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We investigate some stability problems in terms of twomeasures for nonlinear dynamic systems on time scales with fixedmoments
of impulsive effects. Sufficient conditions for (uniform) stability, (uniform) asymptotic stability, and instability in terms of two
measures are derived by using the method of Lyapunov functions. Our results include the existing results as special cases when
the time scale reduces to the set of real numbers. Particularly, our results provide stability criteria for impulsive discrete systems in
terms of two measures, which have not been investigated extensively. Two examples are presented to illustrate the efficiency of the
proposed results.

1. Introduction

It is well known that the theory of impulsive differential
equations provides a general framework for mathematical
modeling of many real world phenomena [1, 2]. In particular,
it serves as an adequate mathematical tool for studying
evolution processes that are subjected to abrupt changes in
their states. At the present time, the qualitative theory of
such equations has been extensively studied. Many results on
the stability and boundedness of their solutions are obtained
[1–4]. Due to the needs of applications, the concepts of
Lyapunov stability have given rise to many new notions,
for example, partial stability, conditional stability, eventual
stability, practical stability, and so on. A notion which unifies
and includes the above concepts of stability is the notion of
stability in terms of two measures which was initialed by
Movchan [5]. Since the publication of Salvadori’s paper [6],
this unified theory in terms of twomeasures became popular.
For a systematic introduction to the theory of stability in
terms of two measures, refer to [7].

On the other hand, a theory of time scales or calculus
on measure chains was introduced by Hilger in his Ph.D.
thesis [8] in 1988, with the purpose of incorporating both the

existing theory of dynamic systems on continuous and
discrete time scales, namely, time scale as arbitrary closed
subset of real numbers, and extending the existing the-
ory to dynamic systems on generalized hybrid (continu-
ous/discrete) time scales. The theory of time scales recently
has gained much attention and is undergoing rapid develop-
ment. Recently, various work has been done on the stability
problem of dynamic systems on time scales [9–14]. For more
details about the theory of time scales, refer to [15–17].

Motivated by the above discussion, in this paper, we will
consider the stability problems in terms of two measures
for impulsive systems on time scales. Several new stability
criteria and instability criteria are obtained by using the
method of Lyapunov functions. As far as we know, there are
very few studies on stability analysis of impulsive discrete
systems in terms of two measures. Moreover, our results
can be applied to impulsive systems on other time scales in
addition to the set of integers and the set of real numbers.

The rest of this paper is organized as follows. In
Section 2, we introduce some basic knowledge of dynamic
systems on time scales. In Section 3, we formulate the
problem and present several definitions of stability and
instability in terms of two measures. In Section 4, several
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(ℎ
0
, ℎ)-stability and instability criteria are established by

employing the Lyapunov function approach. For illustration
of our results, two examples are shown in Section 5. Finally,
some conclusions are drawn in Section 6.

2. Preliminaries

In this section, we briefly introduce some basic definitions
and results concerning time scales for later use.

Let R be the set of real numbers, R+ be the set of
nonnegative real numbers, Z be the set of integers, Z+ be
the set of nonnegative integers, N = {1, 2, . . .}, and T be an
arbitrary nonempty closed subset of R. We assume that T is
a topological space with relative topology induced from R.
Then, T is called a time scale.

Definition 1. Themappings 𝜎, 𝜃 : T → T defined as

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > t} ,

𝜃 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡}

(1)

are called forward and backward jump operators, respec-
tively.

A nonmaximal element 𝑡 ∈ T is called right-scattered (rs)
if 𝜎(𝑡) > 𝑡 and right-dense (rd) if 𝜎(𝑡) = 𝑡. A nonminimal
element 𝑡 ∈ T is called left-scattered (ls) if 𝜃(𝑡) < 𝑡 and left-
dense (ld) if 𝜃(𝑡) = 𝑡. If T has a ls maximum𝑚, then we define
T𝑘 = T \ {𝑚}, otherwise, T𝑘 = T .

Definition 2. The graininess function 𝜇 : T → R+ is defined
by

𝜇 (𝑡) = 𝜎 (𝑡) − 𝑡. (2)

Definition 3. For𝑦 : T → R and 𝑡 ∈ T𝑘, one defines the delta
derivative𝑦Δ(𝑡) of𝑦(𝑡), to be the number (when it exists) with
the property that for any 𝜀 > 0, there is a neighborhood 𝑈 of
𝑡 (i.e., 𝑈 = (𝑡 − 𝛿, 𝑡 + 𝛿)⋂ T for some 𝛿 > 0) such that

󵄨󵄨󵄨󵄨󵄨
𝑦 (𝜎 (𝑡)) − 𝑦 (𝑠) − 𝑦

Δ
(𝑡) (𝜎 (𝑡) − 𝑠)

󵄨󵄨󵄨󵄨󵄨

≤ 𝜀 |𝜎 (𝑡) − 𝑠| , ∀𝑠 ∈ 𝑈.

(3)

A function𝑓 : T → R is rd-continuous if it is continuous
at rd points in T and its left-side limits exist at ld points in
T . The set of rd-continuous functions 𝑓 : T → R will be
denoted by 𝐶rd = 𝐶rd(T ,R). If 𝑓 is continuous at each rd
point and each ld point, 𝑓 is said to be continuous function
on T . If 𝑎, 𝑏 ∈ T , then one defines the interval [𝑎, 𝑏] on T by
[𝑎, 𝑏] := {t ∈ T : 𝑎 ≤ 𝑡 ≤ 𝑏}. Open intervals and half-open
intervals can be defined similarly.

Definition 4. Let𝑓 ∈ 𝐶rd. A function 𝑔 : T → R is called the
antiderivative of𝑓 on T if it is differentiable on T and satisfies
𝑔
Δ
(𝑡) = 𝑓(𝑡) for all 𝑡 ∈ T . In this case, one defines

∫

𝑡

𝑎

𝑓 (𝑠) Δ𝑠 = 𝑔 (𝑡) − 𝑔 (𝑎) , 𝑎, 𝑡 ∈ T . (4)

One says that a function 𝑝 : T → R is regressive if
1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T . The set of all regressive and
rd-continuous functions 𝑓 : T → R is denoted by 𝐶rdR =

𝐶rdR(T ,R), and the set of all positively regressive elements
of 𝐶rdR is denoted by 𝐶rdR

+
= 𝐶rdR

+
(T ,R) = {𝑝 ∈ 𝐶rdR :

1 + 𝜇(𝑡)𝑝(𝑡) > 0 for all 𝑡 ∈ T}.

Definition 5. If 𝑝 ∈ 𝐶rdR, then one defines the exponential
function on time scale T by

𝑒
𝑝
(𝑡, 𝑠) = exp(∫

𝑡

𝑠

𝜉
𝜇(𝜏)

(𝑝 (𝜏)) Δ𝜏) , for 𝑡, 𝑠 ∈ T , (5)

where the cylinder transformation

𝜉
ℎ
(𝑧) =

{

{

{

Log (1 + ℎ𝑧)

ℎ
, ℎ ̸= 0,

𝑧, ℎ = 0,

(6)

where Log is the principal logarithm function.

It is known that 𝑥(𝑡) = 𝑒
𝑝
(𝑡, 𝑡
0
) is the unique solution of

the initial value problem 𝑥
Δ
(𝑡) = 𝑝(𝑡)𝑥(𝑡), 𝑥(𝑡

0
) = 1.

Remark 6. Let 𝛼 ∈ 𝐶rdR be a constant. If T = Z, then
𝑒
𝛼
(𝑡, 𝑡
0
) = (1 + 𝛼)

𝑡−𝑡0 for all 𝑡 ∈ T . If T = R, then 𝑒
𝛼
(𝑡, 𝑡
0
) =

𝑒
𝛼(𝑡−𝑡0) for all 𝑡 ∈ T .

Definition 7. One says that a function 𝑚 : T → R is right-
nondecreasing at a point 𝑡 ∈ T provided

(i) if 𝑡 is rs, then𝑚(𝜎(𝑡)) ≥ 𝑚(𝑡);
(ii) if 𝑡 is rd, then there is a neighborhood𝑈 of 𝑡 such that

𝑚(𝑠) ≥ 𝑚 (𝑡) , ∀𝑠 ∈ 𝑈 with 𝑠 > 𝑡. (7)

Similarly, one says that 𝑚 is right-nonincreasing if above
in (i) 𝑚(𝜎(𝑡)) ≤ 𝑚(𝑡) and in (ii) 𝑚(𝑠) ≤ 𝑚(𝑡). If 𝑚 is right-
nondecreasing (right-nonincreasing) at every 𝑡 ∈ T , one says
that𝑚 is right-nondecreasing (right-nonincreasing) on T .

Lemma 8. Let𝑚 ∈ 𝐶(T ,R).Then𝑚(𝑡) is right-nondecreasing
(right-nonincreasing) on T if and only if 𝐷

+
𝑚
Δ
(𝑡) ≥

0(𝐷
+
𝑚
Δ
(𝑡) ≤ 0) for every 𝑡 ∈ T , where

𝐷
+
𝑚
Δ
(𝑡) =

{{{

{{{

{

𝑚(𝜎 (𝑡)) − 𝑚 (𝑡)

𝜇 (𝑡)
, 𝜎 (𝑡) > 𝑡,

lim sup
𝑠→ 𝑡
+

𝑚(𝑠) − 𝑚 (𝑡)

𝑠 − 𝑡
, 𝜎 (𝑡) = 𝑡.

(8)

Proof. The condition is obviously necessary. Let us prove that
it is sufficient. We only assume 𝐷+𝑚Δ(𝑡) ≥ 0 for 𝑡 ∈ T as the
second statement can be shown similarly.

If 𝑡 is rs, then

𝐷
+
𝑚
Δ
(𝑡) =

𝑚 (𝜎 (𝑡)) − 𝑚 (𝑡)

𝜇 (𝑡)
≥ 0, (9)

and hence𝑚(𝜎(𝑡)) ≥ 𝑚(𝑡).
Let now 𝑡 to be rd, and𝑁 be a neighborhood of 𝑡.We need

to show that 𝑚(𝑠) ≥ 𝑚(𝑡) for 𝑠 > 𝑡 with 𝑠 ∈ 𝑁. This follows
directly from Lemma 1.1.1 in [7].

Thus the proof of the lemma is complete.
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3. Problem Formulation

Consider the following nonlinear impulsive system on time
scale T :

𝑥
Δ
(𝑡) = 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ∈ T ,

Δ𝑥 (𝑡) = 𝐼
𝑘
(𝑥 (𝑡)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N,

𝑥 (𝑡
+

0
) = 𝑥
0

(10)

under the following assumptions.

(a) T is a time scale with 𝑡
0
≥ 0 as minimal element and

no maximal element.
(b) {𝑡
𝑘
} ∈ T , 𝑡

0
< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ and
lim
𝑘→∞

𝑡
𝑘
= ∞.

(c) 𝑥 ∈ R𝑛 and Δ𝑥(𝑡
𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
). If 𝑡
𝑘
is rd point,

𝑥(𝑡
+

𝑘
) denotes the right limit of 𝑥 at 𝑡

𝑘
; if 𝑡
𝑘
is rs point,

𝑥(𝑡
+

𝑘
) denotes the state of 𝑥 at 𝑡

𝑘
with the impulse. If 𝑡

𝑘

is ld point, 𝑥(𝑡−
𝑘
) denotes the left limit of 𝑥 at 𝑡

𝑘
with

𝑥(𝑡
−

𝑘
) = 𝑥(𝑡

𝑘
) if 𝑡
𝑘
is ls point. Here, we assume that

𝑥(𝑡
−

𝑘
) = 𝑥(𝑡

𝑘
).

