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We consider a queueingmodel that is primarily applicable to traffic control in communication networks that use the Selective Trunk
Reservation technique. Specifically, consider two traffic streams competing for service at an 𝑛-server queueing system. Jobs from
the protected stream, stream 1, are blocked only if all 𝑛 servers are busy. Jobs from the best effort stream, stream 2, are blocked if
𝑛 − 𝑟, 𝑟 ≥ 1, servers are busy. Blocked jobs are diverted to a secondary group of 𝑐 − 𝑛 servers with, possibly, a different service
rate. We extend the literature that studied this system for the special case of 𝑟 = 1 and present an explicit computational scheme to
calculate the joint probabilities of the number of primary and secondary busy servers and related performance measures. We also
argue that the model can be useful for bed allocation in a hospital.

1. Introduction

In this paper, we consider a simple and effective traffic control
technique for communication networks with two priority
traffic classes. The method, referred to as Selective Trunk
Reservation (STR), assumes two traffic streams competing for
service at an 𝑛-server queueing system. Jobs from stream 1,
the protected stream, are blocked if all 𝑛 servers are busy. Jobs
from stream 2, the best effort stream, are blocked if 𝑛 − 𝑟, 𝑟 ≥
1, servers are busy. Blocked jobs are sent to a secondary group
of 𝑐−𝑛 servers with, possibly, a different service rate from that
of the primary servers. Jobs from both streams are lost when
all 𝑐 servers are busy.

El-Taha andHeath [1] consider a similar problembut they
restrict attention to the case 𝑟 = 1 and describe a procedure
to evaluate joint probabilities for 𝑟 > 1. Their paper includes
significant enhancements of earlier work (e.g., [1–7]). This
paper is an extension of El-Taha and Heath [1] work and a
response to inquiries about implementing the STR method
of [1] for all 𝑟 ≥ 1. In particular, we explicitly derive the joint
probabilities for all 𝑟 ≥ 1 and provide an efficient algorithm
for computing them.

The block diagram of the model in this paper is shown in
Figure 1. We derive the joint probabilities of the number of
primary and secondary busy servers. From these probabili-
ties, performance measures, including overflow probabilities
of the server groups, are derived. We then apply our results
to the specific case of two Poisson traffic streams and two
heterogeneous groups of exponential servers.

One alternative application of the model in this paper,
which came to our attention recently, is for bed allocation
in a hospital ward. The literature contains several examples
of bed allocation with interesting similarities to the classic
STR problem of communication. Examples of these works
include [8–13]. In many of these works (e.g., [8, 10]), two
types of patients are considered, serious and nonserious,
which arrive according to a Poisson process and have an
exponentially distributed duration of stay (service time),
similar to the two streams of arrivals in the STR problem.
More interestingly, this literature discusses the setting of a
“cut-off occupancy” in terms of a number of beds in the
ward reserved for serious patients only, which is in the same
spirit of STR. Esogbue and Singh [10] further consider “buffer
accommodation” which mimics the secondary servers we
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Figure 1: Block diagram of the STR model.

consider in this paper. However, one distinctive difference
between STR in communication and bed allocation in hos-
pitals is that, in the latter, the service times depend on the
type of arrival. This require state expansion, to track patient
type, in Markovian STR models, such as the one in this
paper. We believe that our efficient computational schemes
can be tailored for such expanded-state bed allocation
problems.

The paper is organized as follows. In Section 2, we present
an efficient iterative method to find the joint probability
distribution of the number of busy primary and secondary
servers. In Section 3, we provide an application that considers
two Poisson streams, based on the analysis of Section 2, and
we illustrate the application of the method by a numerical
example. In Section 4, we draw some conclusions and discuss
possible extensions. Finally, in the Appendix we provide an
algorithm that is used for the development of a computer
program of the present model.

2. Joint Stationary Probabilities

Formally, we describe the above model as a two-dimensional
stochastic process X ≡ {(𝑋

1
(𝑡), 𝑋
2
(𝑡)); 𝑡 ≥ 0} with finite

state spaceS such that𝑋
1
(𝑡) takes integer values in {0, . . . , 𝑛},

𝑛 ≥ 1; 𝑋
2
(𝑡) takes integer values in {0, . . . , 𝑐 − 𝑛}, 𝑐 ≥ 𝑛 + 1.

Here, 𝑋
1
(𝑡) represents the number of primary busy servers

and𝑋
2
(𝑡) represents the number of secondary busy servers.

Utilizing a similar notation to El-Taha and Heath [1],
define 𝛽

1
(𝑖, 𝑗) to be the state (𝑖, 𝑗) stream 1 arrival rate and

𝛽
2
(𝑖, 𝑗) to be the stream 2 arrival rate when the system state

is (𝑖, 𝑗). Let 𝛽(𝑖, 𝑗) = 𝛽
1
(𝑖, 𝑗) + 𝛽

2
(𝑖, 𝑗). Define 𝛾

1
(𝑖) to be

the primary group service rate when 𝑖 primary servers are
busy and 𝛾

2
(𝑗) to be the secondary group service rate when

𝑗 secondary servers are busy. Let 𝑝
𝑖,𝑗

denote the state (𝑖, 𝑗)
joint stationary probability, 𝑖 = 0, . . . , 𝑛, 𝑗 = 0, . . . , 𝑐 − 𝑛.
The transition rate out of state (𝑖, 𝑗) is denoted by 𝛼(𝑖, 𝑗) =
𝛽(𝑖, 𝑗)+𝛾

