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Precise tracking positioning performance in the presence of both the deadzone and friction of a robot manipulator actuator
is difficult to achieve by traditional control methodology without proper nonlinear compensation schemes. In this paper, we
present a dynamic surface sliding mode control scheme combined with an adaptive fuzzy system, state observer, and parameter
estimator to estimate the uncertainty, friction, and deadzone nonlinearities of a robot manipulator system. We design a dynamic
surface sliding mode basic controller by systematic recursive design steps that yields several adaptive laws for the compensation
of nonlinear friction, deadzone, and other unknown nonlinear dynamics. The boundedness and convergence of this closed-loop
system are guaranteed by the Lyapunov stability theorem. Experiments on the Scorbot robot manipulator demonstrate the validity
and effectiveness of the proposed control scheme.

1. Introduction

In recent decades, several advanced control approaches
have been developed to solve complex control problems as
industrial machines and devices have rapidly progressed,
requiring higher performance control. Among these, a break-
through nonlinear control method, adaptive backstepping,
[1, 2] achieved stabilizing controllers for nonlinear system
and guaranteed global or regional regulation and tracking
properties. The cancellation of useful nonlinearities that
occur with the feedback linearization techniques can be
also avoided by using a step-by-step recursive algorithm.
However, the application of the backstepping design method
requires that nonlinear dynamic models be known either
exactly or linearly parameterized with respect to known
nonlinear functions. In real situations, this requirement is
frequently difficult to accomplish since most uncertainty in a
nonlinear system is unknown. To solve this problem, adaptive
backstepping methods combined with fuzzy methods [3, 4]
and neural networks (NNs) [5, 6] have been developed to
approximate these unknown uncertainties. Thus, recently,
this approximator-based backstepping method has become
a very popular control scheme for dealing with a large class

of nonlinear systems. However, repeated differentiation of
the virtual control functions [7] gives rise to an explosion of
complexity in the controller terms of the complex nonlinear
system. Dynamic surface control (DSC) [7, 8] was developed
to help a nonlinear systems overcome this “explosion of
terms” by using a first-order filter of the synthetic input
at each step of the backstepping design procedure. Thus,
several adaptive DSCs combined with fuzzy methods [9] and
NNs have been developed [10–12] because these controllers
are relatively much simpler than backstepping-based ones.
Another option is a model-free approach such as fuzzy
methods, which is synthesized.

In a dynamic system consisting of the actuator of a
robot manipulator, friction and deadzones are frequently
encountered and are the main obstacles to high-performance
positioning and tracking control. Friction between a moving
part and a guide surface gives rise to problems such as stick
slip, limit cycle, and steady-state error.Deadzone nonlinearity
also causes inaccuracy in a control system [13]. A controller
designed to compensate for friction or deadzone indepen-
dently may perform poorly in the friction/deadzone overlap.
Thus, compensation for both nonlinearities should be taken
into consideration together. However, with the exception
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of [12], most DSC applications have focused largely on the
compensation of linear or smooth nonlinear system.

The effect of nonlinear friction appears most strongly in
a low-velocity regime, especially during velocity reversals.
The LuGre [14] and Elastoplastic [15] models can construct
a friction estimator relatively easily by virtue of their more
systematic structure and lower complexity compared to other
available modes. Lin and Chen [16], Yau and Yan [17], and
Han et al. [18, 19] developed a sliding mode control and
fuzzy logic scheme with the LuGre and Elastoplastic friction
model to compensate for the nonlinear friction of a ball-screw
and robot systems. For deadzone, several control schemes
[20–23] have been developed. However, compensations for
both deadzones and friction together have not often been
considered until now.

Fuzzy technology [24, 25] has replaced many complex
nonlinear control applications. One major feature of fuzzy
logic is its ability to express an amount of ambiguity, similar
to judgments based on human experiences or expert opinion.
Thus, fuzzy logic is an alternative way to deal with the
unknown mathematical model of a complex system due to
its universal approximation property [24]. A fuzzy controller
depends on the experience of experts to create a fuzzy
rule base and parameters that are adjusted by adaptive laws
for a specified control performance. Hence, adaptive fuzzy
controls have been applied successfully in many nonlinear
control systems and guarantee improved system performance
and stability in the Lyapunov sense [26–28]. However, a
specific performance decision table, complicated learning
mechanisms, and/or a large amount of fuzzy rules require
design by trial-and-error and make practical application
difficult.

It is well known that the sliding mode control (SMC)
technique is robust to system uncertainty due to its use of
a sliding surface [29, 30]. To reduce the fuzzy rules in fuzzy
control and significantly increase control performance, SMC
is combined with fuzzy logic [31] and other control methods
such as intelligent methods [32] and backstepping control
[33]. The adaptive sliding mode backstepping control for
a semistrict feedback system with unmatched uncertainty
was proposed in [34, 35]. However, the backstepping control
technique has an explosion of terms problem due to the
repeated differentiation of the virtual control functions. This
problem leads to a severe computational burden for real
hardware implementations such as complex robotic systems.
Thus, although the backstepping method is theoretically
tractable, in real applications, its increasing complexity is
an insurmountable obstacle that prevents its application to
multiple state control systems.

We propose an adaptive fuzzy strict feedback positioning
control for a robot manipulator based on a DSC design. SMC
is applied to a DSC and FLC frame to enhance robustness
for the compensation of uncertainty and an adaptive fuzzy
system approximates the unknown nonlinear function. The
main contributions of this paper are as follows. (1) The DSC
scheme is introduced to overcome the drawback of backstep-
ping control. (2)We show that both the deadzone and friction
nonsmooth and nonlinear effects of a robot manipulator can
be compensated for simultaneously. (3) We then detail and

show how SMC is combined with an adaptive DSC and FLC
system to enhance the performance robustness for lumped
uncertainty and required fuzzy rules and can then be reduced
to an approximation to reduce the controller complexity. (4)
The proposed control approach is successfully applied to the
problem of both reducing nonsmooth nonlinear effect and
uncertainty of the robot manipulator in the presence of the
friction and deadzone by experiment.

2. Problem Formulations

2.1. Description of the Nonlinear Plant. We consider a robot
manipulator system in the presence of deadzone and friction
including actuator dynamics whose dynamic equations [36,
37] are described by

M (q) q̈ + C (q, q̇) q̇ + G (q) + T𝑓 (q, q̇) + T𝐿 = 𝜏, (1)

𝜏 = nk𝑡i, (2)

L𝑚
𝑑i
𝑑𝑡

+ R𝑚i + k𝑏q̇ = V, (3)

where q, q̇, q̈ ∈ 𝑅
𝑛×1 denote the joint position, velocity,

and acceleration vectors, respectively; the moment of inertia
matrix M(q) ∈ 𝑅

𝑛×𝑛 is a positive definite symmetric matrix;
C(𝑞, ̇𝑞) ∈ 𝑅𝑛×𝑛 is the centripetal Coriolis matrix; Ṁ(q) −

2C(𝑞, ̇𝑞) is a skew-symmetric matrix; G(q) ∈ 𝑅𝑛×1 is the
gravity vector; T𝑓(q, q̇) ∈ 𝑅𝑛×1 is the nonlinear friction
torque vector; T𝐿 ∈ 𝑅𝑛×1 is an external disturbance; 𝜏 ∈ 𝑅𝑛×1

is the deadzone control torque vector of the joint actuators; i
is the motor current vector; V is the voltage vector applied to
themotor drive; L𝑚 andR𝑚 are the inductance and resistance
of the motor, respectively; and k𝑏 is the back electromotive-
force (emf) constant of the motor.