(d) 𝑓 : T × R𝑛 → R𝑛 is continuous in (𝑡
𝑘−1

, 𝑡
𝑘
] × R𝑛

for 𝑘 ∈ N, 𝑓(𝑡, 0) = 0, and for each 𝑥 ∈ R𝑛, 𝑘 ∈ N,
lim
(𝑡,𝑦)→ (𝑡

+

𝑘
,𝑥)
𝑓(𝑡, 𝑦) = 𝑓(𝑡

+

𝑘
, 𝑥);

(e) 𝐼
𝑘
: R𝑛 → R𝑛 and 𝐼

𝑘
(0) = 0.

Throughout this paper, we denote by 𝑥(𝑡) = 𝑥(𝑡; 𝑡
0
, 𝑥
0
) the

solution of system (10) satisfying initial condition 𝑥(𝑡
+

0
) = 𝑥
0
.

Obviously, system (10) admits the trivial solution. Moreover,
𝑓 is assumed to satisfy necessary assumptions so that the
following initial value problems:

𝑥
Δ
= 𝑓 (𝑡, 𝑥) , 𝑡 ∈ [𝑡

0
, 𝑡
1
] ,

𝑥 (𝑡
0
) = 𝑥
0
,

𝑥
Δ
= 𝑓 (𝑡, 𝑥) , 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

] ,

𝑥 (𝑡
+

𝑘
) = 𝑥 (𝑡

𝑘
) + 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) ,

(11)

have unique solutions 𝑥
0
(𝑡), 𝑡 ∈ [𝑡

0
, 𝑡
1
], and 𝑥

𝑘
(𝑡), 𝑡 ∈

(𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 ∈ N, respectively (e.g., see [17] for existence and
uniqueness results for dynamical systems on time scales.).
Thus, if we define

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) =

{{{{{{{{

{{{{{{{{

{

𝑥
0 (𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
1
]

𝑥
1
(𝑡) , 𝑡 ∈ (𝑡

1
, 𝑡
2
]

...
...

𝑥
𝑘
(𝑡) , 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

]

...
...

(12)

then it is easy to see that 𝑥(𝑡; 𝑡
0
, 𝑥
0
) is the unique solution of

system (10).
Let us list the classes of functions and definitions for

convenience.

𝑃𝐶 = {𝛿 : T → R+, continuous on (𝑡
𝑘−1

, 𝑡
𝑘
] and

lim
𝑡→ 𝑡
+

𝑘

𝛿(𝑡) = 𝛿(𝑡
+

𝑘
) exists for 𝑘 ∈ N};

K = {𝛿 ∈ 𝐶(R+,R+), strictly increasing and 𝛿(0) =

0};
𝑃𝐶K = {𝛿 : T × R+ → R+, 𝛿(⋅, 𝑢) ∈ 𝑃𝐶 for each
𝑢 ∈ R+ and 𝛿(𝑡, ⋅) ∈ K for each 𝑡 ∈ T};
Γ = {ℎ : T × R𝑛 → R+, ℎ(⋅, 𝑥) ∈ 𝑃𝐶 for each 𝑥 ∈

R𝑛, ℎ(𝑡, ⋅) ∈ 𝐶(R𝑛,R+) for each 𝑡 ∈ T and inf ℎ(𝑡, 𝑥) =
0};
𝜈
0
= {𝑉 : T × R𝑛 → R+, continuous on (𝑡

𝑘−1
, 𝑡
𝑘
] ×

R𝑛, 𝑘 ∈ N, and for all 𝑥 ∈ R𝑛 and 𝑘 ∈ N,
lim
(𝑡,𝑦)→ (𝑡

+

𝑘
,𝑥)
𝑉(𝑡, 𝑦) = 𝑣(𝑡

+

𝑘
, 𝑥) exists}.

For 𝑉 ∈ 𝜈
0
, (𝑡, 𝑥) ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] × R𝑛, 𝑘 ∈ N, we define the

upper right-hand Dini delta derivative of 𝑉(𝑡, 𝑥) relative to
(10) as follows:

𝐷
+
𝑉
Δ
(𝑡, 𝑥)

=

{{{{{{{{

{{{{{{{{

{

𝑉 (𝜎 (𝑡) , 𝑥 (𝜎 (𝑡))) − 𝑉 (𝑡, 𝑥 (𝑡))

𝜇 (𝑡)
,

𝜎 (𝑡) > 𝑡,

lim sup
𝑠→ 𝑡
+

𝑉 (𝑠, 𝑥 (𝑡) + (𝑠 − 𝑡) 𝑓 (𝑡, 𝑥 (𝑡))) − 𝑉 (𝑡, 𝑥 (𝑡))

𝑠 − 𝑡
,

𝜎 (𝑡) = 𝑡.

(13)

Definition 9. Let ℎ
0
, ℎ ∈ Γ. Then one says that

(i) ℎ
0
is finer than ℎ if there exists a constant 𝜌 > 0 and

a function 𝜑 ∈ K such that ℎ
0
(𝑡, 𝑥) < 𝜌 implies

ℎ(𝑡, 𝑥) ≤ 𝜑(ℎ
0
(𝑡, 𝑥));

(ii) ℎ
0
is weakly finer than ℎ if there exists a constant 𝜌 >

0 and a function 𝜑 ∈ 𝑃𝐶K such that ℎ
0
(𝑡, 𝑥) < 𝜌

implies ℎ(𝑡, 𝑥) ≤ 𝜑(𝑡, ℎ
0
(𝑡, 𝑥)).

Definition 10. Let 𝑉 ∈ 𝜈
0
and ℎ

0
, ℎ ∈ Γ. Then 𝑉(𝑡, 𝑥) is said

to be
(i) ℎ-positive definite if there exist a 𝜌 > 0 and a function

𝑏 ∈ K such that ℎ(𝑡, 𝑥) < 𝜌 implies 𝑏(ℎ(𝑡, 𝑥)) ≤

𝑉(𝑡, 𝑥);
(ii) ℎ
0
-decrescent if there exist a 𝜌 > 0 and a function 𝑎 ∈

K such that ℎ
0
(𝑡, 𝑥) < 𝜌 implies𝑉(𝑡, 𝑥) ≤ 𝑎(ℎ

0
(𝑡, 𝑥));

(iii) ℎ
0
-weakly decrescent if there exist a 𝜌 > 0 and a

function 𝑎 ∈ 𝑃𝐶K such that ℎ
0
(𝑡, 𝑥) < 𝜌 implies

𝑉(𝑡, 𝑥) ≤ 𝑎(𝑡, ℎ
0
(𝑡, 𝑥)).

Definition 11. The impulsive system (10) is said to be

(S
1
) (ℎ
0
, ℎ)-stable, if for each 𝜀 > 0, 𝑡

0
∈ T , there exists

a 𝛿 = 𝛿(𝑡
0
, 𝜀) > 0 such that ℎ

0
(𝑡
0
, 𝑥
0
) < 𝛿 implies

ℎ(𝑡, 𝑥(𝑡)) < 𝜀, 𝑡 ≥ 𝑡
0
for any solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡

0
, 𝑥
0
)

of (10);

(S
2
) (ℎ
0
, ℎ)-uniformly stable, if the 𝛿 in (S

1
) is independent

of 𝑡
0
;

(S
3
) (ℎ
0
, ℎ)-attractive, if for each 𝜀 > 0, 𝑡

0
∈ T , there exist

two positive constants 𝛿 = 𝛿(𝑡
0
, 𝜀) and 𝑇 = 𝑇(𝑡

0
, 𝜀)

such that ℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿 implies ℎ(𝑡, 𝑥(𝑡)) < 𝜀, 𝑡 ≥

𝑡
0
+ 𝑇;
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(S
4
) (ℎ
0
, ℎ)-uniformly attractive, if (S

3
) holds with 𝛿 and𝑇

being independent of 𝑡
0
;

(S
5
) (ℎ
0
, ℎ)-asymptotically stable, if (S

1
) and (S

3
) hold

simultaneously;

(S
6
) (ℎ
0
, ℎ)-uniformly asymptotically stable, if (S

2
) and

(S
4
) hold together;

(S
7
) (ℎ
0
, ℎ)-unstable, if (S

1
) fails to hold.

4. Main Results

Let us establish, in this section, sufficient conditions for
(ℎ
0
, ℎ)-(uniform) stability, (ℎ

0
, ℎ)-(uniform) asymptotic sta-

bility, and (ℎ
0
, ℎ)-instability properties of impulsive systems

(10) in the following subsections, respectively. Let

𝑆 (ℎ, 𝜌) = {(𝑡, 𝑥) ∈ T ×R
𝑛
: ℎ (𝑡, 𝑥) < 𝜌} . (14)

4.1. (ℎ
0
,ℎ)-(Uniform) Stability

Theorem 12. Assume that

(i) ℎ, ℎ
0
∈ Γ, and ℎ

0
is weakly finer than ℎ;

(ii) 𝑉 ∈ 𝜈
0
, 𝑉(𝑡, 𝑥) is ℎ-positive definite on 𝑆(ℎ, 𝜌), ℎ

0
-

weakly decrescent, locally Lipschtiz in 𝑥 for 𝑡 ∈ T which
is rd, and

𝐷
+
𝑉
Δ
(𝑡, 𝑥) ≤ 𝑐

𝑘
𝑉 (𝑡, 𝑥) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , (𝑡, 𝑥) ∈ 𝑆 (ℎ, 𝜌) ,

(15)

where 𝑐
𝑘
≥ 0, 𝑘 ∈ Z+;

(iii) there exists 𝜍 ≥ 𝜍
𝑘
> 0, such that

𝑉 (𝑡
+

𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) ≤ 𝜍

𝑘
𝑉 (𝑡
𝑘
, 𝑥
𝑘
) ,

(𝑡
𝑘
, 𝑥
𝑘
) ∈ 𝑆 (ℎ, 𝜌) ,

(16)

where 𝑥
𝑘
= 𝑥(𝑡
𝑘
), 𝑘 ∈ N;

(iv) sup
𝑘∈Z+{∏

𝑘

𝑖=0
𝜍
𝑖
𝑒
𝑐𝑖
(𝑡
𝑖+1

, 𝑡
𝑖
)} = 𝑀 < ∞ where 𝜍

0
= 1;

(v) there exists a constant 𝜌
1
, 0 < 𝜌

1
< 𝜌, such that

ℎ(𝑡, 𝑥) < 𝜌
1
implies ℎ(𝜎(𝑡), 𝑥(𝜎(𝑡))) < 𝜌;

(vi) there exists a constant 𝜌
0
, 0 < 𝜌

0
< 𝜌
1
, such that

ℎ(𝑡
𝑘
, 𝑥
𝑘
) < 𝜌
0
implies ℎ(𝑡+

𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) < 𝜌

1
.

Then system (10) is (ℎ
0
, ℎ)-stable.