1
(𝑖)+𝛾
2
(𝑗).Then, the state probabilities for any 𝑟 ≥ 1

satisfy the global balance equations:

𝛼 (𝑖, 𝑗) 𝑝
𝑖,𝑗
= 𝛽 (𝑖 − 1, 𝑗) 𝑝

𝑖−1,𝑗
+ 𝛾
1
(𝑖 + 1) 𝑝

𝑖+1,𝑗

+ 𝛾
2
(𝑗 + 1) 𝑝

𝑖,𝑗+1
,

𝑖 = 0, 1, . . . , 𝑛 − 𝑟 − 1; 𝑗 = 𝑐 − 𝑛, . . . , 0,

(1)

𝛼 (𝑛 − 𝑟, 𝑗) 𝑝
𝑛−𝑟,𝑗

= 𝛽 (𝑛 − 𝑟 − 1, 𝑗) 𝑝
𝑛−𝑟−1,𝑗

+ 𝛽
2
(𝑛 − 𝑟, 𝑗 − 1) 𝑝

𝑛−𝑟,𝑗−1

+ 𝛾
1
(𝑛 − 𝑟 + 1) 𝑝

𝑛−𝑟+1,𝑗

+ 𝛾
2
(𝑗 + 1) 𝑝

𝑛−𝑟,𝑗+1
;

𝑗 = 𝑐 − 𝑛, . . . , 0,

(2)
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𝛼 (𝑖, 𝑗) 𝑝
𝑖,𝑗
= 𝛽
1
(𝑖 − 1, 𝑗) 𝑝

𝑖−1,𝑗

+ 𝛽
2
(𝑖, 𝑗 − 1) 𝑝

𝑖,𝑗−1

+ 𝛾
1
(𝑖 + 1) 𝑝

𝑖+1,𝑗

+ 𝛾
2
(𝑗 + 1) 𝑝

𝑖,𝑗+1
;

𝑖 = 𝑛 − 𝑟 + 1, . . . , 𝑛 − 1; 𝑗 = 𝑐 − 𝑛, . . . , 0,

(3)

𝛼 (𝑛, 𝑗) 𝑝
𝑛,𝑗
= 𝛽
1
(𝑛 − 1, 𝑗) 𝑝

𝑛−1,𝑗

+ 𝛽 (𝑛, 𝑗 − 1) 𝑝
𝑛,𝑗−1

+ 𝛾
2
(𝑗 + 1) 𝑝

𝑛,𝑗+1
;

𝑗 = 𝑐 − 𝑛, . . . , 0.

(4)

The normalization equation is ∑𝑛
𝑖=0
∑
𝑐−𝑛

𝑗=0
𝑝
𝑖,𝑗

= 1. The re-
lations in (1)–(4) are graphically illustrated in Figure 2.
Equations (1)–(4) expand similar flow balance equations in
El-Taha and Heath [1] by allowing for 𝑟 > 1 in (3). Equations
(1), (2), and (4) are the same as those in [1]. We present these
equations here for completeness.

The remainder of this section is devoted to solving (1)–
(4) efficiently via an iterative scheme. The first step, in (5),
expresses each 𝑝

𝑖,𝑗
, 𝑖 = 1, . . . , 𝑛 − 𝑟, 𝑗 = 0, . . . , 𝑐 − 𝑛, in terms

of the probabilities 𝑝
0,𝑘
, 𝑘 = 𝑗, . . . , 𝑐 − 𝑛:

𝑝
𝑖,𝑗
=

min{𝑖,𝑐−𝑛−𝑗}

∑

𝑘=0

(−1)
𝑘
𝐺 (𝑖, 𝑗, 𝑘) 𝑝

0,𝑗+𝑘
,

𝑖 = 1, . . . , 𝑛 − 𝑟, 𝑗 = 0, . . . , 𝑐 − 𝑛,

(5)

where, for each 𝑗 = 𝑐 − 𝑛, . . . , 0,

𝐺 (𝑖, 𝑗, 𝑘)

=

{
{
{
{

{
{
{
{

{

1 𝑖 = 0, 𝑘 = 0;

𝛾
1
(𝑖)
−1
[𝛼 (𝑖 − 1, 𝑗) 𝐺 (𝑖 − 1, 𝑗, 𝑘) − 𝛽 (𝑖 − 2, 𝑗) 𝐺 (𝑖 − 2, 𝑗, 𝑘) + 𝛾

2
(𝑗 + 1)𝐺 (𝑖 − 1, 𝑗 + 1, 𝑘 − 1)] , 𝑘 = 0, . . . ,min {𝑖, 𝑐 − 𝑛 − 𝑗} , 𝑖 = 1, . . . , 𝑛 − 𝑟;

0 otherwise.

(6)

Equation (5) can be proved in a similar manner to Lemma
2.1 of El-Taha and Heath [1]. In our main result, Theorem 1,
(5) is utilized in obtaining {𝑝

𝑖,𝑗
, 𝑖 = 0, . . . , 𝑛 − 𝑟; 𝑗 =

0, . . . , 𝑐 − 𝑛}, in terms of 𝑝
𝑛−𝑘,𝑐−𝑛

, 𝑘 = 0, 1, . . . , 𝑟. The
𝑝
𝑛−𝑘,𝑐−𝑛

probabilities are obtained by solving a system of
𝑟 + 1 linear equations formulated by applying Theorem 1
in combination with the limiting state probabilities of the
number of busy primary servers. Finally, all joint probabilities
are computed by appealing again to Theorem 1 and by
replacing 𝑝

𝑛−𝑘,𝑐−𝑛
, 𝑘 = 0, 1, . . . , 𝑟, by their computed values.