Considering the modeling uncertainties and external
disturbances, the robot system in (1) can be reformulated as

q̈ = f𝑛 (q, q̇) − g𝑛 (q)T𝑓 + g𝑛 (q)T𝑢 + g𝑛 (q) 𝜏, (4)

where the subscript 𝑛 represents the system parameters in
the nominal condition, f𝑛(q, q̇) = −g𝑛(q)[C𝑛(q, q̇) + G𝑛(q)],
where g𝑛(q) = M−1

𝑛 (q); T𝑢 is a lumped uncertainty defined as
T𝑢 = −ΔM(q)q̈ − ΔC(q, q̇) − ΔG(q) − T𝐿; ΔM(q), ΔC(q, q̇),
ΔG(q), and ΔT𝑓 represent the unknown uncertainties of
M(q), C(q, q̇), G(q), and T𝑓, respectively; and T𝐿 ∈ 𝑅𝑛×1 is
the disturbance vector.The uncertainties ofΔM(q),ΔC(q, q̇),
ΔG(q), and ΔT𝑓 are bounded by some positive constants
𝜌𝑖 (𝑖 = 𝑚, 𝑐, 𝑔, 𝑓) such that ‖ΔM‖ ≤ 𝜌𝑚, ‖ΔC‖ ≤ 𝜌𝑐, ‖ΔG‖ ≤

𝜌𝑔, and ‖ΔT𝑓‖ ≤ 𝜌𝑓. For the disturbance, it is assumed that
T𝐿 ∈ 𝐿2[0, 𝑇], for all 𝑇 ∈ [0,∞), and T𝐿 is bounded by
some positive constant 𝜌𝑑 : ‖T𝐿‖ ≤ 𝜌𝑑. Thus, the lumped
uncertainty is assumed to be bounded by a finite value. To
guarantee more improved control performance, an elaborate
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nonlinear friction model should be considered. The state
equations for (1)–(4) are represented as

ẋ10 = x20,

ẋ20 = f𝑛 (x10, x20) − g𝑛 (x10)T𝑓 + g𝑛 (x10)T𝑢 + g𝑛 (x10) 𝜏,

ẋ30 = −L−1𝑚 R𝑚x30 − L−1𝑚 k𝑏x20 + L−1𝑚 V,
(5)

where x10 = q, x20 = q̇, and x30 = i.
The deadzone nonlinearities 𝜏 are shown in Figure 1(a)

and their mathematical models are described by

𝜏 (𝑡) = 𝐷 (u) =
{{

{{

{

m𝑟 (u (𝑡) − B𝑟) for u (𝑡) ≥ B𝑟

0 for B𝑙 < u (𝑡) < B𝑟

m𝑙 (u (𝑡) − B𝑙) for u (𝑡) ≤ B𝑙,

(6)

wherem𝑟 andm𝑙 denote the slope of the deadzone andB𝑟 and
B𝑙 stand for the deadzone width parameters. In the control
problem, the practical assumptions of the deadzone are as
follows.

Assumption 1. The deadzone outputs 𝜏(𝑡) are not available
formeasurement. Furthermore, the deadzone parametersm𝑟,
m𝑙, B𝑟, and B𝑙 are unknown but their signs are known,m𝑟 >

0,m𝑙 > 0, B𝑟 ≥ 0, and B𝑙 ≤ 0.

Assumption 2. The deadzone slopes are bounded by known
constants m𝑟min, m𝑟max, m𝑙min, and m𝑟max such that 0 <

m𝑟min ≤ m𝑟 ≤ m𝑟max and 0 < m𝑙min ≤ m𝑙 ≤ m𝑙max.

The deadzone inverse technique is a useful method to
compensate for the deadzone effect [13]. Letting u𝑑(𝑡) be the
signal from the controller that does not take into account
the deadzone, the following control signal u(𝑡) is generated
according to the certainty equivalence deadzone inverse
described in Figure 1(b):

u (𝑡) = 𝐷
−1

(u𝑑) = m̂−1
𝑟 (u𝑑 (𝑡) + B̂𝑚𝑟) 𝛿

+ m̂−1
𝑙 (u𝑑 (𝑡) + B̂𝑚𝑙) (I − 𝛿) ,

(7)

where m̂𝑟, m̂𝑙, B̂𝑚𝑟, and B̂𝑚𝑙 are the estimates ofm𝑟,m𝑙,m𝑟B𝑟,
andm𝑙B𝑙, respectively, and

𝛿 = {
I if u𝑑 (𝑡) ≥ 0
0 if u𝑑 (𝑡) < 0.

(8)

The resulting errors between u and u𝑑 are given by

𝜏 (𝑡) − u𝑑 (𝑡) = (B̃𝑚𝑟 − m̂−1
𝑟 (u𝑑 (𝑡) + B̂𝑚𝑟m̃𝑟)) 𝛿

+ (B̃𝑚𝑙 − m̂−1
𝑙 (u𝑑 (𝑡) + B̂𝑚𝑙m̃𝑙)) (I − 𝛿) + 𝜀𝑑,

(9)

where 𝜀𝑑(𝑡) is known as the bounded function for all u(𝑡) [13].
The nonlinear friction forces are assumed to be modeled

as

T𝑓 = 𝜎0z + 𝜎1ż + 𝜎2k + 𝜀𝑓, (10)

where 𝜎0 > 0 is the stiffness of the elastic bristle, 𝜎1 > 0

is the damping coefficients in the presliding range, 𝜎2 >

0 is the viscous damping coefficients, and 𝜀𝑓 contains the
bounded friction modeling errors. The presliding states z are
represented by the following Elastoplastic model [15]:

ż = k − 𝜃𝜎0h (k) z, (11)

where

ℎ𝑖 (V𝑖) =
󵄨󵄨󵄨󵄨V𝑖

󵄨󵄨󵄨󵄨

𝐹ci + (𝐹si − 𝐹ci) exp (−(V𝑖/Vsi)
2
)
, 𝑖 = 1, . . . , 𝑛,

(12)

𝐹ci is the Coulomb friction, 𝐹si is the stiction level, V𝑖 is
the relative velocity between two contact surfaces, Vsi is the
Stribeck velocity, and 𝜃 is the unknown coefficient related to
the presliding friction behavior.The function ℎ𝑖(V𝑖) is positive
and depends on many factors such as material properties,
lubrication, and temperature. As the state variables z cannot
be measured directly, we use the friction state observers to
estimate z as follows [19]:

̇̂z = k − 𝜃̂𝜎̂0h (k) ẑ, (13)

where ẑ, 𝜃̂, and 𝜎̂0 are the estimations of z, 𝜃, and 𝜎0, respec-
tively. The estimations of the friction T𝑓 can be expressed as

T̂𝑓 = 𝜎̂0ẑ + 𝜎̂1 ̇̂z + 𝜎̂2k, (14)

where 𝜎̂1 and 𝜎̂2 are the estimations of𝜎1 and𝜎2, respectively.
From (10), (11), (13), and (14), we have

̇̃z = −𝜃𝜎0hz̃ − 𝜃hẑ𝜎̃0 − 𝜎̂0hẑ𝜃̃,

T̃𝑓 = T𝑓 − T̂𝑓

= (𝜎0 − 𝜃𝜎1h) z̃ + (ẑ − 𝜎1𝜃ẑh) 𝜎̃0

+ (k − 𝜃̂ẑh) 𝜎̃1 + k𝜎̃2 − 𝜎1𝜎̂1ẑh𝜃̃ + 𝜀𝑓,

(15)

where z̃ = z − ẑ, 𝜎̃(⋅) = 𝜎(⋅) − 𝜎̂(⋅), and 𝜃̃ = 𝜃 − 𝜃̂.
We can transform the above state model into the follow-

ing form:

ẋ1 = x2, (16)

ẋ2 = x3 + f2 (x2) − g𝑛T𝑓

+ g𝑛 [B̃𝑚𝑟 − m̂−1
𝑟 (g−1𝑛 x3 + B̂𝑚𝑟m̃𝑟)] 𝛿

+ g𝑛 [B̃𝑚𝑙 − m̂−1
𝑙 (g−1𝑛 x3 + B̂𝑚𝑙m̃𝑙)] (I − 𝛿) + T𝑑,

(17)

ẋ3 = f3 (x3) + b3uV, (18)

where x3 = [x1 x2 x3]
𝑇

= [x10 x20 g𝑛nk𝑡x30]
𝑇,

f2(x2) = f𝑛(x10, x20), T𝑑 = g𝑛(x1)T𝑢 + g𝑛𝜀𝑑, b3 = g𝑛nk𝑡L−1𝑚 ,
and f3(x3) = −g𝑛nk𝑡L−1𝑚 (R𝑚x30 + k𝑏x20), x2 = [x1 x2]

𝑇, and
uV = V.
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Figure 1: Description of deadzone.

