
conditions 𝜂 = 1 for 𝜌 = 1 and 𝜂 = 0 for 𝜌 = 𝑎, respectively.
Using these boundary conditions the constants 𝐶 and 𝐶

1
are

determined from (28) as

𝐶 =

1

(1 − 𝑎
2
)

,

𝐶
1
= −

𝑎
2

(1 − 𝑎
2
)

.

(29)

Substituting (29) into (28) results in

𝜂 =

(𝜌
2
− 𝑎
2
)

(1 − 𝑎
2
) 𝜌

. (30)

Substituting (30) into (27) and using (26) result in

2𝜏
𝑟𝑧

𝜏
𝑟𝑟

− 𝜏
𝑧𝑧

=

𝜌
2
(𝑎
2
− 1)

(𝑎
2
+ 3𝜌
2
)

𝑑𝜇

𝑑𝜌

. (31)
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It is convenient to introduce the stress variables

𝑠 =

𝜎
1
+ 𝜎
3

2𝜎
0

,

𝑡 =

𝜎
1
− 𝜎
3

2𝜎
0

,

𝑠
𝜃𝜃

=

𝜎
𝜃𝜃

𝜎
0

.

(32)

It is evident from (14) that 𝑡 > 0. Using (32) it is possible to
express the stress components in the cylindrical coordinate
system as

𝜎
𝑟𝑟

𝜎
0

= 𝑠 + 𝑡 cos 2𝜑,

𝜎
𝑧𝑧

𝜎
0

= 𝑠 − 𝑡 cos 2𝜑,

𝜎
𝑟𝑧

𝜎
0

= 𝑡 sin 2𝜑.

(33)

The direction of flow requires that 𝜎
𝑟𝑧

> 0 (Figure 3).
Assume that 𝜎

𝑧𝑧
> 𝜎
𝑟𝑟
. This assumption should be verified a

posteriori. Then, it is possible to find from (32) and (33) that

𝜋

4

≤ 𝜑 ≤

𝜋

2

. (34)

Equation (19) dictates that 𝜉
𝜃𝜃

= 𝜉
2
. Therefore,

𝜉
𝑟𝑟

− 𝜉
𝑧𝑧

𝜉
𝜃𝜃

=

(𝜉
1
− 𝜉
3
)

𝜉
2

cos 2𝜑. (35)

Substituting (16), (22), and (28) into this equation and using
(32) and (33) yield

(3𝜌
2
+ 𝑎
2
)

(𝜌
2
− 𝑎
2
)

=

[(𝑠 + 𝑡 − 𝑠
𝜃𝜃
)
𝑚−1

+ 2 (2𝑡)
𝑚−1

+ (𝑠
𝜃𝜃

+ 𝑡 − 𝑠)
𝑚−1

] cos 2𝜑

[(𝑠
𝜃𝜃

− 𝑠 + 𝑡)
𝑚−1

− (𝑠 − 𝑠
𝜃𝜃

+ 𝑡)
𝑚−1

]

.

(36)

It follows from (19) and (32) that the yield criterion (15)
can be rewritten as

[

(𝑠 + 𝑡 − 𝑠
𝜃𝜃
)
𝑚

+ (𝑠
𝜃𝜃

− 𝑠 + 𝑡)
𝑚

+ (2𝑡)
𝑚

2

]

1/𝑚

= 1. (37)

Substituting (33) into the equilibrium equations (17) and
assuming that 𝑡 is independent of 𝑧 yield

𝜕𝑠

𝜕𝜌

+

𝑑 (𝑡 cos 2𝜑)

𝑑𝜌

+

𝑠 − 𝑠
𝜃𝜃

+ 𝑡 cos 2𝜑
𝜌

= 0,

𝜕𝑠

𝜕𝜁

+

𝑑 (𝑡 sin 2𝜑)

𝑑𝜌

+

𝑡 sin 2𝜑

𝜌

= 0.