Theorem 1 is our main contribution with respect to El-
Taha and Heath [1], as it gives explicit expressions of the
limiting probabilities 𝑝

𝑖,𝑗
in terms of a smaller set of these

probabilities, 𝑝
𝑛−𝑘,𝑐−𝑛

, 𝑘 = 0, 1, . . . , 𝑟. The main result in [1]
is a special case of Theorem 1 with 𝑟 = 1.

Theorem 1. For all (𝑖, 𝑗), 𝑖 = 0, . . . , 𝑛 and 𝑗 = 0, . . . , 𝑐 − 𝑛,

𝑝
𝑖,𝑗
=

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑖, 𝑗) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛
, (7)

where

𝐵
𝑚
(𝑖, 𝑗) =

min(𝑖,𝑐−𝑛−𝑗)

∑

𝑘=0

(−1)
𝑘
𝐺 (𝑖, 𝑗, 𝑘) 𝐵

𝑚
(0, 𝑗 + 𝑘) ,

𝑚 = 0, . . . , 𝑟; 𝑖 = 1, . . . , 𝑛 − 𝑟 − 1; 𝑟 ≤ 𝑛 − 2; 𝑗 = 𝑐 − 𝑛 − 1, . . . , 0;

(8)

and the “boundary” conditions are

𝐵
𝑚
(0, 𝑗) = 𝐺 (𝑛 − 𝑟, 𝑗, 0)

−1

[𝐵
𝑚
(𝑛 − 𝑟, 𝑗)

−

min(𝑛−𝑟,𝑐−𝑛−𝑗)

∑

𝑘=1

(−1)
𝑘
𝐺 (𝑛 − 𝑟, 𝑗, 𝑘) 𝐵

𝑚
(0, 𝑗 + 𝑘)] ,

𝑚 = 0, . . . , 𝑟; 𝑗 = 𝑐 − 𝑛 − 1, . . . , 0,

(9)

𝐵
𝑚
(𝑛 − 𝑟, 𝑗) = 𝛽

2
(𝑛 − 𝑟, 𝑗)

−1

⋅ [𝛼 (𝑛 − 𝑟, 𝑗 + 1) 𝐵
𝑚
(𝑛 − 𝑟, 𝑗 + 1)

− 𝛽 (𝑛 − 𝑟 − 1, 𝑗 + 1) 𝐵
𝑚
(𝑛 − 𝑟 − 1, 𝑗 + 1)

− 𝛾
1
(𝑛 − 𝑟 + 1) 𝐵

𝑚
(𝑛 − 𝑟 + 1, 𝑗 + 1)

− 𝛾
2
(𝑗 + 2) 𝐵

𝑚
(𝑛 − 𝑟, 𝑗 + 2)] ,

𝑚 = 0, . . . , 𝑟; 𝑗 = 𝑐 − 𝑛 − 1, . . . , 0,

(10)

𝐵
𝑚
(𝑖, 𝑗) = 𝛽

2
(𝑖, 𝑗)
−1

[𝛼 (𝑖, 𝑗 + 1) 𝐵
𝑚
(𝑖, 𝑗 + 1)

− 𝛽
1
(𝑖 − 1, 𝑗 + 1) 𝐵

𝑚
(𝑖 − 1, 𝑗 + 1)

− 𝛾
1
(𝑖 + 1) 𝐵

𝑚
(𝑖 + 1, 𝑗 + 1) − 𝛾

2
(𝑗 + 2) 𝐵

𝑚
(𝑖, 𝑗 + 2)] ,

𝑚 = 0, . . . , 𝑟; 𝑖 = 𝑛 − 𝑟 + 1, . . . , 𝑛 − 1; 𝑗 = 𝑐 − 𝑛 − 1, . . . , 0,

(11)

𝐵
𝑚
(𝑛, 𝑗) = 𝛽 (𝑛, 𝑗)

−1

[𝛼 (𝑛, 𝑗 + 1) 𝐵
𝑚
(𝑛, 𝑗 + 1)

− 𝛽
1
(𝑛 − 1, 𝑗 + 1) 𝐵

𝑚
(𝑛 − 1, 𝑗 + 1)

− 𝛾
2
(𝑗 + 2) 𝐵

𝑚
(𝑛, 𝑗 + 2)] ,

𝑚 = 0, . . . , 𝑟; 𝑗 = 𝑐 − 𝑛 − 1, . . . , 0,

(12)
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Figure 2: Transition diagram of the model.



