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A mathematical model for the growth of solid avascular tumor with time delays in regulatory apoptosis is studied.The existence of
stationary solutions and the mechanism of formation of necrotic cores in the growth of the tumors are studied. The results show
that if the natural death rate of the tumor cell exceeds a fixed positive constant, then the dormant tumor is nonnecrotic; otherwise,
the dormant tumor is necrotic.

1. Introduction

Thegrowth of tumors is a highly complex process. To describe
this process, mathematical models are needed. A variety of
mathematical models for tumor growth have been developed
and studied; for example, compare [1–7] and references
therein. Most of those models are based on the reaction
diffusion equations and mass conservation law. Analysis of
such free boundary problems has drawn great interest, and
many interesting results have been established; compare [8–
14] and references therein.

In this paper, we study the following problem:
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𝑅 (𝑡) = 𝜑 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0, (6)
where 𝑟 is the radial variable, 𝑡 is the time variable, the variable
𝜎(𝑟, 𝑡) represents the scaled nutrient concentration at radius
𝑟 and time 𝑡. The variable 𝑅(𝑡) represents the scaled radius of
the tumor at time 𝑡 and 𝜌(𝑡) represents the scaled radius of the
necrotic core of the tumor at time 𝑡. The three terms on the
right hand side of (5) are explained as follows. The first term
is the total volume increase in a unit time interval induced by
cell proliferation, which is balance between birth and natural
death rates of the cells (in the region 𝜌(𝑡) < 𝑟 < 𝑅(𝑡)), the
birth rate is 𝑠𝜎, and the natural death rate is 𝑠�̃�, where �̃�
is a constant. The second term is the total volume decrease
(or increase) in a unit time interval caused by regulatory
apoptosis, where regulatory apoptosis rate is given by 𝑠𝜃(𝜎 −
𝜎
ℎ
); that is, if the local proliferation rate at time 𝑡 − 𝜏 exceeds

(falls below) the critical value 𝑠𝜎
ℎ
, then there will be an

increase (decrease) in local rate of apoptotic cell loss at time
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𝑡, and this increase (decrease) is given by 𝑠𝜃(𝜎 − 𝜎
ℎ
), where

the magnitude of 𝜃 indicates the importance of regulatory
apoptosis relative to underlying apoptosis: for large values of
𝜃, the regulatory mechanism dominates apoptotic cell loss. 𝑠
is a scaling constant.The last term is total volume shrinkage in
a unit time interval caused by cell apoptosis or cell death due
to aging (in the region 0 < 𝑟 < 𝜌(𝑡)); the rate of cell apoptosis
is assumed to be constant and does not depend on either 𝜎.

The above model is similar to the second model of Byrne
[1] but with one modification. The modification is as follows.
In Byrne [1], the consumption rate of nutrient is assumed
to be a constant Γ, instead of that (1) employed here. In
this paper, as can be seen from (1), we assume that the con-
sumption rate of nutrient is proportional to its concentration.
This assumption is clearly more reasonable. The reason is as
follows. From [1], we know that if the consumption rate of
nutrient is assumed to be a constant Γ, then 𝜎 satisfies
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, 𝜑 (𝑅) < 𝑟 ≤ 𝑅,

(7)

where 𝜑(𝑅) is the radius of the necrotic core. Therefore,
𝜎 may be negative for some 𝜑(𝑅). If one assumes that
the consumption rate of nutrient is proportional to its
concentration, then 𝜎 cannot be negative for any 𝜑(𝑅) (if it
has); see (13) and (14) in Section 2.

2. Stationary Solutions and the Formation of
Necrotic Cores

By rescaling the space variable we may assume that Γ = 1 in
(1). For a given 𝑅, the concentration of nutrient 𝜎 = 𝜎
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(𝑟) in

the tumor is given by
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where 𝑈(𝑟, 𝑅) is the solution of the problem
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Lemma 1 (see [9]). For any 𝑅 > 𝑅∗, the equation
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has a unique root 𝜌 = 𝜑(𝑅) in the interval (0, 𝑅); that is,
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∗
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In the rest of this section, we assume that
(H) 𝜎

ℎ
> 𝜎
∞
> �̃�.

The same technique and method can be used to other
conditions besides (H), but the results may be different.
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that is, there exists a unique positive stationary solution to the
problem (1)–(6), where 𝜃
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and 𝜌 = 𝜑(𝑅). From [9] we know that the function𝑔 is strictly
monotone decreasing for all 𝑅 > 𝑅∗ and 𝜑(𝑅)/𝑅 is monotone
increasing for all 𝑅 > 𝑅

∗. Using the similar process used in
Lemmas 4.1 and 4.2 of [9], one can get the following assertion:
for any 𝜃 ∈ (0, 1), the function 𝑓 is continuously differentiable
and 𝑓(𝑅) < 0 for all 𝑅 > 0.