2.2. Function Approximation Using a Fuzzy Logic System. The
basic configuration of a fuzzy system consists of the fuzzifier,
fuzzy rule base, fuzzy inference engine, and defuzzifier. The
fuzzy inference engine performs a mapping from an input
linguistic vector𝑥 = [𝑥1, . . . , 𝑥𝑛]

𝑇
∈ 𝑅𝑛 to an output linguistic

scalar variable 𝑦 ∈ 𝑅. The fuzzy rule base consists of a
collection of fuzzy IF-THEN rules.The 𝑙th IF-THEN rules are
described by

𝑅
(𝑙)

: IF 𝑥1 is 𝐹𝑙
1 and ⋅ ⋅ ⋅ and 𝑥𝑛 is 𝐹𝑙

𝑛,

then 𝑦 is 𝐺𝑙
, 𝑙 = 1, 2, . . . ,𝑀,

(19)

where 𝐹𝑙
𝑖 , 𝑖 = 1, . . . , 𝑛, and 𝐺𝑙 are fuzzy sets characterized by

the fuzzy membership functions 𝜇𝐹𝑙
𝑖

(𝑥𝑖) and 𝜇𝐺𝑙(𝑦), respec-
tively, and 𝑀 is the number of rules in the fuzzy rule base.
Theoutput of a fuzzy systemwith a center-average defuzzifier,
product inference, and singleton fuzzifier is expressed as

𝑦 (𝑥) =
∑

𝑀
𝑙=1 𝑦

𝑙
(∏

𝑛
𝑖=1𝜇𝐹𝑙

𝑖

(𝑥𝑖))

∑
𝑀
𝑙=1 (∏

𝑛
𝑖=1𝜇𝐹𝑙

𝑖

(𝑥𝑖))
, (20)

where 𝑦
𝑙 is the point at which 𝜇𝐺𝑙(𝑦

𝑙
) = 1 (its maximum

value). This equation can be rewritten as

𝑦 (𝑥) = 𝑊
𝑇
𝑜 𝑋 (𝑥) , (21)

where 𝑊𝑇
𝑜 = [𝑦

1
, . . . , 𝑦

𝑀
]
𝑇 is a vector that groups all the

consequence parameters, and 𝑋(𝑥) = [𝑋1, . . . , 𝑋𝑛]
𝑇 is a set

of fuzzy basis functions defined as

𝑋
𝑙
(𝑥) =

∏
𝑛
𝑖=1𝜇𝐹𝑙

𝑖

(𝑥𝑖)

∑
𝑀
𝑙=1 (∏

𝑛
𝑖=1𝜇𝐹𝑙

𝑖

(𝑥𝑖))
. (22)

It has been proven that a fuzzy logic system can approximate
any nonlinear continuous function to an arbitrary degree

accuracy if enough rules are provided [24].Thus, a fuzzy logic
system performs a universal approximation in the sense that,
given any real continuous function 𝑓(⋅) : 𝑅

𝑛 → 𝑅 on a
sufficiently large compact set Ω ⊂ 𝑅 and an arbitrary 𝜀𝑚 > 0,
there exists a fuzzy logic system 𝑦(𝑥) in the form of (21) such
that

sup𝑥∈Ω
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑦 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝜀𝑚. (23)

Then the function 𝑓(𝑥) can be expressed as

𝑓 (𝑥) = 𝑊
∗𝑇
𝑜 𝑋 (𝑥) + 𝜀, ∀𝑥 ∈ Ω ⊂ 𝑅

𝑛
, (24)

where |𝜀| ≤ 𝜀𝑚, 𝜀
∗ is the error of the fuzzy approximation and

𝑊∗ is chosen to be the value of 𝑊 that minimizes the fuzzy
approximation error 𝜀; that is,

𝑊
∗
𝑜 = arg min

𝑊𝑜∈𝑅
𝑀

{sup𝑥∈Ω
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥) − 𝑊

𝑇
𝑜 𝑋 (𝑥)

󵄨󵄨󵄨󵄨󵄨
} . (25)

Since 𝑊∗
𝑜 is unknown, it is replaced by 𝑊𝑜, an estimation of

𝑊∗
𝑜 . Adaptation laws are required to update the parameter𝑊𝑜

and other related fuzzy parameters online to asymptotically
minimize the reference tracking error. The optimal fuzzy
output function can be rewritten as

𝑊
∗𝑇
𝑜 𝜉 (𝑥) = 𝑊

𝑇
𝑜 𝜉 (𝑥) + 𝑊̃

𝑇
𝑜 𝜉 (𝑥) , (26)

where 𝑊̃𝑜 = 𝑊∗
𝑜 −𝑊𝑜.

3. Design of Controller and Nonsmooth
Nonlinear Compensator

In this section, the adaptive laws and controller are derived
via recursive DSC design procedures. The control objective
for a robot manipulator system is to determine a state
feedback control system such that the system output x1 can
track a desired trajectory y𝑑. We add a final assumption to
the system.



Mathematical Problems in Engineering 5

Assumption 3. The desired trajectory vectors are continuous
and available, and [y𝑑, ẏ𝑑, ÿ𝑑]

𝑇
∈ Ω𝑑 with the known compact

set Ω𝑑 = {[y𝑑, ẏ𝑑, ÿ𝑑]
𝑇
: ‖y𝑑‖

2
+ ‖ẏ𝑑‖

2
+ ‖ÿ𝑑‖

2
≤ 𝛿𝑦}, where

𝛿𝑦 > 0 is a constant. The state feedback control system is
designed step-by-step using a DSC technique as follows.

Step 1. We define the tracking error to be the first error

S1 = x1 − y𝑑, (27)

where time derivative of (27) is

Ṡ1 = x2 − ẏ𝑑. (28)

We define the following Lyapunov function:

𝑉1 =
1

2
S𝑇1 S1, (29)

and its time derivative is given as

𝑉̇1 = S𝑇1 Ṡ1 = S𝑇1 (x2 − ẏ𝑑) . (30)

We choose a virtual control law to be

𝛼1 = −c1S1 + ẏ𝑑, (31)

where c1 > I is a design constant. We introduce the filtering
virtual control 𝜉2 and let 𝛼1 pass through a first-order filter
with a time constant 𝜍2 as

𝜍2𝜉̇2 + 𝜉2 = 𝛼1, 𝜉2 (0) = 𝛼1 (0) . (32)

Setting 𝜆2 = 𝜉2 − 𝛼1, from (25), it follows that

𝜉̇2 = −
𝜆2

𝜍2
. (33)

By using the definition of x2 = S2 + 𝜉2, (30) becomes

𝑉̇1 ≤ −c1S
𝑇
1 S1 + S𝑇1 S2 + S𝑇1𝜆2. (34)

From (24) and (26), it follows that

𝜆̇2 = 𝜉̇2 − 𝛼̇1

= −
𝜆2

𝜍2
+ c1Ṡ1 − ÿ𝑑

≤ −
𝜆2

𝜍2
+ 𝜓2 (S1, S2,𝜆2, y𝑑, ẏ𝑑, ÿ𝑑) ,

(35)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆̇2 +
𝜆2

𝜍2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜓2 (S1, S2,𝜆2, y𝑑, ẏ𝑑, ÿ𝑑) , (36)

where𝜓2(S1, S2,𝜆2, y𝑑, ẏ𝑑, ÿ𝑑) is a continuous function. From
(35) and (36), we have

𝜆
𝑇
2 𝜆̇2 ≤ −

󵄩󵄩󵄩󵄩𝜆2
󵄩󵄩󵄩󵄩
2

𝜍2
+
󵄩󵄩󵄩󵄩𝜆2

󵄩󵄩󵄩󵄩𝜓2

≤ −

󵄩󵄩󵄩󵄩𝜆2
󵄩󵄩󵄩󵄩
2

𝜍2
+
󵄩󵄩󵄩󵄩𝜆2

󵄩󵄩󵄩󵄩
2
+
1

4

󵄩󵄩󵄩󵄩𝜓2
󵄩󵄩󵄩󵄩
2
.

(37)

Step 2. We consider the following expression:

ẋ2 = x3 +W∗𝑇
𝑜2 X2 (x2) + 𝜀

∗
2 − g𝑛T𝑓

+ g𝑛 [B̃𝑚𝑟 − m̂−1
𝑟 (g−1𝑛 x3 + B̂𝑚𝑟m̃𝑟)] 𝛿

+ g𝑛 [B̃𝑚𝑙 − m̂−1
𝑙 (g−1𝑛 x3 + B̂𝑚𝑙m̃𝑙)] (I − 𝛿) + T𝑑.

(38)

By defining S2 = x2 − 𝜉2, the time derivative of S2 is given by

Ṡ2 = x3 +W𝑇
𝑜2X2 (x2) + W̃𝑇

𝑜2X2 (x2) + 𝜀
∗
2 − g𝑛T̂𝑓

− g𝑛T̃𝑓 + g𝑛 [B̃𝑚𝑟 − m̂−1
𝑟 (g−1𝑛 x3 + B̂𝑚𝑟m̃𝑟)] 𝛿

+ g𝑛 [B̃𝑚𝑙 − m̂−1
𝑙 (g−1𝑛 x3 + B̂𝑚𝑙m̃𝑙)] (I − 𝛿) + T𝑑 − 𝜉̇2.