Advances in Operations Research 5

𝐵
𝑚
(𝑖, 𝑐 − 𝑛)

=

{
{
{
{

{
{
{
{

{

𝐺 (𝑖, 𝑐 − 𝑛, 0)

𝐺 (𝑛 − 𝑟, 𝑐 − 𝑛, 0)

; 𝑚 = 0; 𝑖 = 0, . . . , 𝑛 − 𝑟

1; 𝑖 = 𝑛 − 𝑟 + 𝑚; 𝑚 = 1, . . . , 𝑟;

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(13)

Proof. The joint probabilities are derived iteratively. First
consider 𝑗 = 𝑐 − 𝑛. By (5),

𝑝
𝑖,𝑐−𝑛

= 𝐺 (𝑖, 𝑐 − 𝑛, 0) 𝑝
0,𝑐−𝑛

; 𝑖 = 0, 1, . . . , 𝑛 − 𝑟, (14)
which implies

𝑝
𝑛−𝑟,𝑐−𝑛

= 𝐺 (𝑛 − 𝑟, 𝑐 − 𝑛, 0) 𝑝
0,𝑐−𝑛

, (15)
and then

𝑝
0,𝑐−𝑛

= 𝐺 (𝑛 − 𝑟, 𝑐 − 𝑛, 0)
−1
𝑝
𝑛−𝑟,𝑐−𝑛

. (16)
It follows that

𝑝
𝑖,𝑐−𝑛

=

𝐺 (𝑖, 𝑐 − 𝑛, 0)

𝐺 (𝑛 − 𝑟, 𝑐 − 𝑛, 0)

𝑝
𝑛−𝑟,𝑐−𝑛

= 𝐵
0
(𝑖, 𝑐 − 𝑛) 𝑝

𝑛−𝑟,𝑐−𝑛
, 𝑖 = 0, . . . , 𝑛 − 𝑟,

(17)

where 𝐵
0
(𝑖, 𝑐 − 𝑛) is given by (13). Note that, for 𝑖 = 𝑛 − 𝑟 +

1, . . . , 𝑛 and all 𝑚 = 0, . . . , 𝑟, 𝐵
𝑚
(𝑖, 𝑐 − 𝑛) = 0 except 𝐵

𝑚
(𝑛 −

𝑟 +𝑚, 𝑐 − 𝑛) = 1. Therefore, the theorem is valid for 𝑗 = 𝑐 − 𝑛.
Next, we consider the general case. Rewrite (3) as

𝑝
𝑖,𝑗−1

= 𝛽
2
(𝑖, 𝑗 − 1)

−1

[𝛼 (𝑖, 𝑗) 𝑝
𝑖,𝑗
− 𝛽
1
(𝑖 − 1, 𝑗) 𝑝

𝑖−1,𝑗

− 𝛾
1
(𝑖 + 1) 𝑝

𝑖+1,𝑗
− 𝛾
2
(𝑗 + 1) 𝑝

𝑖,𝑗+1
] .

(18)

Using a change of variable (𝑗 − 1 → 𝑗), we obtain

𝑝
𝑖,𝑗
= 𝛽
2
(𝑖, 𝑗)
−1

[𝛼 (𝑖, 𝑗 + 1) 𝑝
𝑖,𝑗+1

− 𝛽
1
(𝑖 − 1, 𝑗 + 1) 𝑝

𝑖−1,𝑗+1
− 𝛾
1
(𝑖 + 1) 𝑝

𝑖+1,𝑗+1

− 𝛾
2
(𝑗 + 2) 𝑝

𝑖,𝑗+2
] ,

(19)

where 𝑖 = 𝑛 − 𝑟 + 1, . . . , 𝑛 − 1; and 𝑗 = 𝑐 − 𝑛 − 1, . . . , 0.
Now, suppose that the theoremholds for 𝑗+1, 𝑗+2, . . . , 𝑐−

𝑛. Then for 𝑖 = 𝑛 − 𝑟 + 1, . . . , 𝑛 − 1; and 𝑗 = 𝑐 − 𝑛 − 1, . . . , 0

𝑝
𝑖,𝑗
= 𝛽
2
(𝑖, 𝑗)
−1

⋅ {𝛼 (𝑖, 𝑗 + 1)

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑖, 𝑗 + 1) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛

− 𝛽
1
(𝑖 − 1, 𝑗 + 1)

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑖 − 1, 𝑗 + 1) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛

− 𝛾
1
(𝑖 + 1)

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑖 + 1, 𝑗 + 1) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛

− 𝛾
2
(𝑗 + 2)

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑖, 𝑗 + 2) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛
} ,

(20)

which leads to

𝑝
𝑖,𝑗
= 𝛽
2
(𝑖, 𝑗)
−1

{

𝑟

∑

𝑚=0

[𝛼 (𝑖, 𝑗 + 1) 𝐵
𝑚
(𝑖, 𝑗 + 1)

− 𝛽
1
(𝑖 − 1, 𝑗 + 1) 𝐵

𝑚
(𝑖 − 1, 𝑗 + 1)

− 𝛾
1
(𝑖 + 1) 𝐵

𝑚
(𝑖 + 1, 𝑗 + 1)

− 𝛾
2
(𝑗 + 2) 𝐵

𝑚
(𝑖, 𝑗 + 2)] 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛
} =

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑖,

𝑗) 𝑝
𝑛−𝑟+𝑚,𝑐−𝑛

,

(21)
where 𝐵

𝑚
(𝑖, 𝑗) is given by (11).