Proof. Since 𝑉(𝑡, 𝑥) is ℎ
0
-weakly decrescent, there exist a

constant 𝛿
0
> 0 and a function 𝑎 ∈ 𝑃𝐶K such that

𝑉 (𝑡, 𝑥) ≤ 𝑎 (𝑡, ℎ
0
(𝑡, 𝑥)) , if ℎ

0
(𝑡, 𝑥) < 𝛿

0
. (17)

There exists, in view of (ii), a function 𝑏 ∈ K such that

𝑏 (ℎ (𝑡, 𝑥)) ≤ 𝑉 (𝑡, 𝑥) , if ℎ (𝑡, 𝑥) < 𝜌. (18)

By (i), there exist 𝛿
1
> 0 and 𝜑 ∈ 𝑃𝐶K such that

ℎ (𝑡, 𝑥) ≤ 𝜑 (𝑡, ℎ
0
(𝑡, 𝑥)) , if ℎ

0
(𝑡, 𝑥) < 𝛿

1
. (19)

Let 𝜀 ∈ (0, 𝜌
0
) and 𝑡

0
∈ T be given. There exists 𝛿

2
=

𝛿
2
(𝑡
0
, 𝜀) such that

𝜑 (𝑡
0
, 𝛿
2
) < 𝜌
0
, max {1,𝑀} 𝑎 (𝑡

0
, 𝛿
2
) < 𝑏 (𝜀) . (20)

Choose 𝛿 = min{𝛿
0
, 𝛿
1
, 𝛿
2
}. Let (𝑡

0
, 𝑥
0
) ∈ T × R𝑛 such that

ℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿 and 𝑥(𝑡) = 𝑥(𝑡; 𝑡

0
, 𝑥
0
) be any solution of (10).

Then, from (17) to (20), we get

𝑏 (ℎ (𝑡
0
, 𝑥
0
)) ≤ 𝑉 (𝑡

0
, 𝑥
0
) ≤ 𝑎 (𝑡

0
, ℎ
0
(𝑡
0
, 𝑥
0
)) < 𝑏 (𝜀) , (21)

which implies ℎ(𝑡
0
, 𝑥
0
) < 𝜀.

We now claim that, for every solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡
0
, 𝑥
0
)

of (10), ℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿 implies

ℎ (𝑡, 𝑥 (𝑡)) < 𝜀, 𝑡 ≥ 𝑡
0
. (22)

If this is not true, then there exist a solution 𝑥(𝑡) with
ℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿 and a 𝑡

∗
> 𝑡
0
such that 𝑡

𝑘
< 𝑡
∗

≤ 𝑡
𝑘+1

, for
some 𝑘, satisfying

ℎ (𝑡
∗
, 𝑥 (𝑡
∗
)) ≥ 𝜀, ℎ (𝑡, 𝑥 (𝑡)) < 𝜀 for 𝑡 ∈ [𝑡

0
, 𝑡
𝑘
] . (23)

Since 0 < 𝜀 < 𝜌
0
, it follows form condition (vi) that

ℎ (𝑡
+

𝑘
, 𝑥
+

𝑘
) := ℎ (𝑡

+

𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) < 𝜌

1
, (24)

where 𝑥+
𝑘
= 𝑥(𝑡
+

𝑘
) and ℎ(𝑡

𝑘
, 𝑥
𝑘
) < 𝜀. Next, we will show that

there exists a 𝑡0, 𝑡
𝑘
< 𝑡
0
≤ 𝑡
∗, such that

𝜀 ≤ ℎ (𝑡
0
, 𝑥 (𝑡
0
)) < 𝜌, ℎ (𝑡, 𝑥 (𝑡)) < 𝜌 for 𝑡 ∈ [𝑡

0
, 𝑡
0
] .

(25)

To do this, we consider the following two cases:

(1) there exists a 𝑡
∗
, 𝑡
𝑘
< 𝑡
∗
≤ 𝑡
∗, such that ℎ(𝑡

∗
, 𝑥(𝑡
∗
)) ≥

𝜌;
(2) ℎ(𝑡, 𝑥(𝑡)) < 𝜌 for all 𝑡 ∈ (𝑡

𝑘
, 𝑡
∗
].

Case 1. Let 𝑡 = inf{𝑡 ∈ (𝑡
𝑘
, 𝑡
∗
], ℎ(𝑡, 𝑥(𝑡)) ≥ 𝜌}. As ℎ(𝑡+

𝑘
, 𝑥
+

𝑘
) <

𝜌
1

< 𝜌, we know that 𝑡
𝑘

< 𝑡 ≤ 𝑡
∗. If 𝑡 is left-dense,

from the selection of 𝑡, we know that there exists a left-hand
neighborhood 𝑈

𝜖
= (𝑡 − 𝜖, 𝑡) ⊂ (𝑡

𝑘
, 𝑡
∗
] for some 𝜖 > 0, such

that 𝜌
1
< ℎ(𝑡, 𝑥(𝑡)) < 𝜌 for all 𝑡 ∈ 𝑈

𝜖
. Then, we can choose

𝑡
0
∈ 𝑈
𝜖
.

If 𝑡 is left-scattered, from the selection of 𝑡 and ℎ(𝑡+
𝑘
, 𝑥
+

𝑘
) <

𝜌
1
, we know that 𝑡

𝑘
< 𝜃(𝑡) < 𝑡

∗ and ℎ(𝜃(𝑡), 𝑥(𝜃(𝑡))) < 𝜌. Here,
we claim that ℎ(𝜃(𝑡), 𝑥(𝜃(𝑡))) ≥ 𝜌

1
. If this is not true, that is,

ℎ(𝜃(𝑡), 𝑥(𝜃(𝑡))) < 𝜌
1
, form condition (v), we know that

ℎ (𝑡, 𝑥 (𝑡)) = ℎ (𝜎 (𝜃 (𝑡)) , 𝑥 (𝜎 (𝜃 (𝑡)))) < 𝜌, (26)

which is a contradiction. Thus, 𝜌
1
≤ ℎ(𝜃(𝑡), 𝑥(𝜃(𝑡))) < 𝜌.

Then, we can choose 𝑡0 = 𝜃(𝑡).

Case 2. If ℎ(𝑡, 𝑥(𝑡)) < 𝜌 for all 𝑡 ∈ (𝑡
𝑘
, 𝑡
∗
], then we can choose

𝑡
0
= 𝑡
∗.

Hence, we can find a 𝑡0, 𝑡
𝑘
< 𝑡
0
≤ 𝑡
∗, such that (25) holds.
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For 𝑡
0
≤ 𝑡 ≤ 𝑡

0 and by conditions (ii) and (iii), we obtain

𝐷
+
𝑉
Δ
(𝑡, 𝑥) ≤ 𝑐

𝑖
𝑉 (𝑡, 𝑥) , 𝑡 ∈ (𝑡

𝑖
, 𝑡
𝑖+1

) , 𝑡 ≤ 𝑡
0
, (27)

𝑉 (𝑡
+

𝑖
, 𝑥
𝑖
+ 𝐼
𝑖
(𝑥
𝑖
)) ≤ 𝜍

𝑖
𝑉 (𝑡
𝑖
, 𝑥
𝑖
) , 𝑡

0
< 𝑡
𝑖
< 𝑡
0
. (28)

By (27), we will show that

𝑉 (𝑡, 𝑥) ≤ 𝑒
𝑐0
(𝑡, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
) , 𝑡 ∈ [𝑡

0
, 𝑡
1
] . (29)

To do this, we apply the induction principle ([17], Theorem
1.7) on [𝑡

0
, 𝑡
1
] to the statement

𝐴 (𝑡) : 𝑉 (𝑡, 𝑥) ≤ 𝑒
𝑐0
(𝑡, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
) . (30)

(1) The statement 𝐴(𝑡
0
) is true since 𝑒

𝑐0
(𝑡
0
, 𝑡
0
)𝑉(𝑡
0
, 𝑥
0
) =

𝑉(𝑡
0
, 𝑥
0
).

(2) Let 𝑡 be rs and 𝐴(𝑡) be true. We have to prove that
𝐴(𝜎(𝑡)) is true.

By the definition of upper right-hand derivative, we see
that

𝐷
+
𝑉
Δ
(𝑡, 𝑥) =

𝑉 (𝜎 (𝑡) , 𝑥 (𝜎 (𝑡))) − 𝑉 (𝑡, 𝑥 (𝑡))

𝜇 (𝑡)

≤ 𝑐
0
𝑉 (𝑡, 𝑥) ,

(31)

then

𝑉 (𝜎 (𝑡) , 𝑥 (𝜎 (𝑡))) ≤ (1 + 𝑐
0
𝜇 (𝑡)) 𝑉 (𝑡, 𝑥)

= 𝑒
𝑐0
(𝜎 (𝑡) , 𝑡) 𝑉 (𝑡, 𝑥)

≤ 𝑒
𝑐0
(𝜎 (𝑡) , 𝑡) 𝑒𝑐0

(𝑡, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
)

= 𝑒
𝑐0
(𝜎 (𝑡) , 𝑡

0
) 𝑉 (𝑡
0
, 𝑥
0
)

(32)

which implies that 𝐴(𝜎(𝑡)) is true.
(3) Let 𝑡 be rd, 𝐴(𝑡) be true and 𝑁 be a neighborhood of

𝑡. We need to show that 𝐴(𝑠) is true for s > 𝑡, 𝑠 ∈ 𝑁. By (27)
and Remark 6, we get

𝑉 (𝑠, 𝑥 (𝑠)) ≤ 𝑒
𝑐0(𝑠−𝑡)𝑉 (𝑡, 𝑥)

≤ 𝑒
𝑐0(𝑠−𝑡)𝑒

𝑐0
(𝑡, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
)

= 𝑒
𝑐0
(𝑠, 𝑡) 𝑒𝑐0

(𝑡, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
)

= 𝑒
𝑐0
(𝑠, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
)

(33)

which implies that 𝐴(𝑠) is true.
(4) Let 𝑡 be ld and 𝐴(𝑠) be true for all 𝑠 < 𝑡. We need to

show that𝐴(𝑡) is true. By the continuous property of function
𝑉 and the exponential function, it follows that

𝑉 (𝑡, 𝑥) = lim
𝑠→ 𝑡
−

𝑉 (𝑠, 𝑥 (𝑠))

≤ lim
𝑠→ 𝑡
−

𝑒
𝑐0
(𝑠, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
)

= 𝑒
𝑐0
(𝑡, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
)

(34)

which implies that 𝐴(𝑡) is true.

Hence, we conclude that (29) is true.
Similarly, we can prove that

𝑉 (𝑡, 𝑥) ≤ 𝑒
𝑐𝑖
(𝑡, 𝑡
𝑖
) 𝑉 (𝑡
+

𝑖
, 𝑥 (𝑡
+

𝑖
)) , for 𝑡 ∈ (𝑡

𝑖
, 𝑡
𝑖+1

] , 𝑡 ≤ 𝑡
0
.