(39)

Next, we define the Lyapunov function candidate:

𝑉2 =
1

2
S𝑇2 S2. (40)

By differentiating (40) with respect to time, we obtain the
following equation:

𝑉̇2 = S𝑇2 Ṡ2

≤ S𝑇2 (x3 +W𝑇
𝑜2X2 (x2) − g𝑛T̂𝑓 − 𝜉̇2 + 𝜌̂2 tanh (𝜅

−1
2 S2𝜌̂2))

+ S𝑇2 W̃
𝑇
𝑜2X2 (x2) − S𝑇2 g𝑛T̃𝑓 −

󵄩󵄩󵄩󵄩S2
󵄩󵄩󵄩󵄩 𝜌̃2

+ S𝑇2 g𝑛 [B̃𝑚𝑟 − m̂−1
𝑟 (g−1𝑛 x3 + B̂𝑚𝑟m̃𝑟)] 𝛿

+ S𝑇2 g𝑛 [B̃𝑚𝑙 − m̂−1
𝑙 (g−1𝑛 x3 + B̂𝑚𝑙m̃𝑙)] (I − 𝛿) + 𝜅

󸀠
2,

(41)

where ‖𝜀𝑖2+T𝑑‖ ≤ ‖𝜌2‖, 0 ≤ |𝑆2𝑖𝜌2𝑖|−𝑆2𝑖𝜌2𝑖 tanh(𝑆2𝑖𝜌2𝑖/𝜅2𝑖) ≤
0.2785𝜅2𝑖 = 𝜅󸀠2𝑖, 𝑖 = 1, . . . , 𝑛, 𝜅2𝑖 is a design constant, and
where 𝜌̃2 = 𝜌̂2 − 𝜌2. We specify a virtual control 𝛼2 to be as
follows:

𝛼2 = − c2S2 − S1 −W𝑇
𝑜2X2 (x2) + 𝜉̇2 + g𝑛T̂𝑓

− S2𝜌̂2 tanh (𝜅
−1
2 S2𝜌̂2) ,

(42)

where c2 > I is a design constant and 𝜌̂2 is the estimation of
𝜌2. We introduce a new filtering virtual control 𝜉3 and let 𝛼2
pass through a first-order filter with a time constant 𝜍3 as

𝜍3𝜉̇3 + 𝜉3 = 𝛼2, 𝜉3 (0) = 𝛼2 (0) . (43)

By setting 𝜆3 = 𝜉3 − 𝛼2, from (36), it follows that

𝜉̇3 = −
𝜆3

𝜍3
. (44)

We define S3 = x3 − 𝜉3. It then follows that

x3 = S3 + 𝜆3 − c2S2 − S1 −W𝑇
𝑜2X2 (x2) + 𝜉̇2

+ g𝑛T̂𝑓 − 𝜌̂2 tanh (𝜅
−1
2 S2𝜌̂2) .

(45)
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Substituting (45) into (41), we obtain the following expres-
sion:

𝑉̇2 ≤ − c2S
𝑇
2 S2 − S𝑇2 S1 + S𝑇2 S3 + S𝑇2𝜆3

+ S𝑇2 W̃
𝑇
𝑜2X2 (x2) − S𝑇2 g𝑛T̃𝑓 −

󵄩󵄩󵄩󵄩S2
󵄩󵄩󵄩󵄩 𝜌̃2

+ S𝑇2 g𝑛 [B̃𝑚𝑟 − m̂−1
𝑟 (g−1𝑛 x3 + B̂𝑚𝑟m̃𝑟)] 𝛿

+ S𝑇2 g𝑛 [B̃𝑚𝑙 − m̂−1
𝑙 (g−1𝑛 x3 + B̂𝑚𝑙m̃𝑙)] (I − 𝛿) + 𝜅

󸀠
2.

(46)

From (36), it follows that

𝜆̇3 = 𝜉̇3 − 𝛼̇2

= −
𝜆3

𝜍3
+ c2Ṡ2 + Ẇ𝑇

𝑜2X2 (x2) +W𝑇
𝑜2

𝜕X2 (x2)
𝜕x2

ẋ2

−
̇̂T𝑓 − 𝜉̈2 +

𝑑 (𝜌̂2 tanh (𝜅
−1
2 S2𝜌̂2))

𝑑S2
Ṡ2

≤ −
𝜆3

𝜍3
+ 𝜓3 (S1, S2, S3,𝜆2,𝜆3,W𝑜2, T̂𝑓, y𝑑, ẏ𝑑, ÿ𝑑) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆̇3 +
𝜆𝑖3

𝜍3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜓3 (S1, S2, S3,𝜆2,𝜆3,W𝑜2, T̂𝑓, y𝑑, ẏ𝑑, ÿ𝑑) ,

(47)

where 𝜓3(⋅) is a continuous function. From (47), we obtain
the following inequality:

𝜆
𝑇
3 𝜆̇3 ≤ −

󵄩󵄩󵄩󵄩𝜆3
󵄩󵄩󵄩󵄩
2

𝜍3
+
󵄩󵄩󵄩󵄩𝜆3

󵄩󵄩󵄩󵄩𝜓3

≤ −

󵄩󵄩󵄩󵄩𝜆3
󵄩󵄩󵄩󵄩
2

𝜍3
+
󵄩󵄩󵄩󵄩𝜆3

󵄩󵄩󵄩󵄩
2
+
1

4

󵄩󵄩󵄩󵄩𝜓3
󵄩󵄩󵄩󵄩
2
.

(48)

Step 3. The final control law is derived in this step. Consider

ẋ3 = b3uV +W∗𝑇
𝑜3 X3 (x3) + 𝜀

∗
3 . (49)

From the third error surface S3 = x3 − 𝜉3, it follows that

Ṡ3 = ẋ3 − 𝜉̇3

= b3uV +W∗𝑇
𝑜3 X3 (x3) + 𝜀

∗
3 − 𝜉̇3

≤ b3uV +W𝑇
𝑜3X3 (x3) − 𝜉̇3 + W̃𝑇

𝑜3X3 (x3) + 𝜌̂3 − 𝜌̃3,

(50)

where ‖𝜀∗3 ‖ ≤ ‖𝜌3‖, 𝜌3 is a positive constant, and 𝜌̂3 is an
estimation of 𝜌3.

The adaptive strict feedback dynamic surface control is
modified to enforce robustness by adding a sliding mode
control. The modification starts by defining the following
sliding surface in terms of the error coordinates:

𝜒 = 𝛾1S1 + 𝛾2S2 + S3. (51)

We define the following Lyapunov function candidate:

𝑉 =

2

∑
𝑘=1

𝑉𝑘 +
1

2
𝜒
𝑇
𝜒 +

1

2

2

∑
𝑘=1

𝜆
𝑇
𝑘+1𝜆𝑘+1

+

3

∑
𝑘=2

1

2𝜂𝑤𝑘
W̃𝑇

𝑜𝑘W̃𝑜𝑘 +

3

∑
𝑘=2

1

2𝜂𝜌𝑘
𝜌̃
𝑇
𝑘 𝜌̃𝑘

+
1

2
g𝑛z̃

𝑇z̃ + 1

2𝜂0
g𝑛𝜎̃

𝑇
0 𝜎̃0 +

1

2𝜂1
g𝑛𝜎̃

𝑇
1 𝜎̃1

+
1

2𝜂2
g𝑛𝜎̃

𝑇
2 𝜎̃2 +

1

2𝜂𝜃
g𝑛𝜎1𝜃̃

𝑇
𝜃̃

+
1

2𝜂𝑚𝑟

g𝑛m̃
𝑇
𝑟 m̃𝑟 +

1

2𝜂𝑚𝑙

g𝑛m̃
𝑇
𝑙 m̃𝑙

+
1

2𝜂𝑏𝑟
g𝑛B̃

𝑇
𝑚𝑟B̃𝑚𝑟 +

1

2𝜂𝑏𝑙
g𝑛B̃

𝑇
𝑚𝑙B̃𝑚𝑙,

(52)