Similarly, by manipulating (2) and (4) one can show
that 𝑝

𝑛−𝑟,𝑗
= ∑
𝑟

𝑚=0
𝐵
𝑚
(𝑛 − 𝑟, 𝑗)𝑝

𝑛−𝑟+𝑚,𝑐−𝑛
, 𝑗 = 0, . . . , 𝑐 −

𝑛, where 𝐵
𝑚
(𝑛 − 𝑟, 𝑗) is given by (10) and that 𝑝

𝑛,𝑗
=

∑
𝑟

𝑚=0
𝐵
𝑚
(𝑛, 𝑗)𝑝

𝑛−𝑟+𝑚,𝑐−𝑛
, 𝑗 = 0, . . . , 𝑐 − 𝑛, where 𝐵

𝑚
(𝑛, 𝑗) is

given by (12).
Next, we evaluate 𝑝

0,𝑗
, 𝑗 = 𝑐−𝑛−1, . . . , 0. It follows from

the above equations and (5) that

𝑝
𝑛−𝑟,𝑗

=

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑛 − 𝑟, 𝑗) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛

=

min(𝑛−𝑟,𝑐−𝑛−𝑗)

∑

𝑘=0

(−1)
𝑘
𝐺 (𝑛 − 𝑟, 𝑗, 𝑘) 𝑝

0,𝑗+𝑘

= 𝐺 (𝑛 − 𝑟, 𝑗, 0) 𝑝
0,𝑗

+

min(𝑛−𝑟,𝑐−𝑛−𝑗)

∑

𝑘=1

(−1)
𝑘
𝐺 (𝑛 − 𝑟, 𝑗, 𝑘) 𝑝

0,𝑗+𝑘
.

(22)

Solving for 𝑝
0,𝑗
, using the induction argument, and

simplifying,

𝑝
0,𝑗
= 𝐺 (𝑛 − 𝑟, 𝑗, 0)

−1

[𝑝
𝑛−𝑟,𝑗

−

min(𝑛−𝑟,𝑐−𝑛−𝑗)

∑

𝑘=1

(−1)
𝑘

⋅ 𝐺 (𝑛 − 𝑟, 𝑗, 𝑘) 𝑝
0,𝑗+𝑘

] = 𝐺 (𝑛 − 𝑟, 𝑗, 0)
−1

⋅ [

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑛 − 𝑟, 𝑗) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛

−

𝑟

∑

𝑚=0

min(𝑛−𝑟,𝑐−𝑛−𝑗)

∑

𝑘=1

(−1)
𝑘
𝐺 (𝑛 − 𝑟, 𝑗, 𝑘) 𝐵

𝑚
(0, 𝑗 + 𝑘)

⋅ 𝑝
𝑛−𝑟+𝑚,𝑐−𝑛

] = 𝐺 (𝑛 − 𝑟, 𝑗, 0)
−1

𝑟

∑

𝑚=0

[𝐵
𝑚
(𝑛 − 𝑟, 𝑗)

−

min(𝑛−𝑟,𝑐−𝑛−𝑗)

∑

𝑘=1

(−1)
𝑘
𝐺 (𝑛 − 𝑟, 𝑗, 𝑘) 𝐵

𝑚
(0, 𝑗 + 𝑘)]

⋅ 𝑝
𝑛−𝑟+𝑚,𝑐−𝑛

=

𝑟

∑

𝑚=0

𝐵
𝑚
(0, 𝑗) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛
,

(23)

where 𝐵
𝑚
(0, 𝑗) is given by (9).

Now, for 𝑖 = 1, 2, . . . , 𝑛 − 𝑟 − 1, using (5),

𝑝
𝑖,𝑗
=

min(𝑖,𝑐−𝑛−𝑗)

∑

𝑘=0

(−1)
𝑘
𝐺 (𝑖, 𝑗, 𝑘) 𝑝

0,𝑗+𝑘

=

min(𝑖,𝑐−𝑛−𝑗)

∑

𝑘=0

(−1)
𝑘
𝐺 (𝑖, 𝑗, 𝑘)
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⋅

𝑟

∑

𝑚=0

𝐵
𝑚
(0, 𝑗 + 𝑘) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛

=

𝑟

∑

𝑚=0

[

min(𝑖,𝑐−𝑛−𝑗)

∑

𝑘=0

(−1)
𝑘
𝐺 (𝑖, 𝑗, 𝑘) 𝐵

𝑚
(0, 𝑗 + 𝑘)]

⋅ 𝑝
𝑛−𝑟+𝑚,𝑐−𝑛

=

𝑟

∑

𝑚=0

𝐵
𝑚
(𝑖, 𝑗) 𝑝

𝑛−𝑟+𝑚,𝑐−𝑛
,

(24)

where 𝐵
𝑚
(𝑖, 𝑗) is given by (8). The induction argument

completes the proof of the theorem.

Now, we proceed to evaluate 𝑝
𝑛−𝑟+𝑚,𝑐−𝑛

, 𝑚 = 0, . . . , 𝑟.
In the following theorem, these are obtained based on the
marginal limiting probabilities of the number of busy primary
servers, 𝑝(𝑛)

𝑘
, 𝑘 = 0, 1, . . . , 𝑛, which have a simple closed

form.