(38)

These equations have a solution if and only if

𝑠 = 𝐶
2
(𝜌) + 𝐶

3
𝜁,

𝑠 − 𝑠
𝜃𝜃

= 𝛽 (𝜌) ,

(39)

where 𝐶
3
is constant and 𝐶

2
(𝜌) and 𝛽(𝜌) are arbitrary

functions of 𝜌. Substituting (39) into (38) results in

𝑑 (𝐶
2
+ 𝑡 cos 2𝜑)

𝑑𝜌

+

𝛽 (𝜌) + 𝑡 cos 2𝜑
𝜌

= 0, (40a)

𝑑 (𝑡 sin 2𝜑)

𝑑𝜌

+

𝑡 sin 2𝜑

𝜌

= −𝐶
3
. (40b)

Equation (40b) can be immediately integrated to give

𝑡 sin 2𝜑 = −

𝐶
3
𝜌

2

+

𝐶
4

𝜌

, (41)

where 𝐶
4
is constant of integration. Using (33) the boundary

conditions (4) and (5) are transformed to 𝑡 sin 2𝜑 = 0 for 𝜌 =

1 and 𝑡 sin 2𝜑 = 𝜏
𝑓
/𝜎
0
for 𝜌 = 𝑎, respectively.These boundary

conditions and (41) combine to give

𝐶
3
=

2𝑎

𝑚
√1 + 2

𝑚−1
(1 − 𝑎

2
)

,

𝐶
4
=

𝑎

𝑚
√1 + 2

𝑚−1
(1 − 𝑎

2
)

.

(42)

Therefore, (41) becomes

𝑡 =

1

2

(

1

𝜌

− 𝜌)

𝐶
3

sin 2𝜑

. (43)

Eliminating 𝑡 and 𝑠− 𝑠
𝜃𝜃
in (36) and (37) by means of (39)

and (43) yields

(3𝜌
2
+ 𝑎
2
)

(𝜌
2
− 𝑎
2
)

=

{[2𝛽𝜌 sin 2𝜑 + 𝐶
3
(1 − 𝜌

2
)]

𝑚−1

+ 2
𝑚
𝐶
𝑚−1

3
(1 − 𝜌

2
)

𝑚−1

+ ⋅ ⋅ ⋅ + [𝐶
3
(1 − 𝜌

2
) − 2𝛽𝜌 sin 2𝜑]

𝑚−1

} cos 2𝜑

[𝐶
3
(1 − 𝜌

2
) − 2𝛽𝜌 sin 2𝜑]

𝑚−1
− [2𝛽𝜌 sin 2𝜑 + 𝐶

3
(1 − 𝜌

2
)]
𝑚−1

,

[2𝛽𝜌 sin 2𝜑 + 𝐶
3
(1 − 𝜌

2
)]

𝑚

+ [𝐶
3
(1 − 𝜌

2
) − 2𝛽𝜌 sin 2𝜑]

𝑚

+ ⋅ ⋅ ⋅ + 2
𝑚
𝐶
𝑚

3
(1 − 𝜌

2
)

𝑚

= 2
𝑚+1

𝜌
𝑚sin𝑚2𝜑.

(44)
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Equations (44) should be solved for 𝛽(𝜌) and 𝜑(𝜌) numeri-
cally. 𝐶

3
should be eliminated by means of (42). Once these

equations have been solved, 𝑡 can be found from (42) and (43)
and, then, 𝐶

2
is determined from (40a) as

𝐶
2
= −𝑡 cos 2𝜑 + ∫

𝜌

𝑎

(𝛽 + 𝑡 cos 2𝜑)

𝜒

𝑑𝜒 + 𝐶
5
. (45)

Here 𝐶
5
is constant of integration and 𝜒 is a dummy variable

of integration. 𝛽, 𝑡, and 𝜑 in the integrand are understood to
be functions of 𝜒. The state of stress in the matrix is given by
(33), (39), and (45). Then, 𝐶

5
and 𝐶 involved in (9) can be

determined by means of the approach outlined in Section 2.

4. Effect of the Yield Criterion of the Matrix on
Brittle Fracture of the Fibre

It follows from (33), (39), and (45) that

𝜎
𝑟𝑟

𝜎
0

= 𝐶
3
𝜁 + ∫

𝜌

𝑎

(𝛽 + 𝑡 cos 2𝜑)

𝜒

𝑑𝜒 + 𝐶
5
,

𝜎
𝑧𝑧

𝜎
0

= 𝐶
3
𝜁 − 2𝑡 cos 2𝜑 + ∫

𝜌

𝑎

(𝛽 + 𝑡 cos 2𝜑)

𝜒

𝑑𝜒 + 𝐶
5
.