where 𝜂𝑖𝑖 are positive constants. The time derivative of 𝑉 is
calculated as

𝑉̇ =

2

∑
𝑘=1

𝑉̇𝑘 + 𝜒
𝑇
𝜒̇ +

2

∑
𝑘=1

𝜆
𝑇
𝑘+1𝜆̇𝑘+1

+

3

∑
𝑘=2

1

𝜂𝑤𝑘
W̃𝑇

𝑜𝑘
̇̃W𝑜𝑘 +

3

∑
𝑘=2

1

𝜂𝜌𝑘
𝜌̃
𝑇
𝑘

̇̃
𝜌𝑘

+ g𝑛z̃
𝑇 ̇̃z + 1

𝜂0
g𝑛𝜎̃

𝑇
0

̇̃
𝜎0 +

1

𝜂1
g𝑛𝜎̃

𝑇
1

̇̃
𝜎1

+
1

𝜂2
g𝑛𝜎̃

𝑇
2

̇̃
𝜎2 +

1

𝜂𝜃
g𝑛𝜎̂1𝜃̃

𝑇 ̇̃
𝜃

+
1

𝜂𝑚𝑟

g𝑛m̃
𝑇
𝑟

̇̃m𝑟 +
1

𝜂𝑚𝑙

g𝑛m̃
𝑇
𝑙

̇̃m𝑙

+
1

𝜂𝑏𝑟
g𝑛B̃

𝑇
𝑚𝑟

̇̃B𝑚𝑟 +
1

𝜂𝑏𝑙
g𝑛B̃

𝑇
𝑚𝑙

̇̃B𝑚𝑙

≤ −

2

∑
𝑘=1

c𝑘S
𝑇
𝑘S𝑘 + S𝑇2 S3 +

2

∑
𝑘=1

S𝑇𝑘𝜆𝑘+1

+ S𝑇2 W̃
𝑇
𝑜2X2 (x2) −

󵄩󵄩󵄩󵄩S2
󵄩󵄩󵄩󵄩 𝜌̃2 − S𝑇2 g𝑛T̃𝑓

+ S𝑇2 g𝑛 [B̃𝑚𝑟 − m̂−1
𝑟 (g−1𝑛 x3 + B̂𝑚𝑟m̃𝑟)] 𝛿

+ S𝑇2 g𝑛 [B̃𝑚𝑙 − m̂−1
𝑙 (g−1𝑛 x3 + B̂𝑚𝑙m̃𝑙)] (I − 𝛿) + 𝜅

󸀠
2

+ 𝜒
𝑇
𝜒̇ +

2

∑
𝑘=1

𝜆
𝑇
𝑘+1𝜆̇𝑘+1 +

3

∑
𝑘=2

1

𝜂𝑤𝑘
W̃𝑇

𝑜𝑘
̇̃W𝑜𝑘

+

3

∑
𝑘=2

1

𝜂𝜌𝑘
𝜌̃
𝑇
𝑘

̇̃
𝜌𝑘 + g𝑛z̃

𝑇 ̇̃z + 1

𝜂0
g𝑛𝜎̃

𝑇
0

̇̃
𝜎0

+
1

𝜂1
g𝑛𝜎̃

𝑇
1

̇̃
𝜎1 +

1

𝜂2
g𝑛𝜎̃

𝑇
2

̇̃
𝜎2 +

1

𝜂𝜃
g𝑛𝜎̂1𝜃̃

𝑇 ̇̃
𝜃
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+
1

𝜂𝑚𝑟

g𝑛m̃
𝑇
𝑟

̇̃m𝑟 +
1

𝜂𝑚𝑙

g𝑛m̃
𝑇
𝑙

̇̃m𝑙

+
1

𝜂𝑏𝑟
g𝑛B̃

𝑇
𝑚𝑟

̇̃B𝑚𝑟 +
1

𝜂𝑏𝑙
g𝑛B̃

𝑇
𝑚𝑙

̇̃B𝑚𝑙.

(53)

From (51), we obtain the following relation:

S3 = −𝛾1S1 − 𝛾2S2 + 𝜒. (54)

By considering the previous results and (54), we obtain the
following result:

𝑉̇ ≤ −

2

∑
𝑘=1

c𝑘S
𝑇
𝑘S𝑘 + S𝑇2 (−𝛾1S1 − 𝛾2S2)

+

2

∑
𝑘=1

󵄩󵄩󵄩󵄩S𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜆𝑘+1

󵄩󵄩󵄩󵄩 + S𝑇2 W̃
𝑇
𝑜2X2 (x2) −

󵄩󵄩󵄩󵄩S2
󵄩󵄩󵄩󵄩 𝜌̃2 − S𝑇2 g𝑛T̃𝑓

+ S𝑇2 g𝑛 [B̃𝑚𝑟 − m̂−1
𝑟 (g−1𝑛 x3 + B̂𝑚𝑟m̃𝑟)] 𝛿

+ S𝑇2 g𝑛 [B̃𝑚𝑙 − m̂−1
𝑙 (g−1𝑛 x3 + B̂𝑚𝑙m̃𝑙)] (I − 𝛿) + 𝜅

󸀠
2

+ 𝜒
𝑇
[S𝑇2 + 𝛾1 (S2 + 𝜉2 − ̇𝑦𝑑)

+ 𝛾2 (S3 + 𝜆3 − c2S2 − S1)

+b3uV +W𝑇
𝑜3X3 (x3) − 𝜉̇3 + 𝜌̂3]

+ 𝜒
𝑇
[𝛾2W̃

𝑇
𝑜2X2 (x2) − g𝑛𝛾2T̃𝑓 + g𝑛𝛾2B̃𝑚𝑟𝛿

− g𝑛𝛾2m̂
−1
𝑟 B̂𝑚𝑟m̃𝑟𝛿 + g𝑛𝛾2B̃𝑚𝑙 (I − 𝛿)

− g𝑛𝛾2m̂
−1
𝑙 B̂𝑚𝑙m̃𝑙 (I − 𝛿) + W̃𝑇

𝑜3X3 (x3) −𝜌̃3 + 𝜅
󸀠
2]

−

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜆𝑘+1
󵄩󵄩󵄩󵄩
2

𝜍𝑘+1
+

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜆𝑘+1
󵄩󵄩󵄩󵄩
2
+
1

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜓𝑘+1
󵄩󵄩󵄩󵄩
2

+

3

∑
𝑘=2

1

𝜂𝑤𝑘
W̃𝑇

𝑜𝑘
̇̃W𝑜𝑘 +

3

∑
𝑘=2

1

𝜂𝜌𝑘
𝜌̃
𝑇
𝑘

̇̃
𝜌𝑘

+
1

𝜂𝑏𝑟
g𝑛B̃

𝑇
𝑚𝑟

̇̃B𝑚𝑟 + g𝑛z̃
𝑇 ̇̃z + 1

𝜂0
g𝑛𝜎̃

𝑇
0

̇̃
𝜎0 +

1

𝜂1
g𝑛𝜎̃

𝑇
1

̇̃
𝜎1

+
1

𝜂2
g𝑛𝜎̃

𝑇
2

̇̃
𝜎2 +

1

𝜂𝜃
g𝑛𝜎1𝜃̃

𝑇 ̇̃
𝜃 +

1

𝜂𝑚𝑟

g𝑛m̃
𝑇
𝑟

̇̃m𝑟

+
1

𝜂𝑚𝑙

g𝑛m̃
𝑇
𝑙

̇̃m𝑙 +
1

𝜂𝑏𝑟
g𝑛B̃

𝑇
𝑚𝑟

̇̃B𝑚𝑟 +
1

𝜂𝑏𝑙
g𝑛B̃

𝑇
𝑚𝑙

̇̃B𝑚𝑙.

(55)

We choose the control input to be

uV = b−13 [−S𝑇2 − 𝛾1 (S2 + 𝜉2 − ̇𝑦𝑑)

− 𝛾2 (S3 + 𝜆3 − c2S2 − S1)

−W𝑇
𝑜3X3 (x3) + 𝜌̂3 − 𝜉̇3 − K1𝜒 − K2 sgn (𝜒)] ,

(56)

where K1 > 0 and K2 > 0 are design constants. By
using Young’s inequality expressed as ‖S𝑘‖‖𝜆𝑘+1‖ ≤ ‖S𝑘‖

2
+

(1/4)‖𝜆𝑘+1‖
2, (56) becomes

𝑉̇ ≤ −

2

∑
𝑘=1

(c𝑘 − 1) S𝑇𝑘S𝑘 + S𝑇2 (−𝛾1S1 − 𝛾2S2)

− K1
󵄩󵄩󵄩󵄩𝜒

󵄩󵄩󵄩󵄩
2
− K2

󵄩󵄩󵄩󵄩𝜒
󵄩󵄩󵄩󵄩

+ W̃𝑇
𝑜3 (𝜒

𝑇X3 (x3) −
1

𝜂𝑤3
Ẇ𝑜3) + 𝜌̃

𝑇
3 (−𝜒

𝑇
+

1

𝜂𝜌3

̇̂
𝜌3)

+ g𝑛m̃
𝑇
𝑟 (− (S𝑇2 + 𝛾2𝜒

𝑇
) m̂−1

𝑟 B̂𝑚𝑟𝛿 −
1

𝜂𝑚𝑟

̇̂m𝑟)