Theorem2. Theprobabilities𝑝
𝑛−𝑟+𝑚,𝑐−𝑛

, 𝑚 = 0, . . . , 𝑟, are the
solution to the following system of linear equations:

𝑟

∑

𝑚=0

𝐶 (𝑚, 𝑘) 𝑝
𝑛−𝑟+𝑚,𝑐−𝑛

= 𝑝
(𝑛)

𝑘
, (25)

where 𝑝(𝑛)
𝑘

= (∏
𝑘

𝑖=1
𝛽(𝑖 − 1)𝛾

1
(𝑖)
−1
)/(1 + ∑

𝑛

𝑙=1
∏
𝑙

𝑖=1
𝛽(𝑖 −

1)𝛾
1
(𝑖)
−1
), 𝐶(𝑚, 𝑘) = ∑

𝑐−𝑛

𝑗=0
𝐵
𝑚
(𝑘, 𝑗), and 𝐵

𝑚
(𝑘, 𝑗), 𝑘 =

0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑐 − 𝑛 are as given in Theorem 1.

Proof. The proof follows by noting that 𝑝(𝑛)
𝑘

= ∑
𝑐−𝑛

𝑗=0
𝑝
𝑘,𝑗
, 𝑘 =

0, 1, . . . , 𝑛. In addition, the probabilities 𝑝(𝑛)
𝑘

satisfy the flow
balance equations:

𝛽 (𝑘) 𝑝
(𝑛)

𝑘
= 𝛾
1
(𝑘 + 1) 𝑝

(𝑛)

𝑘+1
, 𝑘 = 0, 1, . . . , 𝑛. (26)

Utilizing 𝑝
(𝑛)

0
as a normalizing constant and utilizing the

expression inTheorem 1 of𝑝
𝑘,𝑗
, 𝑘 = 0, 1, . . . , 𝑛, 𝑗 = 0, . . . , 𝑐−

𝑛, complete the proof.

3. Application

Similar to El-Taha and Heath [1], we present an application
for the special case of two, state-independent, Poisson arrival
streams, a real time (protected) streamwith arrival rate𝜆

1
and

a best effort stream with arrival rate 𝜆
2
. Both primary and

secondary groups of servers have exponentially distributed
service times with constant service rates 𝜇

1
and 𝜇

2
, respec-

tively.The transition rates are then obtained from the general
model as
𝛽 (𝑖, 𝑗) = 𝜆

1
+ 𝜆
2
,

𝑖 = 0, . . . , 𝑛 − 𝑟 − 1, 𝑖 = 𝑛; 𝑗 = 0, . . . , 𝑐 − 𝑛,

𝛽
1
(𝑖, 𝑗) = 𝜆

1
, 𝑖 = 𝑛 − 𝑟, . . . , 𝑛 − 1, 𝑗 = 0, . . . , 𝑐 − 𝑛,

𝛽
2
(𝑖, 𝑗) = 𝜆

2
,

𝑖 = 𝑛 − 𝑟, . . . , 𝑛 − 1 , 𝑗 = 0, . . . , 𝑐 − 𝑛 − 1,

𝛾
1
(𝑖) = 𝑖𝜇

1
, 𝑖 = 0, . . . , 𝑛,

𝛾
2
(𝑗) = 𝑗𝜇

2
, 𝑗 = 0, . . . , 𝑐 − 𝑛,

𝛽 (𝑘) = {

𝜆
1
+ 𝜆
2
, 𝑘 = 0, . . . , 𝑛 − 𝑟 − 1,

𝜆
1
, 𝑘 = 𝑛 − 𝑟, . . . , 𝑛 − 1.

(27)

The joint probabilities, 𝑝
𝑖,𝑗
, are obtained from Theo-

rem 1 and subsequent results of Section 2. The overflow
probabilities, the loss probabilities of the protected and the
best effort streams, and the mean number of busy primary
and secondary servers are then obtained from the joint
probabilities,𝑝

𝑖,𝑗
. For simplicity, onemay use the distribution

of the number of busy primary servers,𝑝(𝑛)
𝑖
, as defined inThe-

orem 2, in obtaining some of these measures of performance.
We have developed a C++ program for obtaining the joint

probabilities and othermeasures of performance. A summary
of the program algorithm is presented in the Appendix. To
solve the system of linear equations in (25), we use the LU
decomposition technique with partial pivoting as presented
by Press et al. [14] (pp. 43–48). Press et al. [14] report that
this method is three times faster than the classical Gauss-
Jordan elimination method. In addition, the method is stable
and yield results with high precision for systems of linear
equations of dimension in the order of couple of hundreds.
Therefore, our computational scheme is expected to be fast
and robust.

Example. To illustrate the application of ourmethod, consider
an example with (𝑐, 𝑛, 𝑟) = (16, 10, 3) and arrival and service
rates (𝜆

1
, 𝜆
2
, 𝜇
1
, 𝜇
2
) = (10.0, 10.0, 3.0, 1.0). Joint probabilities,

generated by our C++ program, are presented as follows:
𝑝
𝑖,𝑗
; 𝑖 = 0, 1, . . . , 10; 𝑗 = 0, . . . , 6

0.000354 0.000457 0.000392 0.000272 0.000156 0.000070 0.000019

0.002208 0.002936 0.002604 0.001875 0.001134 0.000544 0.000161

0.006793 0.009354 0.008607 0.006461 0.004130 0.002145 0.000715

0.013680 0.019626 0.018835 0.014818 0.010054 0.005703 0.002184

0.020103 0.030334 0.030609 0.025395 0.018390 0.011492 0.005178

0.022623 0.036486 0.039187 0.034594 0.026899 0.018671 0.010206

0.019626 0.034914 0.040776 0.038837 0.032662 0.025321 0.017494

0.012305 0.026207 0.034800 0.036657 0.033678 0.029067 0.026934

0.003575 0.008741 0.012867 0.014727 0.014597 0.013846 0.014834

0.000944 0.002585 0.004160 0.005131 0.005459 0.005659 0.006872

0.000201 0.000630 0.001130 0.001528 0.001762 0.001999 0.003019

(28)
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INITIALIZE:
input 𝑐, 𝑛, 𝑟, 𝛼(𝑖, 𝑗), 𝛽