(46)

These equations are valid in the range 𝐿 − 𝐿
𝑐

≤ 𝑧 ≤ 𝐿

(Figure 3). Substituting (9) and (46) into (6) and (10) yields

𝐶(

𝑙

𝑙
𝑐

− 1) + 𝐶
5

=

𝐶
3

2

(𝑙
𝑐
− 2𝑙) − ∫

1

𝑎

(𝛽 + 𝑡 cos 2𝜑)

𝜌

𝑑𝜌,

(47)

𝐶 − 𝐶
5

= 𝐶
3
(𝑙 − 𝑙
𝑐
) − 1

+

2

(1 − 𝑎
2
)

∫

1

𝑎

𝜌∫

𝜌

𝑎

(𝛽 + 𝑡 cos 2𝜑)

𝜒

𝑑𝜒 𝑑𝜌

−

4

(1 − 𝑎
2
)

∫

1

𝑎

𝜌𝑡 cos 2𝜑 𝑑𝜌,

(48)

respectively. Here 𝑙 = 𝐿/𝑏
0
and 𝑙
𝑐
= 𝐿
𝑐
/𝑏
0
. Equations (47) and

(48) constitute a linear system for 𝐶 and 𝐶
5
. The solution to

this system can be found with no difficulty. Once the value of
𝐶
5
has been found, 𝑃 and its dimensionless representation, 𝑞,

are determined from (7) and (46) as

𝑃

𝜋𝜎
0
𝑏
2

0

= 𝑞

= (𝐶
3
𝑙 + 𝐶
5
) (1 − 𝑎

2
) − 4∫

1

𝑎

𝜌𝑡 cos 2𝜑 𝑑𝜌

+ 2∫

1

𝑎

𝜌∫

𝜌

𝑎

(𝛽 + 𝑡 cos 2𝜑)

𝜒

𝑑𝜒 𝑑𝜌.

(49)

In order to evaluate the effect of the yield criterion on
the tensile force at which the fibre breaks, it is convenient to
introduce the parameter 𝛿 as

𝛿 =

󵄨
󵄨
󵄨
󵄨
𝑞 − 𝑞
𝑆

󵄨
󵄨
󵄨
󵄨

𝑞
𝑆

⋅ 100%. (50)

Equations (44) have been solved numerically in the range
1.05 ≤ 𝑚 ≤ 20. Condition (19) has been verified using (32),
(33), (39), and (45). Then, 𝑞 has been calculated by means of
(42), (47), (48), and (49). It has been found by means of (11)
and (50) that 𝛿 < 1.5% for typical values of 𝑎, 𝑙, and 𝑇/𝜎

0

provided in [1]. Therefore, (11) derived in that paper is a very
good approximation for the tensile load at which the fibre
breaks independently of the yield criterion of the matrix.

5. Conclusions

Brittle fracture of fibres in continuous fibre reinforced com-
posites subjected to tensile loading in the direction parallel
to the fibres has been predicted by means of the theory
developed in [1]. A distinguished feature of this new solution
is that the generalized yield criterion proposed in [15] has
been adopted for thematrix.The solution has been compared
to the analytic solution for Tresca’s yield criterion derived in
[1]. It has been found that the magnitude of the tensile load at
which the fibre breaks is practically independent of the yield
criterion of the matrix. In particular, formula (11) obtained
in [1] predicts this magnitude for any isotropic pressure-
independent yield criterion with a very high accuracy. In
general, this feature of the solution is capable of experimental
verification andhence provides ameans for testing the theory.
However, such verification requires the determination of the
yield criterion of the matrix before testing the composite. To
the best of authors’ knowledge, no research that includes both
testing thematrixmaterial and testing the composite has been
reported in the literature. Therefore, the present paper may
be considered as an encouragement to experimentalists to
attempt to verify the theoretical predictions made.

A new result of academic interest is the solution for the
constitutive equations (15) and (16) supplemented with the
equilibrium equations and satisfying the boundary condi-
tions (1)–(5).This solution can be regarded as a generalization
of the famous Prandtl’s solution for plane strain compression
of a plastic layer between parallel, rough plates (see, e.g., [23]).
In contrast to the plane strain problem, the solution to the
axisymmetric problem depends on the yield criterion chosen.
A distinguished feature of the present solution is that the
generalized yield criterion has been adopted.
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