+ g𝑛m̃
𝑇
𝑙 (− (S𝑇2 + 𝛾2𝜒

𝑇
) m̂−1

𝑙 B̂𝑚𝑙 (I − 𝛿) −
1

𝜂𝑚𝑙

̇̂m𝑙)

+ g𝑛B̃
𝑇
𝑚𝑟 ((S

𝑇
2 + 𝛾2𝜒

𝑇
) 𝛿 −

1

𝜂𝑏𝑟

̇̂B𝑚𝑟)

+ g𝑛B̃
𝑇
𝑚𝑙 ((S

𝑇
2 + 𝛾2𝜒

𝑇
) (I − 𝛿) − 1

𝜂𝑏𝑙

̇̂B𝑚𝑙)

+ W̃𝑇
𝑜2 ((S

𝑇
2 + 𝛾2𝜒

𝑇
)X2 (x2) −

1

𝜂𝑤2
Ẇ𝑜2)

+ 𝜌̃
𝑇
2 (−

󵄩󵄩󵄩󵄩S2
󵄩󵄩󵄩󵄩 +

1

𝜂𝜌2

̇̂
𝜌2)

+ g𝑛𝜎̃
𝑇
0 (− (S𝑇2 + 𝛾2𝜒

𝑇
) ẑ − 1

𝜂0

̇̂
𝜎0)

+ g𝑛𝜎̃
𝑇
1 (− (S𝑇2 + 𝛾2𝜒

𝑇
) ̇̂z − 1

𝜂1

̇̂
𝜎1)

+ g𝑛𝜎̃
𝑇
2 (− (S𝑇2 + 𝛾2𝜒

𝑇
) k −

1

𝜂2

̇̂
𝜎2)

+ g𝑛𝜎1𝜃̃
𝑇
(− (S𝑇2 + 𝛾2𝜒

𝑇
) 𝜎̂1ẑh −

1

𝜂𝜃

̇̂
𝜃)

+
5

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜆𝑘+1
󵄩󵄩󵄩󵄩
2
+
1

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜓𝑘+1
󵄩󵄩󵄩󵄩
2
+ g𝑛𝜅

󸀠
2

− g𝑛 (S
𝑇
2 + 𝛾2𝜒

𝑇
) (𝜎0 − 𝜃𝜎1h) z̃

+ g𝑛 (S
𝑇
2 + 𝛾2𝜒

𝑇
)𝜎1𝜃ẑh𝜎̃0 − g𝑛 (S

𝑇
2 + 𝛾2𝜒

𝑇
) 𝜀𝑓

+ g𝑛 (−𝜃𝜎0hz̃
𝑇
− 𝜃hẑ𝜎̃0 − 𝜎̂0hẑ𝜃̃) z̃.

(57)

We specify the adaptive laws as follows:

Ẇ𝑜2 = Proj𝑤𝑜2 [𝜂𝑤2 (S
𝑇
2 + 𝛾2𝜒

𝑇
)X2 (x2)] ,

Ẇ𝑜3 = Proj𝑤𝑜3 [𝜂𝑤3𝜒
𝑇X3 (x3)] ,

̇̂
𝜌2 = Proj𝜌2+ [𝜂𝜌2

󵄩󵄩󵄩󵄩S2
󵄩󵄩󵄩󵄩] ,
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̇̂
𝜌3 = Proj𝜌3+ [𝜂𝜌3𝜒

𝑇
] ,

̇̂
𝜎0 = Proj𝜎0+ [−𝜂0 (S

𝑇
2 + 𝛾2𝜒

𝑇
) ẑ] ,

̇̂
𝜎1 = Proj𝜎1+ [−𝜂1 (S

𝑇
2 + 𝛾2𝜒

𝑇
) ̇̂z] ,

̇̂
𝜎2 = Proj𝜎2+ [−𝜂2 (S

𝑇
2 + 𝛾2𝜒

𝑇
) k] ,

̇̂
𝜃 = Proj𝜃+ [−𝜂𝜃 (S

𝑇
2 + 𝛾2𝜒

𝑇
) 𝜎̂1ẑh] ,

̇̂m𝑟 = Proj𝑚̂𝑟+ [−𝜂𝑚𝑟 (S
𝑇
2 + 𝛾2𝜒

𝑇
) m̂−1

𝑟 B̂𝑚𝑟𝛿] ,

̇̂m𝑙 = Proj𝑚̂𝑙+ [−𝜂𝑚𝑙 (S
𝑇
2 + 𝛾2𝜒

𝑇
) m̂−1

𝑙 B̂𝑚𝑙 (I − 𝛿)] ,

̇̂B𝑚𝑟 = Proj𝐵𝑚𝑟+ [𝜂𝑏𝑟 (S
𝑇
2 + 𝛾2𝜒

𝑇
) 𝛿] ,

̇̂B𝑚𝑙 = Proj𝐵𝑚𝑙− [𝜂𝑏𝑙 (S
𝑇
2 + 𝛾2𝜒

𝑇
) (I − 𝛿)] ,

(58)

where the projection mapping is defined as [35]

ProjΩ̂𝑘+ (Ξ) = {
0 if Ω̂𝑘 = Ω𝑘max and Ξ > 0

Ξ otherwise,

ProjΩ̂𝑘± (Ξ) =
{{

{{

{

0
if Ω̂𝑘 = Ω𝑘max and Ξ > 0

or Ω̂𝑘 = Ω𝑘min and Ξ < 0

Ξ otherwise,

ProjΩ̂− (Ξ) = {
0 if Ω̂ = Ωmin and Ξ < 0

Ξ otherwise.

(59)

Substituting (58) into (57), we can obtain the following
relation:

𝑉̇ ≤ − [S1 S2]Θ[S1 S2]
𝑇
− K1

󵄩󵄩󵄩󵄩𝜒
󵄩󵄩󵄩󵄩
2
− K2

󵄩󵄩󵄩󵄩𝜒
󵄩󵄩󵄩󵄩

−

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜆𝑘+1
󵄩󵄩󵄩󵄩
2

𝜍𝑘+1
+
5

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜆𝑘+1
󵄩󵄩󵄩󵄩
2

+
1

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜓𝑘+1
󵄩󵄩󵄩󵄩
2
+ g𝑛𝜅

󸀠
2 − g𝑛 (S

𝑇
2 + 𝛾2𝜒

𝑇
) (𝜎0 − 𝜃𝜎1h) z̃

+ g𝑛 (S
𝑇
2 + 𝛾2𝜒

𝑇
)𝜎1𝜃ẑh𝜎̃0 − g𝑛 (S

𝑇
2 + 𝛾2𝜒

𝑇
) 𝜀𝑓

+ g𝑛 (−𝜃𝜎0hz̃
𝑇
− 𝜃hẑ𝜎̃0 − 𝜎̂0hẑ𝜃̃) z̃

≤ − K1
󵄩󵄩󵄩󵄩𝜒

󵄩󵄩󵄩󵄩
2
+ 𝜒Γ + Δ𝑓,

(60)

where

Γ = −g𝑛𝛾2 (𝜎0 − 𝜃𝜎1h) z̃ + g𝑛𝛾2𝜎1𝜃ẑh𝜎̃0 − g𝑛𝛾2𝜀𝑓, (61)

Δ𝑓 = g𝑛S
𝑇
2 (

󵄩󵄩󵄩󵄩𝜎1 − 𝜃𝜎1h
󵄩󵄩󵄩󵄩) z̃ + g𝑛S

𝑇
2𝜎1𝜃h ‖ẑ‖ 𝜎̃0

+ g𝑛 (−𝜃𝜎0hz̃
𝑇
− 𝜃h ‖ẑ‖ 𝜎̃0 − 𝜎̂0h ‖ẑ‖ 𝜃̃) z̃

+
5

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜆𝑘+1
󵄩󵄩󵄩󵄩
2
+
1

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜓𝑘+1
󵄩󵄩󵄩󵄩
2

+ g𝑛
󵄩󵄩󵄩󵄩S2

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝜀𝑓

󵄩󵄩󵄩󵄩󵄩
+ g𝑛𝜅

󸀠
2

= − g𝑛(
󵄩󵄩󵄩󵄩S2

󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝜎1 − 𝜃𝜎1h
󵄩󵄩󵄩󵄩

2
‖z̃‖)

2

−
g𝑛

󵄩󵄩󵄩󵄩𝜎1 − 𝜃𝜎1h
󵄩󵄩󵄩󵄩

4
‖z̃‖2

+ g𝑛(
󵄩󵄩󵄩󵄩S2

󵄩󵄩󵄩󵄩
2
−

󵄩󵄩󵄩󵄩𝜎1𝜃hẑ
󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩𝜎̃0
󵄩󵄩󵄩󵄩
2
)