1
(𝑖, 𝑗), 𝛽

2
(𝑖, 𝑗), 𝛽(𝑖, 𝑗), 𝛾

1
(𝑖), 𝛾
2
(𝑗) ∀0 ≤ 𝑖 ≤ 𝑛, ∀0 ≤ 𝑗 ≤ 𝑐 − 𝑛;

STEP 1. CASE OF (𝑗 = 𝑐 − 𝑛)
𝐺(0, 𝑐 − 𝑛, 0) = 1;
for (𝑖 = 1; 𝑖 ≤ 𝑛 − 𝑟; 𝑖 + +)

𝐺(𝑖, 𝑐 − 𝑛, 0) = 𝛾
1
(𝑖)
−1
[𝛼(𝑖 − 1, 𝑐 − 𝑛)𝐺(𝑖 − 1, 𝑐 − 𝑛, 0)

−𝛽(𝑖 − 2, 𝑐 − 𝑛)𝐺(𝑖 − 2, 𝑐 − 𝑛, 0)];
for (𝑖 = 0; 𝑖 ≤ 𝑛 − 𝑟; 𝑖 + +){

𝐵
0
(𝑖, 𝑐 − 𝑛) = 𝐺(𝑖, 𝑐 − 𝑛, 0)/𝐺(𝑛 − 𝑟, 𝑐 − 𝑛, 0);

for (𝑚 = 1;𝑚 ≤ 𝑟;𝑚 + +){

𝐵
𝑚
(𝑛 − 𝑟 + 𝑚, 𝑐 − 𝑛) = 1;

}

}

STEP 2. CASE OF (𝑗 ≤ 𝑐 − 𝑛 − 1)
for (𝑗 = 𝑐 − 𝑛 − 1, 𝑗 ≥ 0; 𝑗 − −){

𝐺(0, 𝑗, 0) = 1;
for (𝑖 = 1; 𝑖 ≤ 𝑛 − 𝑟; 𝑖 + +){

for (𝑘 = 0; 𝑘 ≤ min(𝑖, 𝑐 − 𝑛 − 𝑗); 𝑘 + +)
𝐺(𝑖, 𝑗, 𝑘) = 𝛾

1
(𝑖)
−1
[𝛼(𝑖 − 1, 𝑗)𝐺(𝑖 − 1, 𝑗, 𝑘)

−𝛽(𝑖 − 2, 𝑗)𝐺(𝑖 − 2, 𝑗, 𝑘) + 𝛾
2
(𝑗 + 1)𝐺(𝑖 − 1, 𝑗 + 1, 𝑘 − 1)]

}

for (𝑚 = 0;𝑚 ≤ 𝑟;𝑚 + +){

𝐵
𝑚
(𝑛, 𝑗) = 𝛽(𝑛, 𝑗)

−1
[𝛼(𝑛, 𝑗 + 1)𝐵

𝑚
(𝑛, 𝑗 + 1)

−𝛽
1
(𝑛 − 1, 𝑗 + 1)𝐵

𝑚
(𝑛 − 1, 𝑗 + 1) − 𝛾

2
(𝑗 + 2)𝐵

𝑚
(𝑛, 𝑗 + 2)];

𝐵
𝑚
(𝑛 − 𝑟, 𝑗) = 𝛽

2
(𝑛 − 𝑟, 𝑗)

−1
[𝛼(𝑛 − 𝑟, 𝑗 + 1)𝐵

𝑚
(𝑛 − 𝑟, 𝑗 + 1)

−𝛽(𝑛 − 𝑟 − 1, 𝑗 + 1)𝐵
𝑚
(𝑛 − 𝑟 − 1, 𝑗 + 1) − 𝛾

1
(𝑛 − 𝑟 + 1)𝐵

𝑚
(𝑛 − 𝑟 + 1, 𝑗 + 1)

−𝛾
2
(𝑗 + 2)𝐵

𝑚
(𝑛 − 𝑟, 𝑗 + 2)];

for (𝑖 = 𝑛 − 𝑟 + 1; 𝑖 ≤ 𝑛 − 1; 𝑖 + +){
𝐵
𝑚
(𝑖, 𝑗) = 𝛽

2
(𝑖, 𝑗)
−1
[𝛼(𝑖, 𝑗 + 1)𝐵

𝑚
(𝑖, 𝑗 + 1)

−𝛽
1
(𝑖 − 1, 𝑗 + 1)𝐵

𝑚
(𝑖 − 1, 𝑗 + 1) − 𝛾

1
(𝑖 + 1)𝐵

𝑚
(𝑖 + 1, 𝑗 + 1)

−𝛾
2
(𝑗 + 2)𝐵

𝑚
(𝑖, 𝑗 + 2)];

}

𝐵
𝑚
(0, 𝑗) = 𝐺(𝑛 − 𝑟, 𝑗, 0)

−1
[𝐵
𝑚
(𝑛 − 𝑟, 𝑗)