Since, for 0 < 𝑅 < 𝑅∗, (17) holds, then
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where we have used the fact lim
𝑅→0

(𝑅 coth𝑅 − 1)/𝑅2 = 1/3.
By direct computation, noticing 𝜎
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From [9] we know lim
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for 𝜎nec < �̃� + 𝜆 ≤ 𝜎ℎ, 𝜃 ∈ (0, 𝜃1)(⊂ (0, 1)). By the fact that
𝑓

(𝑅) < 0 for all 𝑅 > 0, we have that there exists a unique

positive costant 𝑅
𝑠
that satisfies the equation 𝑓(𝑅

𝑠
) = 0. This

completes the proof of Theorem 2.

Let 𝑝(𝑥) = (𝑥 cosh 𝑥 − 1)/𝑥2, 𝑥 > 0. From [13], we know
that 𝑝(𝑥) < 0 for all 𝑥 > 0, and
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3
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Theorem 3. Assume that condition (H) and 0 < 𝜃 < �̃�/𝜎
ℎ
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satisfied. Then the following assertions hold:

(i) if 𝑅𝑐 ≤ 𝑅
∗, then the dormant tumor ensured by

Theorem 2 does not have a necrotic core;
(ii) if 𝑅𝑐 > 𝑅

∗, then the dormant tumor ensured by
Theorem 2 has a necrotic core and the radius of the
necrotic core is equal to 𝜑(𝑅

𝑠
).

Proof. By (17) and (25) one can get that if 𝑅𝑐 ≤ 𝑅
∗, then

𝑓(𝑅
𝑐
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𝑠
, 𝜎
𝑠
(𝑟)) = (𝑅

𝑐
, 𝑈(𝑟, 𝑅

𝑐
)) is the

stationary solution of the problem (1)–(6). Since 𝑅𝑐 < 𝑅
∗

implies that𝑈(𝑟, 𝑅𝑐) > 𝑈(0, 𝑅𝑐) ≥ 𝜎nec for 0 < 𝑟 ≤ 𝑅
𝑐, we can

get that the dormant tumor does not have a necrotic core. If

𝑅
𝑐
> 𝑅
∗, then from (17) and (25) and the fact that 𝑝(𝑅) < 0

we can get 𝑓(𝑅) > 0 for 0 < 𝑅 < 𝑅
∗. Then the solution 𝑅

𝑠

to the equation 𝑓(𝑅) = 0 satisfies 𝑅
𝑠
> 𝑅
∗. Consequently, in

this case, the stationary solution (𝑅
𝑠
, 𝜎
𝑠
(𝑟)) = (𝑅

𝑠
, 𝑈(𝑟, 𝑅

𝑠
))

satisfies 𝜎
𝑠
(𝑟) = 𝜎nec for 𝑟 ≤ 𝜑(𝑅𝑠). Thus, the dormant tumor

has a necrotic core with radius 𝑟 = 𝜑(𝑅
𝑠
). This completes the

proof of Theorem 3.

Denote

𝑞 (𝑅) =
sinh𝑅
𝑅

, 𝑅 > 0. (26)

By the fact that 𝑞(𝑅∗) = 𝜅 = 𝜎
∞
/𝜎nec and 𝑞(𝑅) is strictly

monotone increasing for 𝑅 > 0, we have 𝑅∗ = 𝑞−1(𝜅). Since

𝑝 (𝑅
𝑐
) =

𝜃𝜎
ℎ
− �̃�

3𝜎
∞
(𝜃 − 1)

, (27)

by the fact 𝑝(𝑥) < 0, one can get that the condition 𝑅𝑐 ≤ 𝑅∗
is equivalent to the following condition:

�̃� ≥ �̃�
∗
= 3 (1 − 𝜃) 𝜎

∞
𝑝 (𝑞
−1
(𝜅)) + 𝜃𝜎

ℎ
, (28)

and the condition 𝑅𝑐 > 𝑅∗ is equivalent to the condition �̃� <
�̃�
∗.
From the above analysis, in view of biology sense, the

meaning of Theorem 3 is as follows.
If the natural death rate is large enough such that �̃� ≥ �̃�∗,

then the dormant tumor is nonnecrotic, and if �̃� < �̃�∗, then
dormant tumor is necrotic.

From [9], we know the function 𝜂𝑝(𝑞
−1
(𝜂)) is strictly

monotone increasing for 𝜂 > 1 and 𝜂𝑝(𝑞−1(𝜂)) > 1/3 for
𝜂 > 1. Then we can get the following.

Increasing the nutrient supply 𝜎
∞

from surface will
increase the threshold value of �̃�∗. This implies that the
dormant tumor furnished with a small number of nutrients
can possibly be nonnecrotic, whereas the dormant tumor
furnished with a large number of nutrients can possibly be
necrotic.
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