2

− g𝑛
󵄩󵄩󵄩󵄩S2

󵄩󵄩󵄩󵄩
2
−
g𝑛
󵄩󵄩󵄩󵄩𝜎1𝜃hẑ

󵄩󵄩󵄩󵄩
2

4

󵄩󵄩󵄩󵄩𝜎̃0
󵄩󵄩󵄩󵄩
2

− g𝑛𝜃
󵄩󵄩󵄩󵄩𝜎0

󵄩󵄩󵄩󵄩 h(‖z̃‖ +
1

2
󵄩󵄩󵄩󵄩𝜎0

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜎̃0
󵄩󵄩󵄩󵄩)

2

+
g𝑛𝜃

4
󵄩󵄩󵄩󵄩𝜎0

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜎̃0
󵄩󵄩󵄩󵄩
2
− g𝑛 (

󵄩󵄩󵄩󵄩󵄩
𝜃̃

󵄩󵄩󵄩󵄩󵄩

2
+

󵄩󵄩󵄩󵄩𝜎̂0hẑ
󵄩󵄩󵄩󵄩
2

2
‖z̃‖2)

+

󵄩󵄩󵄩󵄩𝜎̂0hẑ
󵄩󵄩󵄩󵄩
2

4
‖z̃‖2 + 5

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜆𝑘+1
󵄩󵄩󵄩󵄩
2

+
1

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜓𝑘+1
󵄩󵄩󵄩󵄩
2
+ g𝑛

󵄩󵄩󵄩󵄩S2
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝜀𝑓

󵄩󵄩󵄩󵄩󵄩
+ g𝑛𝜅

󸀠
2,

(62)

and the positive definite matrixΘ𝑖 is described as

Θ = [
(c1 − 1) 0
𝛾1 (c2 − 1) + 𝛾2

] . (63)

Then (60) can be written as

𝑉̇ = −
1

2
𝜒
𝑇
(2K1 −

I
𝜇2

)𝜒 −
1

2
(
I
𝜇
𝜒 − 𝜇Γ)

𝑇

(
I
𝜇
𝜒 − 𝜇Γ)

+
1

2
𝜇
2
‖Γ‖

2
+ Δ𝑓

≤ −
1

2
𝜒
𝑇Q𝜒 + 1

2
𝜇
2
‖Γ‖

2
+ Δ𝑓,

(64)

where Q = (2K1 − I/𝜇2), K1 > I/2𝜇2, and 𝜇 is a positive
constant. By integrating both sides of (64) from 𝑡 = 0 to 𝑡 =

∞, we obtain the following inequality:

𝑉 (𝑇) ≤ 𝑉 (0) −
1

2
𝜆min (Q) ∫

𝑇

0

󵄩󵄩󵄩󵄩𝜒
󵄩󵄩󵄩󵄩
2
𝑑𝑡

+
1

2
𝜇
2
∫
𝑇

0
‖Γ‖

2
𝑑𝑡

+ g𝑛 ∫
𝑇

0
(
󵄩󵄩󵄩󵄩S2

󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝜎1𝜃hẑ
󵄩󵄩󵄩󵄩
2

2

󵄩󵄩󵄩󵄩𝜎̃0
󵄩󵄩󵄩󵄩)

2

𝑑𝑡
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+
1

4
∫
𝑇

𝑜

g𝑛𝜃
󵄩󵄩󵄩󵄩𝜎0

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜎̃0
󵄩󵄩󵄩󵄩
2
𝑑𝑡 +

1

4
∫
𝑇

0

󵄩󵄩󵄩󵄩𝜎̂0hẑ
󵄩󵄩󵄩󵄩
2
‖z̃‖2𝑑𝑡

+ ∫
𝑇

0
(
5

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜆𝑘+1
󵄩󵄩󵄩󵄩
2
+
1

4

2

∑
𝑘=1

󵄩󵄩󵄩󵄩𝜓𝑘+1
󵄩󵄩󵄩󵄩
2
)𝑑𝑡 + Δ,

(65)

for all 0 ≤ 𝑇 < ∞ with Δ = g𝑛‖S2‖‖𝜀𝑓‖ +

g𝑛𝜅󸀠2. This implies all the states and signals are bounded.
Finally, we can conclude that Γ ∈ 𝐿2[0,∞) ∩ 𝐿∞[0,∞),
‖S2‖ − (‖𝜎1𝜃hẑ‖

2
/2)‖𝜎̃0‖ ∈ 𝐿2[0,∞) ∩ 𝐿∞[0,∞),

(g𝑛𝜃/‖𝜎0‖)‖𝜎̃0‖
2
∈ 𝐿2[0,∞) ∩ 𝐿∞[0,∞), ‖𝜎̂0hẑ‖

2
‖z̃‖2 ∈

𝐿2[0,∞) ∩ 𝐿∞[0,∞), ∑
2
𝑘=1 ‖𝜆𝑘+1‖

2
∈ 𝐿2[0,∞) ∩

𝐿∞[0,∞), ∑2
𝑘=1 ‖𝜓𝑘+1‖

2
∈ 𝐿2[0,∞) ∩ 𝐿∞[0,∞), and Δ ∈

𝐿2[0,∞) ∩ 𝐿∞[0,∞). Then, S𝑖 → 0, 𝜒 → 0, W̃𝑜𝑖 →

0, 𝜌̃𝑖 → 0, 𝜎̃0 → 0, 𝜎̃1 → 0, 𝜎̃2 → 0, 𝜃̃ → 0, m̃𝑟 → 0,
m̃𝑙 → 0, B̃𝑚𝑟 → 0, and B̃𝑚𝑙 → 0 as 𝑡 → ∞ by Barbalat’s
Lemma [30].

4. Experimental Example

The experiments to evaluate the proposed control scheme
using the Scorbot robot system are described in this section.
A photograph of the Scorbot robot is given in Figure 2, where
the deadzone occurs in the timing belt. We select only two
links (upper arm = link1 and forearm = link2) among the
four links of the Scorbot robot manipulator to simplify the
verification process of our position control. From (1) to (3),
the dynamic equations for the two DOF (degree of freedom)
links of the Scorbot robot manipulator are described as

M (q) q̈ + C (q, q̇) q̇ + G (q) + T𝑓 (q, q̇) + T𝐿 = 𝜏,

𝜏 = nk𝑡i,

L𝑚
𝑑i
𝑑𝑡

+ R𝑚i + k𝑏q̇ = V,

(66)

where

M (q) = [
𝑀11 𝑀12

𝑀21 𝑀22
] ,

𝑀11 = (𝑚1 + 𝑚2) 𝐿
2
1 + 𝑚2𝐿

2
2 + 2𝑚2𝐿1𝐿2 cos (𝑞2) ,

𝑀12 = 𝑚2𝐿
2
2 + 𝐿1𝐿2𝑚2 cos (𝑞2) ,

𝑀21 = 𝑚2𝐿
2
2 + 𝐿1𝐿2𝑚2 cos (𝑞2) ,

𝑀22 = 𝑚2𝐿
2
2,

C (q, q̇) = [
−𝑚2𝐿1𝐿2 sin (𝑞2) ̇𝑞22 − 2𝑚2𝐿1𝐿2 sin (𝑞2) ̇𝑞1 ̇𝑞2

𝑚2𝐿1𝐿2 sin (𝑞2) ̇𝑞21
] ,

G (q) = [
𝑚2𝐿2𝑔 cos (𝑞1 + 𝑞2) + (𝑚1 + 𝑚2) 𝐿1𝑔 cos (𝑞1)

𝑚2𝐿2𝑔 cos (𝑞1 + 𝑞2)
] ,

F𝑓 (q, q̇) = [
𝜎01𝑧1 + 𝜎11𝑧̇1 + 𝜎21 ̇𝑞1
𝜎02𝑧2 + 𝜎12𝑧̇2 + 𝜎22 ̇𝑞2

] .