−∑
min(𝑛−𝑟,𝑐−𝑛−𝑗)
𝑘=1

(−1)
𝑘
𝐺(𝑛 − 𝑟, 𝑗, 𝑘)𝐵

𝑚
(0, 𝑗 + 𝑘)];

for (𝑖 = 1; 𝑖 ≤ 𝑛 − 𝑟 − 1; 𝑖 + +)
𝐵
𝑚
(𝑖, 𝑗) = ∑

min(𝑖,𝑐−𝑛−𝑗)
𝑘=0

(−1)
𝑘
𝐺(𝑖, 𝑗, 𝑘)𝐵

𝑚
(0, 𝑗 + 𝑘)

}

}

}

COMPUTE JOINT PROBABILITIES:
input 𝛽(𝑘), 𝛾

1
(𝑘 + 1) ∀𝑘 < 𝑛;

for (𝑘 = 𝑛 − 𝑟; 𝑘 ≤ 𝑛; 𝑘 + +)
𝑝
(𝑛)

𝑘
= ∏
𝑘

𝑖=1
𝛽(𝑖 − 1)/𝛾

1
(𝑖)[1 + ∑

𝑛

𝑘=1
∏
𝑘

𝑖=1
𝛽(𝑖 − 1)/𝛾

1
(𝑖)]
−1;

}

Compute: 𝐶(𝑚, 𝑘) = ∑𝑐−𝑛
𝑗=0

𝐵
𝑚
(𝑘, 𝑗)

Solve the system of equations
∑
𝑟

𝑚=0
𝐶(𝑚, 𝑘)𝑝

𝑛−𝑟+𝑚,𝑐−𝑛
= 𝑝
(𝑛)

𝑘

(Note; the unknowns are 𝑝
𝑛−𝑟+𝑚,𝑐−𝑛

,𝑚 = 0, . . . , 𝑟, 𝑘 = 𝑛 − 𝑟, . . . , 𝑛.)
for (𝑗 = 𝑐 − 𝑛; 𝑗 ≥ 0; 𝑗 − −)

for (𝑖 = 0; 𝑖 ≤ 𝑛; 𝑖 + +)
𝑝
𝑖,𝑗
= ∑
𝑟

𝑚=0
B
𝑚
(𝑖, 𝑗)𝑝

𝑛−𝑟+𝑚,𝑐−𝑛

END

Algorithm 1

Measures of performance are easily obtained from the
above joint probabilities or the distribution of the number of
busy primary servers, 𝑝(𝑛)

𝑖
. These measures of performance

are computed as follows: protected stream overflow probabil-
ity, 𝑃
1
= 𝑝
(𝑛)

𝑛
= ∑
𝑐−𝑛

𝑗=0
𝑝
𝑛,𝑗
= 0.010; best effort stream overflow

probability, 𝑃
2
= ∑
𝑛

𝑖=𝑛−𝑟
𝑝
(𝑛)

𝑖
= ∑
𝑛

𝑖=𝑛−𝑟
∑
𝑐−𝑛

𝑗=0
𝑝
𝑖,𝑗

= 0.324;
protected stream loss probability, 𝑄

1
= 𝑝
𝑛,𝑐−𝑛

= 0.003; best
effort stream loss probability, 𝑄

2
= ∑
𝑛

𝑖=𝑛−𝑟
𝑝
𝑖,𝑐−𝑛

= 0.052;
mean number of busy primary servers, 𝐿

1
= ∑
𝑛

𝑖=1
𝑖𝑝
(𝑛)

𝑖
=

∑
𝑛

𝑖=1
∑
𝑐−𝑛

𝑗=0
𝑖𝑝
𝑖,𝑗
= 5.553; and mean number of busy secondary
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servers, 𝐿
2
= ∑
𝑛

𝑖=0
∑
𝑐−𝑛

𝑗=1
𝑗𝑝
𝑖,𝑗
= 2.795. These results have been

validated via discrete-event simulation.
Note finally that the example here is selected for illus-

trative purposes only. Our computational scheme can be
further utilized in determining an optimal 𝑟 value that meets
a specific criterion such as a specified overflow probability
for protected traffic and studying the effect of increasing the
best effort traffic on the protected traffic quality of service. For
details, see Examples 2 and 3 in El-Taha and Heath [1].

4. Conclusion

We have extended the results of El-Taha and Heath [1] to
explicitly allow multiple reserved channels, 𝑟 > 1. As in [1],
we present an efficient iterative technique to evaluate the joint
probabilities of busy primary and secondary servers. A new
component of the present model is the system of 𝑟 + 1 linear
equations given in (25). By using effective numericalmethods
and with the availability of computers with high processing
speed and storage capacity, this part of the computational
scheme will not be of concern even for large values of 𝑟.
We have illustrated the application of the method for the
case of two Poisson arrival streams competing for service
on two sets of heterogeneous servers with constant service
rates. It is important to note that the present model may be
applicable for more general situations such as arrivals from a
finite source and state dependent service rates.Thismay be an
area for further extensions and applications of the results of
this paper. Another area for futurework is to tailor the current
model to the problem of bed allocation in a hospital ward,
with service rates depending on the type of arrival, which
requires state expansion of the Markov chain.

Appendix

For a 𝑐-server system with 𝑛 primary servers and 𝑚 = 𝑐 − 𝑛

secondary servers, Algorithm 1 computes the joint stationary
probabilities 𝑝

𝑖,𝑗
.
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