(35)

Then, by (28), (35), and (20), we obtain

𝑉(𝑡
0
, 𝑥 (𝑡
0
)) ≤ 𝑒

𝑐𝑘
(𝑡
0
, 𝑡
𝑘
)𝑉 (𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
))

≤ 𝑒
𝑐𝑘
(𝑡
0
, 𝑡
𝑘
) 𝜍
𝑘
𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

≤ 𝑒
𝑐𝑘
(𝑡
0
, 𝑡
𝑘
) 𝜍
𝑘
𝑒
𝑐𝑘−1

(𝑡
𝑘
, 𝑡
𝑘−1

) 𝑉 (𝑡
+

𝑘−1
, 𝑥 (𝑡
+

𝑘−1
))

≤ ⋅ ⋅ ⋅

≤ 𝑒
𝑐𝑘
(𝑡
0
, 𝑡
𝑘
) 𝜍
𝑘
𝑒
𝑐𝑘−1

(𝑡
𝑘
, 𝑡
𝑘−1

) 𝜍
𝑘−1

⋅ ⋅ ⋅ 𝑒
𝑐1
(𝑡
2
, 𝑡
1
)

× 𝜍
1
𝑒
𝑐0
(𝑡
1
, 𝑡
0
) 𝑉 (𝑡
0
, 𝑥
0
)

≤

𝑘

∏

𝑖=0

𝜍
𝑖
𝑒
𝑐𝑖
(𝑡
𝑖+1

, 𝑡
𝑖
) 𝑉 (𝑡
0
, 𝑥
0
) ≤ 𝑀𝑉 (𝑡

0
, 𝑥
0
)

≤ 𝑀𝑎 (𝑡
0
, ℎ
0
(𝑡
0
, 𝑥
0
)) ≤ 𝑀𝑎 (𝑡

0
, 𝛿) < 𝑏 (𝜀)

(36)

that is, 𝑉(𝑡0, 𝑥(𝑡0)) < 𝑏(𝜀). Thus, by (18) and (25),

𝑏 (𝜀) ≤ 𝑏 (ℎ (𝑡
0
, 𝑥 (𝑡
0
))) ≤ 𝑉 (𝑡

0
, 𝑥 (𝑡
0
)) < 𝑏 (𝜀) (37)

which is a contradiction. Therefore (22) is true and system
(10) is (ℎ

0
, ℎ)-stable.

Theorem 13. Assume that all conditions of Theorem 12 hold
with the following changes:

(i)∗ h0 is finer than ℎ;
(ii)∗ V(t, x) is ℎ

0
-decrescent.

Then, system (10) is (ℎ
0
, ℎ)-uniformly stable.

Proof. From conditions (i)∗ and (ii)∗, the number 𝛿 in the
proof of Theorem 12 can be chosen independent of 𝑡

0
. Then

following the same reasoning of Theorem 12, we can get
the (ℎ

0
, ℎ)-uniform stability of system (10). The details are

omitted.

If 𝑐
𝑘
≡ 0 in condition (ii) of the previous theorems, then

the Lyapunov function 𝑉 is monotone along the solutions of
system (10) in each impulsive intervals. In this case, we have
the following conservative result.

Corollary 14. Assume that
(i) ℎ
0
, ℎ ∈ Γ, 𝑉 ∈ 𝜈

0
, 𝑉(𝑡, 𝑥) is ℎ-positive definite on

𝑆(ℎ, 𝜌), locally Lipschtiz in 𝑥 for each 𝑡 ∈ T which is
rd, and 𝐷

+
𝑉
Δ
(𝑡, 𝑥) ≤ 0 for 𝑡 ̸= 𝑡

𝑘
and (𝑡, 𝑥) ∈ 𝑆(ℎ, 𝜌);

(ii) 𝑉(𝑡+
𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) − 𝑉(𝑡

𝑘
, 𝑥
𝑘
) ≤ 𝑑

𝑘
𝑉(𝑡
𝑘
, 𝑥
𝑘
) for

(𝑡
𝑘
, 𝑥
𝑘
) ∈ 𝑆(ℎ, 𝜌), where 𝑑

𝑘
≥ 0 and ∑

∞

𝑖=1
𝑑
𝑖
< ∞,
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and conditions (v), (vi) of Theorem 12 hold. Then

(A) if, in addition, ℎ
0
is weakly finer than ℎ, and 𝑉(𝑡, 𝑥) is

ℎ
0
-weakly decrescent, then system (10) is (ℎ

0
, ℎ)-stable;

(B) if, in addition, ℎ
0
is finer than ℎ, and 𝑉(𝑡, 𝑥) is ℎ

0
-

decrescent, then system (10) is (ℎ
0
, ℎ)-uniformly stable.

Proof. Notice

sup
𝑘∈Z+

{

𝑘

∏

𝑖=0

𝜍
𝑖
𝑒
𝑐𝑖
(𝑡
𝑖+1

, 𝑡
𝑖
)}

= sup
𝑘∈Z+

{

𝑘

∏

𝑖=0

(1 + 𝑑
𝑖
)} ≤

∞

∏

𝑖=1

(1 + 𝑑
𝑖
) < ∞,

(38)

where 𝑑
0
= 0. Then, by Theorems 12 and 13, the result holds.

Remark 15. The continuous version of Corollary 14 with 𝑑
𝑘
≡

0, 𝑘 ∈ N, can be found in [7], while the discrete one for
impulsive discrete systems is brand new, and the discrete
version of Corollary 14 with𝑉(𝑡

+

𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) = 𝑉(𝑡

𝑘
, 𝑥(𝑡
𝑘
)),

𝑘 ∈ N, reduces to Theorems 3.1 and 3.2 in [18] for discrete
systems with no impulses.

4.2. (ℎ
0
,ℎ)-(Uniform) Asymptotic Stability

Theorem 16. Assume that conditions (v), (vi) of Theorem 12
and condition (i) of Corollary 14 hold and the following
conditions are satisfied:

(i) ℎ
0
is weakly finer than ℎ, and 𝑉(𝑡, 𝑥) is ℎ

0
-weakly

decrescent;
(ii) 𝑉(𝑡+

𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) − 𝑉(𝑡

𝑘
, 𝑥
𝑘
) ≤ −𝜆

𝑘
𝜓(𝑉(𝑡

𝑘
, 𝑥
𝑘
)) for

(𝑡
𝑘
, 𝑥
𝑘
) ∈ 𝑆(ℎ, 𝜌), where 𝜆

𝑘
≥ 0, ∑∞

𝑘=1
𝜆
𝑘
= ∞, 𝜓 :

R+ → R+, 𝜓(0) = 0 and 𝜓(𝑠) > 0 if 𝑠 > 0.

Then system (10) is (ℎ
0
, ℎ)-asymptotically stable.

Proof. By Theorem 12, system (10) is (ℎ
0
, ℎ)-stable. Thus, for

𝜌 > 0, there exists 𝛿 = 𝛿(𝑡
0
, 𝜌) > 0 such that ℎ

0
(𝑡
0
, 𝑥
0
) < 𝛿

implies ℎ(𝑡, 𝑥) < 𝜌, 𝑡 ≥ 𝑡
0
. To prove the theorem, it remains

to show that lim
𝑡→∞

ℎ(𝑡, 𝑥(𝑡)) = 0.
Let 𝑚(𝑡) = 𝑉(𝑡, 𝑥(𝑡)). Then it follows from assumptions

that 𝑚(𝑡) is right-nonincreasing and bounded from below,
and consequently lim

𝑡→∞
𝑚(𝑡) = 𝜔 ≥ 0 exists. If 𝜔 > 0

for some solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡
0
, 𝑥
0
) of (10), we let 𝛾 =

min
𝜔≤𝑠≤𝑚(𝑡0)

𝜓(𝑠). Then, by condition (ii), we have

𝑚(𝑡
+

𝑘
) − 𝑚 (𝑡

𝑘
) ≤ −𝜆

𝑘
𝜓 (𝑚 (𝑡

𝑘
)) ≤ −𝜆

𝑘
𝛾. (39)

Thus we obtain from (39) that

𝑚(𝑡
+

𝑘
) ≤ 𝑚 (𝑡

𝑘
) − 𝜆
𝑘
𝛾 ≤ 𝑚 (𝑡

+

𝑘−1
) − 𝜆
𝑘
𝛾

≤ 𝑚 (𝑡
𝑘−1

) − 𝜆
𝑘−1

𝛾 − 𝜆
𝑘
𝛾

≤ ⋅ ⋅ ⋅

≤ 𝑚 (𝑡
1
) − 𝛾

𝑘

∑

𝑗=1

𝜆
𝑗
,

(40)

which implies, in view of the assumption ∑
𝑘

𝑗=1
𝜆
𝑗
= ∞, that

lim
𝑘→∞

𝑚(𝑡
+

𝑘
) = −∞. This is a contradiction. Thus we must

have 𝜔 = 0 and consequently lim
𝑡→∞

ℎ(𝑡, 𝑥(𝑡)) = 0. Hence
system (10) is (ℎ

0
, ℎ)-attractive and the proof is complete.

In the following theorems, two auxiliary functions of
class 𝜈

0
are used to investigate the (ℎ

0
, ℎ)-asymptotic stability

property of system (10).

Theorem 17. Let conditions (v), (vi) of Theorem 12 hold and
assume that

(i) ℎ
0
, ℎ ∈ Γ and ℎ

0
is weakly finer than ℎ;

(ii) there exists a function𝑉 ∈ 𝜈
0
such that𝑉(𝑡, 𝑥) is locally

Lipschtiz in 𝑥 for each 𝑡 ∈ T which is rd, ℎ-positive
definite on 𝑆(ℎ, 𝜌), ℎ

0
-weakly decrescent and

𝐷
+
𝑉
Δ
(𝑡, 𝑥) ≤ −𝑐 (𝑊 (𝑡, 𝑥)) ,

𝑡 ̸= 𝑡
𝑘
, (𝑡, 𝑥) ∈ 𝑆 (ℎ, 𝜌) ,

(41)

where 𝑐 ∈ K,𝑊 ∈ 𝜈
0
;

(iii) 𝑉(𝑡+
𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) − 𝑉(𝑡

𝑘
, 𝑥
𝑘
) ≤ 𝑑
𝑘
𝑉(𝑡
𝑘
, 𝑥
𝑘
), (𝑡
𝑘
, 𝑥
𝑘
) ∈

𝑆(ℎ, 𝜌), where 𝑑
𝑘
≥ 0 and ∑

∞

𝑖=1
𝑑
𝑖
< ∞;

(iv) 𝑊(𝑡, 𝑥) isℎ-positive definite on 𝑆(ℎ, 𝜌), locally Lipschtiz
in 𝑥 for every 𝑡 ∈ T which is rd and

𝐷
+
𝑊
Δ
(𝑡, 𝑥) ≤ 0, 𝑡 ̸= 𝑡

𝑘
, (𝑡, 𝑥) ∈ 𝑆 (ℎ, 𝜌) ,

𝑊 (𝑡
+

𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) − 𝑊(𝑡

𝑘
, 𝑥
𝑘
)

≤ 𝑑
𝑘
𝑊(𝑡
𝑘
, 𝑥
𝑘
) , (𝑡

𝑘
, 𝑥
𝑘
) ∈ 𝑆 (ℎ, 𝜌) ,

(42)

where 𝑑
𝑘
≥ 0 and ∑

∞

𝑖=1
𝑑
𝑖
< ∞.

Then system (10) is (ℎ
0
, ℎ)-asymptotically stable.

Proof. FromCorollary 14, it follows that system (10) is (ℎ
0
, ℎ)-

stable. Thus, for 𝜌 > 0, there exists 𝛿 = 𝛿(𝑡
0
, 𝜌) > 0 such

that ℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿 implies ℎ(𝑡, 𝑥) < 𝜌, 𝑡 ≥ 𝑡

0
. To prove the

theorem, it remains to show that for every solution 𝑥(𝑡) of
(10) with ℎ

0
(𝑡
0
, 𝑥
0
) < 𝛿, lim

𝑡→∞
ℎ(𝑡, 𝑥) = 0.

Suppose that this is not true.Then there exists a sequence
{𝜉
𝑖
}
∞

𝑖=1
diverging to∞ as 𝑖 → ∞ and such that ℎ(𝜉

𝑖
, 𝑥(𝜉
𝑖
)) ≥

𝑟 (𝑖 ∈ N) for some positive number 𝑟. From condition (iv), we
know that there exists a function 𝑏 ∈ K such that 𝑏(ℎ(𝑡, 𝑥)) ≤
𝑊(𝑡, 𝑥), if ℎ(𝑡, 𝑥) < 𝜌. Then

𝑊(𝜉
𝑖
, 𝑥 (𝜉
𝑖
)) > 𝑏 (𝑟) , 𝑖 ∈ N. (43)

For any given 𝑡 ∈ T , there exists a 𝑖 > 0 such that 𝑡 ∈

(𝜉
𝑖
, 𝜉
𝑖+1

]. Then for 𝜉
𝑖+1

, there exists a 𝑘 > 0 such that 𝜉
𝑖+1

∈

(𝑡
𝑘
, 𝑡
𝑘+1

]. If 𝑡
𝑘
< 𝑡 ≤ 𝑡

𝑘+1
, from (43) and condition (iv), we

have

𝑊(𝑡, 𝑥) ≥ 𝑊(𝜉
𝑖+1

, 𝑥 (𝜉
𝑖+1

)) > 𝑏 (𝑟) ≥
𝑏 (𝑟)

𝑀
0

, (44)
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where𝑀
0
= ∏
∞

𝑗=1
(1 + 𝑑

𝑗
) < ∞. If 𝑡

𝑘−1
< 𝑡 ≤ 𝑡

𝑘
, we have

𝑊(𝑡, 𝑥) ≥ 𝑊(𝑡
𝑘
, 𝑥
𝑘
)

≥
1

1 + 𝑑
𝑘

𝑊(𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
)) >

1

1 + 𝑑
𝑘

𝑏 (𝑟) ≥
𝑏 (𝑟)

𝑀
0

.
(45)

Following this procedure, we conclude that

𝑊(𝑡, 𝑥) >
𝑏 (𝑟)

𝑀
0

, 𝑡 ∈ T . (46)

Let

𝐿 (𝑡, 𝑥) = 𝑉 (𝑡, 𝑥) + ∫

𝑡

𝑡𝑘

𝑐 (𝑊 (𝑠, 𝑥 (𝑠))) Δ𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 ∈ Z
+
.

(47)

Then, by condition (ii),

𝐷
+
𝐿
Δ
(𝑡, 𝑥) = 𝐷

+
𝑉
Δ
(𝑡, 𝑥) + 𝑐 (𝑊 (𝑡, 𝑥)) ≤ 0,

𝑡 ̸= 𝑡
𝑘
,

(48)

which implies

𝑉 (𝑡, 𝑥) ≤ 𝑉 (𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
)) − ∫

𝑡

𝑡𝑘

𝑐 (𝑊 (𝑠, 𝑥 (𝑠))) Δ𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] ,

(49)

for 𝑘 ∈ Z+.
Hence, for 𝜉

𝑖+1
∈ (𝑡
𝑘
, 𝑡
𝑘+1

], we obtain, form (46), (49), and
condition (iii),
𝑉 (𝜉
𝑖+1

, 𝑥 (𝜉
𝑖+1

))

≤ 𝑉 (𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
)) − ∫

𝜉𝑖+1

𝑡𝑘

𝑐 (𝑊 (𝑠, 𝑥 (𝑠))) Δ𝑠

≤ (1 + 𝑑
𝑘
) 𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) − ∫

𝜉𝑖+1

𝑡𝑘

𝑐 (𝑊 (𝑠, 𝑥 (𝑠))) Δ𝑠

≤ (1 + 𝑑
𝑘
) (𝑉 (𝑡

+

𝑘−1
, 𝑥 (𝑡
+

𝑘−1
)) − ∫

𝑡𝑘

𝑡𝑘−1

𝑐 (𝑊 (𝑠, 𝑥 (𝑠))) Δ𝑠)

− ∫

𝜉𝑖+1

𝑡𝑘

𝑐 (𝑊 (𝑠, 𝑥 (𝑠))) Δ𝑠

≤ (1 + 𝑑
𝑘
) (1 + 𝑑

𝑘−1
) 𝑉 (𝑡
𝑘−1

, 𝑥 (𝑡
𝑘−1

))

− ∫

𝜉𝑖+1

𝑡𝑘−1

𝑐 (𝑊 (𝑠, 𝑥 (𝑠))) Δ𝑠

≤ ⋅ ⋅ ⋅

≤

𝑘

∏

𝑗=1

(1 + 𝑑
𝑗
)𝑉 (𝑡
0
, 𝑥
0
) − ∫

𝜉𝑖+1

𝑡0

𝑐 (𝑊 (𝑠, 𝑥 (𝑠))) Δ𝑠

≤ 𝑀𝑉 (𝑡
0
, 𝑥
0
) − 𝑐 (

𝑏 (𝑟)

𝑀
0

) (𝜉
𝑖+1

− 𝑡
0
) → −∞,

for 𝑖 → ∞,

(50)

where𝑀 = ∏
∞

𝑗=1
(1 + 𝑑

𝑗
) < ∞. This is a contradiction, hence

lim
𝑡→∞

ℎ(𝑡, 𝑥) = 0. Theorem 17 is proved.

In Theorem 17, the function may have a special form. In
the case when 𝑊(𝑡, 𝑥) = 𝑉(𝑡, 𝑥) and 𝑑

𝑘
= 𝑑
𝑘
, 𝑘 ∈ N, we

deduce the following corollary.

Corollary 18. Let conditions (v), (vi) of Theorem 12 hold and
assume that

(i) ℎ
0
, ℎ ∈ Γ and ℎ

0
is weakly finer than ℎ;

(ii) there exist 𝑐 ∈ K, and function 𝑉 ∈ 𝜈
0
such that

𝑉(𝑡, 𝑥) is locally Lipschtiz in 𝑥 for each 𝑡 ∈ T which is
rd, ℎ-positive definite on 𝑆(ℎ, 𝜌), ℎ

0
-weakly decrescent

and

𝐷
+
𝑉
Δ
(𝑡, 𝑥) ≤ −𝑐 (𝑉 (𝑡, 𝑥)) ,

𝑡 ̸= 𝑡
𝑘
, (𝑡, 𝑥) ∈ 𝑆 (ℎ, 𝜌) ;

(51)

(iii) 𝑉(𝑡+
𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) − 𝑉(𝑡

𝑘
, 𝑥
𝑘
) ≤ 𝑑
𝑘
𝑉(𝑡
𝑘
, 𝑥
𝑘
), (𝑡
𝑘
, 𝑥
𝑘
) ∈

𝑆(ℎ, 𝜌), where 𝑑
𝑘
≥ 0 and ∑

∞

𝑖=1
𝑑
𝑖
< ∞.

Then system (10) is (ℎ
0
, ℎ)-asymptotically stable.

Theorem 19. Assume that all conditions of Theorem 13 hold.
Suppose further, that there exists a function 𝑊 ∈ 𝜈

0
such that

𝑊(𝑡, 𝑥) is locally Lipschtiz in 𝑥 for each 𝑡 ∈ T which is rd, and
the following conditions hold:

(i) 𝐷+𝑊Δ(𝑡, 𝑥) ≤ −𝑝(𝑡)𝑐(ℎ
0
(𝑡, 𝑥)) + 𝑞(𝑡), 𝑡 ̸= 𝑡

𝑘
, (𝑡, 𝑥) ∈

𝑆(ℎ, 𝜌), where 𝑐 ∈ K, 𝑝, 𝑞 ∈ 𝐶
𝑟𝑑
(T ,R+), ∫∞

𝑡0

𝑝(𝜏)Δ𝜏 =

∞, and ∫
∞

𝑡0

𝑞(𝜏)Δ𝜏 < ∞;

(ii) 𝑊(𝑡
+

𝑘
, 𝑥
𝑘
+𝐼
𝑘
(𝑥
𝑘
))−𝑊(𝑡

𝑘
, 𝑥
𝑘
) ≤ 𝑑
𝑘
𝑊(𝑡
𝑘
, 𝑥
𝑘
), (𝑡
𝑘
, 𝑥
𝑘
) ∈

𝑆(ℎ, 𝜌), where 𝑑
𝑘
≥ 0 and ∑

∞

𝑖=1
𝑑
𝑖
< ∞.

Then system (10) is (ℎ
0
, ℎ)-attractive.

Proof. ByTheorem 13, system (10) is (ℎ
0
, ℎ)-uniformly stable.

Thus, for 𝜌 > 0, there exists a 𝛿
0
= 𝛿
0
(𝜌) > 0 such that

ℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿

0
implies that ℎ(𝑡, 𝑥) < 𝜌, 𝑡 ≥ 𝑡

0
, where

𝑥(𝑡) = 𝑥(𝑡; 𝑡
0
, 𝑥
0
) is any solution of (10).

Let 𝜀 ∈ (0, 𝜌) be given, 𝛿 = 𝛿(𝜀) > 0 be the same as defined
in the definition of (ℎ

0
, ℎ)-uniform stability, and ℎ

0
(𝑡
0
, 𝑥
0
) <

𝛿
0
. We claim that there exists a 𝑡∗ ≥ 𝑡

0
such that

ℎ
0
(𝑡
∗
, 𝑥 (𝑡
∗
)) < 𝛿. (52)

If this is not true, then ℎ
0
(𝑡, 𝑥) ≥ 𝛿 for all 𝑡 ≥ 𝑡

0
.

Let

𝐿 (𝑡, 𝑥) = 𝑊 (𝑡, 𝑥) + ∫

𝑡

𝑡𝑘

𝑝 (𝜏) 𝑐 (ℎ
0
(𝜏, 𝑥 (𝜏))) Δ𝜏

− ∫

𝑡

𝑡𝑘

𝑞 (𝜏) Δ𝜏, 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] ,

(53)

for 𝑘 ∈ Z+. By condition (i), we obtain

𝐷
+
𝐿
Δ
(𝑡, 𝑥) = 𝐷

+
𝑊
Δ
(𝑡, 𝑥) + 𝑝 (𝑡) ℎ

0
(𝑡, 𝑥) − 𝑞 (𝑡)

≤ 0, 𝑡 ̸= 𝑡
𝑘
,

(54)
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which implies that, for 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 ∈ Z+,

𝐿 (𝑡, 𝑥) ≤ 𝐿 (𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
)) . (55)

Then, it follows from (55) and condition (ii) that, for 𝑡 ∈

(𝑡
𝑘
, 𝑡
𝑘+1

],

𝑊(𝑡, 𝑥) ≤ 𝑊(𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
)) − ∫

𝑡

𝑡𝑘

𝑝 (𝜏) 𝑐 (ℎ
0
(𝜏, 𝑥 (𝜏))) Δ𝜏

+ ∫

𝑡

𝑡𝑘

𝑞 (𝜏) Δ𝜏

≤ (1 + 𝑑
𝑘
)𝑊 (𝑡

𝑘
, 𝑥 (𝑡
𝑘
))

− ∫

𝑡

𝑡𝑘

𝑝 (𝜏) 𝑐 (ℎ
0
(𝜏, 𝑥 (𝜏))) Δ𝜏 + ∫

𝑡

𝑡𝑘

𝑞 (𝜏) Δ𝜏

≤ (1 + 𝑑
𝑘
)

× (𝑊(𝑡
+

𝑘−1
, 𝑥 (𝑡
+

𝑘−1
))

− ∫

𝑡𝑘

𝑡𝑘−1

𝑝 (𝜏) 𝑐 (ℎ
0
(𝜏, 𝑥 (𝜏))) Δ𝜏

+∫

𝑡𝑘

𝑡𝑘−1

𝑞 (𝜏) Δ𝜏)

− ∫

𝑡

𝑡𝑘

𝑝 (𝜏) 𝑐 (ℎ
0
(𝜏, 𝑥 (𝜏))) Δ𝜏 + ∫

𝑡

𝑡𝑘

𝑞 (𝜏) Δ𝜏

≤ (1 + 𝑑
𝑘
) (1 + 𝑑

𝑘−1
)𝑊 (𝑡

𝑘−1
, 𝑥 (𝑡
𝑘−1

))

− ∫

𝑡

𝑡𝑘−1

𝑝 (𝜏) 𝑐 (ℎ
0
(𝜏, 𝑥 (𝜏))) Δ𝜏

+ (1 + 𝑑
𝑘
) ∫

𝑡

𝑡𝑘−1

𝑞 (𝜏) Δ𝜏

≤ ⋅ ⋅ ⋅

≤

𝑘

∏

𝑖=1

(1+𝑑
𝑖
)𝑊 (𝑡

0
, 𝑥
0
)−∫

𝑡

𝑡0

𝑝 (𝜏) 𝑐 (ℎ
0
(𝜏, 𝑥 (𝜏))) Δ𝜏

+

𝑘

∏

𝑖=2

(1 + 𝑑
𝑖
)∫

𝑡

𝑡0

𝑞 (𝜏) Δ𝜏

≤ 𝑀
0
(𝑊(𝑡

0
, 𝑥
0
) + ∫

𝑡

𝑡0

𝑞 (𝜏) Δ𝜏) − 𝑐 (𝛿) ∫

𝑡

𝑡0

𝑝 (𝜏) Δ𝜏,

(56)

where 𝑀
0

= ∏
∞

𝑖=1
(1 + 𝑑

𝑖
) < ∞. Then, (56) implies that

𝑊(𝑡, 𝑥) → −∞, for 𝑡 → ∞. This contradiction shows that
(52) is true, and hence,

ℎ (𝑡, 𝑥) < 𝜀, 𝑡 ≥ 𝑡
∗
. (57)

Thus we conclude that system (10) is (ℎ
0
, ℎ)-attractive.

Remark 20. When T = Z, and 𝑑
𝑘

= 𝑑
𝑘

= 0, 𝑘 ∈ N,
Theorem 19 containsTheorem 3.4 in [18] for discrete systems
without impulse effects.

Next, we will give two results on uniform asymptotic
stability in terms of two measures.

Theorem 21. Let all the conditions of Theorem 19 and the
following additional conditions hold:

(i) 𝑊(𝑡, 𝑥) is ℎ
0
-decrescent, and 𝑝(𝑡) ≡ 𝑝 (𝑝 is a positive

constant), for 𝑡 ∈ T ;
(ii) there exists a constant 𝜏 > 0 such that

{𝑡 + 𝑘𝜏 : 𝑡 ∈ T , 𝑘 ∈ N} ⊂ T . (58)

Then system (10) is uniformly asymptotically stable.

Proof. Since𝑊(𝑡, 𝑥) is ℎ
0
-decrescent, there exist 𝛿

1
> 0 and a

function 𝑏 ∈ K such that

𝑊(𝑡, 𝑥) ≤ 𝑏 (ℎ
0
(𝑡, 𝑥)) , if ℎ

0
(𝑡, 𝑥) < 𝛿

1
. (59)

By Theorem 19, system (10) is (ℎ
0
, ℎ)-uniformly stable. Thus,

there exists a 𝛿
0
= 𝛿
0
(𝜌) ∈ (0, 𝛿

1
) such that ℎ

0
(𝑡
0
, 𝑥
0
) < 𝛿

0

implies ℎ(𝑡, 𝑥) < 𝜌, 𝑡 ≥ 𝑡
0
, for any solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡

0
, 𝑥
0
)

of (10).
Let 𝜀 ∈ (0, 𝜌) be given and 𝛿 = 𝛿(𝜀) > 0 be the same

as defined in the definition of (ℎ
0
, ℎ)-uniformly stability. Let

𝑚 > 0 be the smallest integer such that

𝑚 >
𝑀
0
(𝑏 (𝛿
0
) + 𝑁)

𝑝𝜏𝑐 (𝛿)
, (60)

where𝑀
0
= ∏
∞

𝑘=1
(1 + 𝑑

𝑘
) < ∞ and𝑁 = ∫

∞

𝑡0

𝑞(𝑠)Δ𝑠 < ∞.
Choose 𝑇 = 𝑚𝜏 and let 𝑥(𝑡) = 𝑥(𝑡; 𝑡

0
, 𝑥
0
) be any solution

of (10) with ℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿
0
. We claim that there exists a 𝑡∗ ∈

[𝑡
0
, 𝑡
0
+ 𝑇] such that ℎ

0
(𝑡
∗
, 𝑥(𝑡
∗
)) < 𝛿. If this is not true, then

ℎ
0
(𝑡, 𝑥) ≥ 𝛿 for all 𝑡∗ ∈ [𝑡

0
, 𝑡
0
+𝑇]. By (56), (60), and condition

(ii), we have

𝑊(𝑡
0
+ 𝑇, 𝑥 (𝑡

0
+ 𝑇))

≤ 𝑀
0
𝑊(𝑡
0
, 𝑥
0
) − 𝑝𝑐 (𝛿) 𝑇 +𝑀

0
∫

𝑡0+𝑇

𝑡0

𝑞 (𝑠) Δ𝑠

≤ 𝑀
0
𝑏 (𝛿
0
) − 𝑚𝑐 (𝛿) 𝑝𝜏 +𝑀

0
𝑁 < 0

(61)

which is a contradiction. Thus, our claim is true and by the
uniform stability we have

ℎ (𝑡, 𝑥) < 𝜀, 𝑡 ≥ 𝑡
0
+ 𝑇 ≥ 𝑡

∗
. (62)

Hence, system (10) is (ℎ
0
, ℎ)-uniformly attractive. This com-

pletes the proof.

Theorem 22. Let conditions (v), (vi) of Theorem 12 hold and
assume that

(i) ℎ
0
, ℎ ∈ Γ and ℎ

0
is finer than ℎ;
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(ii) there exist a 𝑐 ∈ K, and function 𝑉 ∈ 𝜈
0
such that

𝑉(𝑡, 𝑥) is locally Lipschtiz in 𝑥 for each 𝑡 ∈ T which is
rd, ℎ-positive definite on 𝑆(ℎ, 𝜌), ℎ

0
-decrescent and

𝐷
+
𝑉
Δ
(𝑡, 𝑥) ≤ −𝑐 (ℎ

0 (𝑡, 𝑥)) ,

𝑡 ̸= 𝑡
𝑘
, (𝑡, 𝑥) ∈ 𝑆 (ℎ, 𝜌) ;

(63)

(iii) 𝑉(𝑡+
𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) − 𝑉(𝑡

𝑘
, 𝑥
𝑘
) ≤ 𝑑
𝑘
𝑉(𝑡
𝑘
, 𝑥
𝑘
), (𝑡
𝑘
, 𝑥
𝑘
) ∈

𝑆(ℎ, 𝜌), where 𝑑
𝑘
≥ 0 and ∑

∞

𝑖=1
𝑑
𝑖
< ∞.

Then system (10) is (ℎ
0
, ℎ)-uniformly asymptotically stable.

Proof. Since𝑉(𝑡, 𝑥) is ℎ
0
-decrescent, there exist a constant 𝛿

0

and a function 𝑎 ∈ K such that

𝑉 (𝑡, 𝑥) ≤ 𝑎 (ℎ
0
(𝑡, 𝑥)) , if ℎ

0
(𝑡, 𝑥) < 𝛿

0
. (64)

The fact that 𝑉(𝑡, 𝑥) is ℎ-positive definite on 𝑆(ℎ, 𝜌) implies
that there exists a function 𝑏 ∈ K such that

𝑏 (ℎ (𝑡, 𝑥)) ≤ 𝑉 (𝑡, 𝑥) , if ℎ (𝑡, 𝑥) < 𝜌. (65)

It follows from Corollary 14 that system (10) is (ℎ
0
, ℎ)-

uniformly stable. Thus for 𝜌 > 0, there exist a 𝛿
1
= 𝛿
1
(𝜌) ∈

(0, 𝛿
0
) such that ℎ

0
(𝑡
0
, 𝑥
0
) < 𝛿
1
implies

ℎ (𝑡, 𝑥) < 𝜌, 𝑡 ≥ 𝑡
0
. (66)

By the choice of 𝛿
1
, we get

𝑉 (𝑡
0
, 𝑥
0
) ≤ 𝑎 (ℎ

0
(𝑡
0
, 𝑥
0
)) ≤ 𝑎 (𝛿

1
) . (67)

To prove the theorem, it is enough to show that system
(10) is (ℎ

0
, ℎ)-uniformly attractive.

Given 0 < 𝜀 < 𝜌, let 𝛿 = 𝛿(𝜀) > 0 be the same as defined
in the definition of (ℎ

0
, ℎ)-uniformly stability. Then for any

solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡
0
, 𝑥
0
) of system (10) with ℎ

0
(𝑡
0
, 𝑥
0
) < 𝛿
1
,

we claim that there exists a 𝑇 = 𝑇(𝜀) > 𝑀𝑎(𝛿
1
)/𝑐(𝛿) such

that, for some 𝑡∗ ∈ [𝑡
0
, 𝑡
0
+ 𝑇],

ℎ
0
(𝑡
∗
, 𝑥 (𝑡
∗
)) < 𝛿, (68)

where 𝑀 = ∏
∞

𝑘=1
(1 + 𝑑

𝑘
) < ∞. Suppose that this is false.

Then for any 𝑇 > 𝑀𝑎(𝛿
1
)/𝑐(𝛿) there exists a solution 𝑥(𝑡) =

𝑥(𝑡; 𝑡
0
, 𝑥
0
) of (10) satisfying ℎ

0
(𝑡
0
, 𝑥
0
) < 𝛿
1
, such that

ℎ
0
(𝑡, 𝑥 (𝑡)) ≥ 𝛿, 𝑡 ∈ [𝑡

0
, 𝑡
0
+ 𝑇] . (69)

By setting

𝐿 (𝑡, 𝑥) = 𝑉 (𝑡, 𝑥) + ∫

𝑡

𝑡𝑘

𝑐 (ℎ
0
(𝑠, 𝑥 (𝑠))) Δ𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 ∈ Z
+
,

(70)

and condition (ii), we have

𝐷
+
𝐿
Δ
(𝑡, 𝑥) = 𝐷

+
𝑉
Δ
(𝑡, 𝑥) + 𝑐 (ℎ

0
(𝑡, 𝑥)) ≤ 0,

𝑡 ̸= 𝑡
𝑘
,

(71)

which implies 𝐿(𝑡, 𝑥) ≤ 𝐿(𝑡
+

𝑘
, 𝑥(𝑡
+

𝑘
)), for 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

]. Then,
for 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

], we get

𝑉 (𝑡, 𝑥) ≤ 𝑉 (𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
)) − ∫

𝑡

𝑡𝑘

𝑐
0
(𝑠) Δ𝑠

≤ (1 + 𝑑
𝑘
) 𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) − ∫

𝑡

𝑡𝑘

𝑐
0 (𝑠) Δ𝑠

≤ (1 + 𝑑
𝑘
) (𝑉 (𝑡

+

𝑘−1
, 𝑥 (𝑡
+

𝑘−1
)) − ∫

𝑡𝑘

𝑡𝑘−1

𝑐
0
(𝑠) Δ𝑠)

− ∫

𝑡

𝑡𝑘

𝑐
0
(𝑠) Δ𝑠

≤ (1 + 𝑑
𝑘
) (1 + 𝑑

𝑘−1
) 𝑉 (𝑡
+

𝑘−1
, 𝑥 (𝑡
+

𝑘−1
))

− ∫

𝑡

𝑡𝑘−1

𝑐
0 (𝑠) Δ𝑠

≤ 𝑉 (𝑡
0
, 𝑥
0
)

𝑘

∏

𝑖=1

(1 + 𝑑
𝑖
) − ∫

𝑡

𝑡0

𝑐
0
(𝑠) Δ𝑠

≤ 𝑀𝑉 (𝑡
0
, 𝑥
0
) − ∫

𝑡

𝑡0

𝑐
0
(𝑠) Δ𝑠,

(72)

where 𝑐
0
(𝑡) := 𝑐(ℎ

0
(𝑡, 𝑥)). Hence, for 𝑡 = 𝑡

0
+ 𝑇, we obtain

𝑉(𝑡, 𝑥(𝑡))|𝑡=𝑡0+𝑇
≤ 𝑀𝑉(𝑡

0
, 𝑥
0
) − ∫

𝑡0+𝑇

𝑡0

𝑐 (ℎ
0
(𝑠, 𝑥 (𝑠))) Δ𝑠

≤ 𝑀𝑎 (𝛿
1
) − 𝑐 (𝛿) 𝑇 < 0

(73)

which is a contradiction. Hence there exists a number 𝑡∗ ∈

(𝑡
0
, 𝑡
0
+ 𝑇] such that ℎ

0
(𝑡
∗
, 𝑥(𝑡
∗
)) < 𝛿. Then for 𝑡 ≥ 𝑡

∗, thus
for 𝑡 ≥ 𝑡

0
+ 𝑇 as well, we have

ℎ (𝑡, 𝑥) < 𝜀, (74)

that is, ℎ(𝑡, 𝑥) < 𝜀 holds for 𝑡 ≥ 𝑡
0
+𝑇whichmeans that system

(10) is uniformly attractive. Theorem 22 is proved.

4.3. (ℎ
0
,ℎ)-Instability

Theorem 23. Assume that

(i) ℎ
0
, ℎ ∈ Γ, 𝑉 ∈ 𝜈

0
, 𝑉(𝑡, 𝑥) is locally Lipschtiz in 𝑥 for

each 𝑡 ∈ T which is rd, ℎ-positive definite on 𝑆(ℎ, 𝜌),
and

𝐷
+
𝑉
Δ
(𝑡, 𝑥) ≥ 0, 𝑡 ̸= 𝑡

𝑘
, (𝑡, 𝑥) ∈ 𝑆 (ℎ, 𝜌) , (75)

and for any 𝑠 ≥ 𝑡
0
and 𝛼 > 0, there is 𝛽 > 0 such that

𝑉(𝑡, 𝑥) ≥ 𝛼 for 𝑡 ≥ 𝑠 implies ℎ(𝑡, 𝑥) ≥ 𝛽 for 𝑡 ≥ 𝑠;
(ii) for (𝑡

𝑘
, 𝑥
𝑘
) ∈ 𝑆(ℎ, 𝜌), 𝑘 ∈ N,

𝑉 (𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
)) − 𝑉 (𝑡

𝑘
, 𝑥
𝑘
)

≥ 𝜆
𝑘
𝜓 (𝑉 (𝑡

𝑘
, 𝑥
𝑘
)) ,

(76)
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where 𝜆
𝑘
≥ 0 with ∑

∞

𝑘=1
𝜆
𝑘
= ∞, 𝜓 : R+ → R+ is

nondecreasing and 𝜓(0) = 0, 𝜓(𝑠) > 0 for 𝑠 > 0.

Then system (10) is (ℎ
0
, ℎ)-unstable.

Proof. Let us assume on the contrary that system (10) is
(ℎ
0
, ℎ)-stable. Then for 0 < 𝜀 < 𝜌, there exists a 𝛿 = 𝛿(𝑡

0
, 𝜀) >

0 such that ℎ
0
(𝑡
0
, 𝑥
0
) < 𝛿 implies that ℎ(𝑡, 𝑥) < 𝜀 for 𝑡 ≥ 𝑡

0
.

By setting 𝐿(𝑡) = 𝑉(𝑡, 𝑥), we know from condition (i) and
(ii) that 𝐿(𝑡) is right-nondecreasing for 𝑡 ≥ 𝑡

0
. Then, 𝐿(𝑡) ≥

𝐿(𝑡
0
), if 𝑡 ≥ 𝑡

0
. Thus, it follows from condition (i) that there

exists a 𝛽
0
= 𝛽
0
(𝐿(𝑡
0
)) > 0 such that ℎ(𝑡, 𝑥) ≥ 𝛽

0
for 𝑡 ≥ 𝑡

0
.

Since 𝑉(𝑡, 𝑥) is ℎ-positive definite on 𝑆(ℎ, 𝜌), there exists 𝑏 ∈

K such that 𝑏(ℎ(𝑡, 𝑥)) ≤ 𝑉(𝑡, 𝑥), if ℎ(𝑡, 𝑥) < 𝜌. Then, we have

𝐿 (𝑡
𝑘
) ≥ 𝑏 (ℎ (𝑡

𝑘
, 𝑥
𝑘
)) ≥ 𝑏 (𝛽

0
) , 𝑘 ∈ N. (77)

From condition (ii) and (77), we have

𝐿 (𝑡
+

𝑘
) − 𝐿 (𝑡

+

𝑘−1
) ≥ 𝐿 (𝑡

+

𝑘
) − 𝐿 (𝑡

𝑘
)

≥ 𝜆
𝑘
𝜓 (𝐿 (𝑡

𝑘
)) ≥ 𝜆

𝑘
𝜓 (𝑏 (𝛽

0
)) ,

(78)

and so

𝐿 (𝑡
+

𝑘
) ≥ 𝐿 (𝑡

+

𝑘−1
) + 𝜆
𝑘
𝜓 (𝑏 (𝛽

0
))

≥ 𝐿 (𝑡
+

𝑘−2
) + (𝜆

𝑘−1
+ 𝜆
𝑘
) 𝜓 (𝑏 (𝛽

0
))

≥ ⋅ ⋅ ⋅

≥ 𝐿 (𝑡
1
) + 𝜓 (𝑏 (𝛽

0
))

𝑘

∑

𝑖=1

𝜆
𝑖
→ ∞, as 𝑘 → ∞,

(79)

which implies that, for a given number 𝑀 ≫ 0, there exists
a 𝑠 ≥ 𝑡

0
such that 𝐿(𝑡) ≥ 𝑀 for 𝑡 ≥ 𝑠. Thus by condition (i),

there is a𝛽 = 𝛽(𝑀) > 0 such that ℎ(𝑡, 𝑥) ≥ 𝛽 for 𝑡 ≥ 𝑠which is
a contradiction to the (ℎ

0
, ℎ)-stability. Therefore, system (10)

is (ℎ
0
, ℎ)-unstable.

Theorem 24. Assume that

(i) ℎ
0
, ℎ ∈ Γ, 𝑉 ∈ 𝜈

0
, 𝑉(𝑡, 𝑥) is locally Lipschtiz in 𝑥 for

each 𝑡 ∈ T which is rd, ℎ-decrescent on 𝑆(ℎ, 𝜌), and

−𝑔 (𝑡) 𝑐 (𝑉 (𝑡, 𝑥)) ≤ 𝐷
+
𝑉
Δ
(𝑡, 𝑥) ≤ 0,

𝑡 ̸= 𝑡
𝑘
, (𝑡, 𝑥) ∈ 𝑆 (ℎ, 𝜌) ,

(80)

where 𝑔 ∈ 𝐶
𝑟𝑑
(T ,R+) and 𝑐 ∈ K;

(ii) there exist 𝜓
𝑘
: R+ → R+, 𝑘 ∈ N, such that 𝜓

𝑘
(𝑠) > 𝑠,

𝜓
𝑘
(𝑠) − 𝑠 ≥ 𝜓

𝑘
(𝑡) − 𝑡 for 𝑡 ≥ 𝑠 ≥ 0, and

𝑉 (𝑡
+

𝑘
, 𝑥
𝑘
+ 𝐼
𝑘
(𝑥
𝑘
)) ≥ 𝜓

𝑘
(𝑉 (𝑡
𝑘
, 𝑥
𝑘
)) ,

(𝑡
𝑘
, 𝑥
𝑘
) ∈ 𝑆 (ℎ, 𝜌) , 𝑘 ∈ N;

(81)

(iii) for any 𝑢 > 0,

−∫

𝑡𝑘+1

𝑡𝑘

𝑔 (𝜏) Δ𝜏 +
𝜓
𝑘
(𝑢) − 𝑢

𝑐 (𝑢)
≥ 𝑟
𝑘
, 𝑘 ∈ N, (82)

where 𝑟
𝑘
≥ 0 and ∑

∞

𝑖=1
𝑟
𝑘
= ∞.

Then system (10) is (ℎ
0
, ℎ)-unstable.

Proof. For the sake of contradiction, we assume that system
(10) is (ℎ

0
, ℎ)-stable. Then for 0 < 𝜀 < 𝜌, there exists a 𝛿 =

𝛿(𝑡
0
, 𝜀) > 0 such that ℎ

0
(𝑡
0
, 𝑥
0
) < 𝛿 implies ℎ(𝑡, 𝑥) < 𝜀 for

𝑡 ≥ 𝑡
0
. Since 𝑉(𝑡, 𝑥) is ℎ-decrescent on 𝑆(ℎ, 𝜌), there exists a

function 𝑎 ∈ K such that

𝑉 (𝑡, 𝑥) ≤ 𝑎 (ℎ (𝑡, 𝑥)) < 𝑎 (𝜌) , if ℎ (𝑡, 𝑥) < 𝜌. (83)

Let 𝑚(t) = 𝑉(𝑡, 𝑥) and 𝐿(𝑡) = 𝑉(𝑡, 𝑥) +

∫
𝑡

𝑡𝑘

𝑔(𝜏)𝑐(𝑉(𝜏, 𝑥(𝜏)))Δ𝜏, for 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 ∈ Z+. Then
it follows from condition (i) that

𝐷
+
𝐿
Δ
(𝑡) = 𝐷

+
𝑉
Δ
(𝑡, 𝑥) + 𝑔 (𝑡) 𝑐 (𝑉 (𝑡, 𝑥)) ≥ 0, 𝑡 ̸= 𝑡

𝑘
,

(84)

which implies

𝐿 (𝑡) ≥ 𝐿 (𝑡
+

𝑘
) , 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

] . (85)

Since𝐷+𝑉Δ(𝑡, 𝑥) ≤ 0, it follows from (85), that

𝑚(𝑡
𝑘+1

) − 𝑚 (𝑡
+

𝑘
) ≥ −∫

𝑡𝑘+1

𝑡𝑘

𝑔 (𝜏) 𝑐 (𝑚 (𝜏)) Δ𝜏

≥ −𝑐 (𝑚 (𝑡
+

𝑘
)) ∫

𝑡𝑘+1

𝑡𝑘

𝑔 (𝜏) Δ𝜏.

(86)

From condition (ii), we have

𝑚(𝑡
+

𝑘
) − 𝑚 (𝑡

𝑘
) ≥ 𝜓
𝑘
(𝑚 (𝑡
𝑘
)) − 𝑚 (𝑡

𝑘
)

≥ 𝜓
𝑘
(𝑚 (𝑡
+

𝑘
)) − 𝑚 (𝑡

+

𝑘
)

(87)

which, together with (86) and condition (iii), yields

𝑚(𝑡
𝑘+1

) − 𝑚 (𝑡
𝑘
) = 𝑚 (𝑡

𝑘+1
) − 𝑚 (𝑡

+

𝑘
) + 𝑚 (𝑡

+

𝑘
) − 𝑚 (𝑡

𝑘
)

≥ 𝜓
𝑘
(𝑚 (𝑡
+

𝑘
)) − 𝑚 (𝑡

+

𝑘
)

− 𝑐 (𝑚 (𝑡
+

𝑘
)) ∫

𝑡𝑘+1

𝑡𝑘

𝑔 (𝜏) Δ𝜏

≥ 𝑐 (𝑚 (𝑡
+

𝑘
)) 𝑟
𝑘
≥ 𝑐 (𝑚 (𝑡

𝑘
)) 𝑟
𝑘

≥ 𝑐 (𝑚 (𝑡
1
)) 𝑟
𝑘
, 𝑘 ∈ N.

(88)

Thus,

𝑚(𝑡
𝑘+1

) ≥ 𝑚 (𝑡
1
) + 𝑐 (𝑚 (𝑡

1
))

𝑘

∑

𝑖=1

𝑟
𝑖
󳨀→ ∞, as 𝑘 󳨀→ ∞,

(89)

which contradicts (83). Therefore, system (10) is (ℎ
0
, ℎ)-

unstable and the proof is complete.
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5. Examples

In this section, as applications of the above-derived theoreti-
cal criteria, two representative examples are given as follows.

Example 25. Consider the system

𝑥
Δ
(𝑡) =

𝑦 (𝑡)

2 (1 + 𝑥2 (𝑡))
− 𝑥 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝑦
Δ
(𝑡) =

𝑥 (𝑡)

2 (1 + 𝑦2 (𝑡))
− 𝑦 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡
𝑘
) =

3

2𝑘
𝑥 (𝑡
𝑘
) , 𝑘 ∈ N,

Δ𝑦 (𝑡
𝑘
) =

5

2𝑘
𝑦 (𝑡
𝑘
) , 𝑘 ∈ N,

(90)

on time scale T .

Let 𝑉(𝑥, 𝑦) = 𝑥
2
+ 𝑦
2. Then we have

𝑉
Δ
(𝑥, 𝑦)

= (𝑥
2
+ 𝑦
2
)
Δ

= 𝑥
Δ
𝑥 + 𝑥
𝜎
𝑥
Δ
+ 𝑦
Δ
𝑦 + 𝑦
𝜎
𝑦
Δ

= 𝑥
Δ
(2𝑥 + 𝜇𝑥

Δ
) + 𝑦
Δ
(2𝑦 + 𝜇𝑦

Δ
)

= 2𝑥(
𝑦

2 (1 + 𝑥2)
− 𝑥) + 2𝑦(

𝑥

2 (1 + 𝑦2)
− 𝑦)

+ 𝜇[(
𝑦

2(1 + 𝑥2)
− 𝑥)

2

+ (
𝑥

2(1 + 𝑦2)
− 𝑦)

2

]

=
(1 − 𝜇) 𝑥𝑦 (1 + 𝑥

2
) + (𝜇/4) 𝑦

2

(1 + 𝑥2)
2

+ (𝜇 − 2) (𝑥
2
+ 𝑦
2
)

+
(1 − 𝜇) 𝑥𝑦 (1 + 𝑦

2
) + (𝜇/4) 𝑥

2

(1 + 𝑦2)
2

≤
(1/2) (1 − 𝜇) (𝑥

2
+ 𝑦
2
) (1 + 𝑥

2
) + (𝜇/4) (𝑥

2
+ 𝑦
2
)

(1 + 𝑥2)
2

+ (𝜇 − 2) (𝑥
2
+ 𝑦
2
)

+
(1/2) (1 − 𝜇) (𝑥

2
+ 𝑦
2
) (1 + 𝑦

2
) + (𝜇/4) (𝑥

2
+ 𝑦
2
)

(1 + 𝑦2)
2

≤
1

2
(𝜇 − 2)𝑉 (𝑥, 𝑦) , 𝑡 ̸= 𝑡

𝑘
,

(91)

where 𝑥𝜎(𝑡) = 𝑥(𝜎(𝑡)), and

𝑉 (𝑥 (𝑡
+

𝑘
) , 𝑦 (𝑡

+

𝑘
))

= 𝑥
2
(𝑡
+

𝑘
) + 𝑦
2
(𝑡
+

𝑘
)

= (1 +
3

2𝑘
)

2

𝑥
2
(𝑡
𝑘
) + (1 +

5

2𝑘
)

2

𝑦
2
(𝑡
𝑘
)

≤ 𝑉 (𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
)) +

1

2𝑘−5
𝑉 (𝑥 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
)) , 𝑘 ∈ N,

(92)

that is,

𝑉 (𝑥 (𝑡
+

𝑘
) , 𝑦 (𝑡

+

𝑘
)) − 𝑉 (𝑥 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
)) ≤ 𝑑

𝑘
𝑉 (𝑥 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
)) ,

(93)

where 𝑑
𝑘
= 1/2
𝑘−5 and∏

∞

𝑘=1
𝑑
𝑘
< ∞.

If 𝜇(𝑡) ≤ 2, then by (91) we have

𝑉
Δ
(𝑥, 𝑦) ≤ 0. (94)

Then for ℎ(𝑥, 𝑦) = |𝑥| and ℎ
0
(𝑥, 𝑦) = √𝑥2 + 𝑦2, we have

ℎ
2
(𝑥, 𝑦) ≤ 𝑉 (𝑡, 𝑥) ≤ ℎ

2

0
(𝑥, 𝑦) . (95)

From Corollary 14, we conclude that system (90) is (ℎ
0
, ℎ)-

uniformly stable. It should be noted that (ℎ
0
, ℎ)-stability in

this case implies, by the choice of ℎ and ℎ
0
, that the trivial

solution of (90) is partially stable with respect to 𝑥.
If, for a given positive constant 𝑚 ≤ 1, 𝜇(𝑡) ≤ 2(1 − 𝑚),

then we have

𝑉
Δ
(𝑥, 𝑦) ≤ −𝑚𝑉 (𝑥, 𝑦) . (96)

Then for ℎ(𝑥, 𝑦) = 2|𝑥𝑦| and ℎ
0
(𝑥, 𝑦) = 𝑥

2
+ 𝑦
2, we have

ℎ (𝑥, 𝑦) ≤ 𝑉 (𝑥, 𝑦) ≤ ℎ
0
(𝑥, 𝑦) . (97)

By Corollary 18, we conclude that system (90) is (ℎ
0
, ℎ)-

asymptotically stable. Moreover, since ℎ
0
= 𝑉, we conclude,

by Theorem 22, that system (90) is (ℎ
0
, ℎ)-uniformly asymp-

totically stable.

Example 26. Consider the following system [14]

𝑥
Δ

1
= − (𝑒

−𝑡
+ 1) 𝑥

1
−

𝑥
1
𝑥
2

2

1 + 𝑥2
2

, 𝑡 ̸= 𝑡
𝑘
,

𝑥
Δ

2
= − (𝑒

−𝑡
+ 1) 𝑥

2
−

𝑥
2

1
𝑥
2

1 + 𝑥2
1

, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
1
=

1

2
𝑥
1
, 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N,

Δ𝑥
2
=

1

2
𝑥
2
, 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N,

(98)

on time scale T such that 𝜇(𝑡) ≥ 2/(𝑒
−𝑡
+ 1), for all 𝑡 ∈ T .
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Let 𝑉(𝑡, 𝑥) = 𝑥
2

1
+ 𝑥
2

2
, then we get

𝑉
Δ
(𝑡, 𝑥) = 𝑥

Δ

1
𝑥
1
+ 𝑥
𝜎

1
𝑥
Δ

1
+ 𝑥
Δ

2
𝑥
2
+ 𝑥
𝜎

2
𝑥
Δ

2

= 𝑥
Δ

1
𝑥
1
+ (𝑥
1
+ 𝜇𝑥
𝜎

1
) 𝑥
Δ

1
+ 𝑥
Δ

2
𝑥
2
+ (𝑥
2
+ 𝜇𝑥
𝜎

2
) 𝑥
Δ

2

= 2𝑥
Δ

1
𝑥
1
+ 2𝑥
Δ

2
𝑥
2
+ 𝜇 [(𝑥

Δ

1
)
2

+ (𝑥
Δ

2
)
2

] ,

(99)

where𝑥𝜎
𝑖
= 𝑥
𝑖
(𝜎(𝑡)), 𝑖 = 1, 2. Substituting (98) into (99) yields

𝑉
Δ
(𝑡, 𝑥) = [𝜇 (𝑒

−𝑡
+ 1)
2

− 2 (𝑒
−𝑡
+ 1)] (𝑥

2

1
+ 𝑥
2

2
)

+
𝜇𝑥
2

1
𝑥
4

2

(1 + 𝑥2
2
)
2
+

𝜇𝑥
4

1
𝑥
2

2

(1 + 𝑥2
1
)
2

+ 2 [𝜇 (𝑒
−𝑡
+ 1) − 1](

𝑥
2

1
𝑥
2

2

1 + 𝑥2
1

+
𝑥
2

1
𝑥
2

2

1 + 𝑥2
2

)

≥
𝑥
2

1
𝑥
4

2

(1 + 𝑥2
2
)
2
+

𝑥
4

1
𝑥
2

2

(1 + 𝑥2
1
)
2
≥ 0.

(100)

When 𝑡 = 𝑡
𝑘
, we have

𝑉 (𝑡
+

𝑘
, 𝑥 (𝑡
+

𝑘
)) = 𝑥

2

1
(𝑡
+

𝑘
) + 𝑥
2

2
(𝑡
+

𝑘
) =

9

4
𝑥
2

1
(𝑡
𝑘
) +

9

4
𝑥
2

2
(𝑡
𝑘
)

= 𝑉 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) + 𝜆

𝑘
𝜓 (𝑉 (𝑡

𝑘
, 𝑥 (𝑡
𝑘
))) ,

(101)

where 𝜆
𝑘
≡ 5/4 and 𝜓(𝑠) = 𝑠.

For ℎ(𝑡, 𝑥) = |𝑥
1
| + |𝑥
2
| and ℎ

0
∈ Γ, we have

ℎ
2
(𝑡, 𝑥) = (

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨)
2
= 𝑥
2

1
+ 𝑥
2

2
+ 2𝑥
1
𝑥
2
≥ 𝑉 (𝑡, 𝑥) .

(102)

Then, for any 𝑠 ≥ 𝑡
0
and 𝛼 > 0, 𝑉(𝑡, 𝑥) ≥ 𝛼 implies that

ℎ(𝑡, 𝑥) ≥ 𝛽 = √𝛼. Hence, all the conditions of Theorem 23
are satisfied, and system (98) is (ℎ

0
, ℎ)-unstable.

6. Conclusions

We have generalized the concepts of stability in terms of
two measures relative to ordinary impulsive systems to
impulsive systems on time scales. By employing the approach
of Lyapunov function, we have established some criteria
ensuring stability and instability in terms of two measures
for nonlinear impulsive systems on time scales. Two examples
have been worked out to demonstrate the main results.
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