(67)

The parameter values chosen for each link and actuator
are represented in Table 1. The sine wave joint and circle
motions of the end effector are chosen to be the desired
trajectory commands. The sine wave is chosen to be q𝑑(𝑡) =

0.005 sin(1.2566𝑡) (rad). The direct kinematics for a circle
trajectory in a task space is given by

Φ (q) = [
𝐿1 sin (𝑞1) + 𝐿2 sin (𝑞1 + 𝑞2)

𝐿1 cos (𝑞1) + 𝐿2 cos (𝑞1 + 𝑞2)
] . (68)

Then, the desired end-effector trajectory of the manipulator
becomes

Y𝑑 (𝑡) = [
𝑥𝑑
𝑦𝑑

] = [
𝑥𝑐 + 𝑅 cos (𝜔 × 𝑡)

𝑦𝑐 + 𝑅 sin (𝜔 × 𝑡)
] , (69)

where 𝑥𝑐 = 𝑦𝑐 = −0.1m, 𝑅 = 2.5mm, and 𝜔 = 0.45 rad/sec.
This trajectory makes the manipulator tip trace a circle in
the 𝑥0 − 𝑦0 plane with a radius of 𝑅 = 2.5mm. The desired
trajectory Y𝑑 was translated to the corresponding joint space
desired position trajectory q𝑑 via the inverse kinematics of
the simulated two DOF links manipulators:

q𝑑 = Φ
−1

(Y𝑑) = [
𝑞𝑑1
𝑞𝑑2

]

=

[
[
[
[
[
[

[

tan−1 (
𝑦𝑑/𝑥𝑑 − tan−1 (𝐿2 sin (𝑞𝑑2))

𝐿1 + 𝐿2 cos (𝑞𝑑2)
)

tan−1 (
1 − (𝑥2𝑑 + 𝑦2

𝑑 − 𝐿21 − 𝐿22)
2
/(2𝐿1𝐿2)

2

(𝑥2
𝑑
+ 𝑦2

𝑑
− 𝐿21 − 𝐿22) / (2𝐿1𝐿2)

)

]
]
]
]
]
]

]

.

(70)

The design parameters of the controller are given in Table 2.
The fuzzy membership functions for the link1 are chosen to
be

𝜇𝐹1
1

=
1

1 + exp [(𝑆11 − 4.5 × 10−3)
2
]
,

𝜇𝐹2
1

= exp [−(𝑆11 − 3 × 10
−3
)
2
] ,

𝜇𝐹3
1

= exp [−(𝑆11 − 1.5 × 10
−3
)
2
] ,

𝜇𝐹4
1

= exp [−(𝑆11 + 0 × 10
−3
)
2
] ,

𝜇𝐹5
1

= exp [−(𝑆11 + 1.5 × 10
−3
)
2
] ,

𝜇𝐹6
1

= exp [−(𝑆11 + 3 × 10
−3
)
2
] ,

𝜇𝐹7
1

=
1

1 + exp [(𝑆11 + 4.5 × 10−3)
2
]
.

(71)

The second inputs of the fuzzy system in link1 are chosen to be
̇𝑆11 and the membership functions are the same as the above
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(a) (b)

Figure 2: Photograph of the Scorbot robot system: (a) manipulator; (b) timing belt in the actuator.
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Figure 3: Experimental results of AF DSC and AF DSMC systems for the sine-wave command: (a) tracking errors in link1; (b) tracking
errors in link2; (c) 𝑢𝑑1; (d) 𝑢𝑑2.

expressions. The fuzzy membership functions for link2 are
chosen to be

𝜇𝐹1
2

=
1

1 + exp [(𝑆21 − 9 × 10−4)
2
]
,

𝜇𝐹2
2

= exp [−(𝑆21 − 6 × 10
−4
)
2
] ,

𝜇𝐹3
2

= exp [−(𝑆21 − 3 × 10
−4
)
2
] ,

𝜇𝐹4
2

= exp [−(𝑆21 + 0 × 10
−4
)
2
] ,

𝜇𝐹5
2

= exp [−(𝑆21 + 3 × 10
−4
)
2
] ,

𝜇𝐹6
2

= exp [−(𝑆21 + 6 × 10
−4
)
2
] ,

𝜇𝐹7
2

=
1

1 + exp [(𝑆21 + 9 × 10−4)
2
]
.

(72)
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Figure 4: Experimental results of AF DSMC, AF DSMC D, and AF DSMC DF systems for the sine command: (a) tracking errors in link1;
(b) tracking errors in link2.
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Figure 5: Experimental results of AF DSMC, AF DSMC D, and AF DSMC DF systems for the circle command: (a) tracking results; (b)
tracking errors in link1; (c) tracking errors in link2.
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Table 1: Manipulator parameters.

Symbol Parameter Quantity
𝑚1, 𝑚2 Mass of links 1 and 2 12.1 kg, 3.59 kg
𝐿1, 𝐿2 Mass of links 1 and 2 0.3m, 0.41m
𝐹𝑠1, 𝐹𝑠2 Stiction level of joints 1 and 2 0.063Nm, 0.0648Nm
𝐹𝑐1, 𝐹𝑐2 Coulomb friction of joints 1 and 2 0.061Nmsec/rad, 0.06Nmsec/rad
V𝑠1, V𝑠2 Stibeck velocity of joints 1 and 2 0.00075 rad/sec, 0.00063 rad/sec
𝜎01, 𝜎02 Bristle stiffness of joints 1 and 2 5400Nm/rad, 8700Nm/rad
𝜎11, 𝜎12 Presliding damping of joints 1 and 2 5.4Nmsec/rad, 6.2Nmsec/rad
𝜎21, 𝜎22 Sliding damping of joints 1 and 2 10.2Nmsec/rad, 10.8Nmsec/rad
𝜃1, 𝜃2 Transient friction parameter of joints 1 and 2 0.87, 0.9
𝑚𝑟1, 𝑚𝑙1 Slope of deadzone of joint 1 1, 1
𝑚𝑟2, 𝑚𝑙2 Slope of deadzone of joint 2 1, 1
𝐵𝑟1, 𝐵𝑙1 Deadzone width of joint 1 0.28, −0.28
𝐵𝑟2, 𝐵𝑙2 Deadzone width of joint 1 0.25, −0.25
𝑛𝑖 Gear ratio of reduction gear 65.5
𝐿𝑚𝑖 Inductance of motor 0.6292mH
𝑅𝑚𝑖 Resistance of motor 0.8294Ω
𝑘𝑡𝑖 Torque constant 0.0182Nm/A
𝑘𝑏𝑖 Back emf constant 0.0182V/rad/sec

Figure 6: Photograph of the link2 with attached mass.

The second inputs of the fuzzy system in link2 are chosen
to be ̇𝑆21 and the membership functions are the same as
the above expressions. The designed controllers generated in
the computer are implemented in the MATLAB RTI system
using an MF624 board (Humusoft) [38]. The control signals
were transferred into the DC servomotor of the Scorbot
robot through the servodrive. The sample frequency was set
to1 kHz.

In (18), the term f3(𝑥3) is taken to be uncertain and
is not approximated by the fuzzy system since this uncer-
tainty can be compensated for by adding a SMC in (56).
Firstly, we designed two controllers to evaluate the per-
formance of the proposed system: the proposed adaptive
fuzzy DSC system with SMC (AF DSMC) and the con-
ventional fuzzy DSC system without SMC (AF DSC). The
experimental results are shown in Figure 3. The tracking

Table 2: Controller parameters.

Parameter Quantity
𝑐11, 𝑐12 120, 20
𝑐21, 𝑐22 80, 10
𝛾11, 𝛾12 0.2, 0.2
𝛾21, 𝛾22 0.2, 0.2
𝐾11, 𝐾12 0.12, 0.12
𝐾21, 𝐾22 0.12, 0.12
𝜌12, 𝜌22 0.2, 0.2
𝜏12, 𝜏13 0.5, 0.5
𝜏22, 𝜏23 0.05, 0.05

Table 3: RMS tracking error for the sine command.

Control system RMS error (rad) RMS error (%)
Link1 Link2 Link1 Link2

AF DSC 1.83 × 10−4 2.95 × 10−4 100 100
AF DSC 1.51 × 10

−4
2.43 × 10

−4 82.5 82.4
AF DSMC D 1.05 × 10−4 1.69 × 10−4 57.4 57.3
AF DSMC DF 0.75 × 10−4 1.06 × 10−4 41 36

errors of AF DSMC system in Figures 3(a) and 3(b) are
significantly lower than those of the AF DSC due to the
addition of a SMC into the controller in spite of the similar
control inputs as shown in Figures 3(c) and 3(d).These results
validate the general robustness property of a SMC. These
experimental results show that the proposed dynamic surface
control combined with a SMC has a superior performance
than that of the conventional DSC system.

Next, we designed two additional control systems: an
adaptive fuzzy dynamic surface sliding mode controller
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Figure 7: Experimental results of AF DSC DF and AF DSMC DF systems for the circle command against disturbances: (a) tracking results;
(b) tracking errors in link1; (c) tracking errors in link2.

with deadzone compensation alone (AF DSMC D) and an
adaptive fuzzy dynamic surface sliding mode controller with
both deadzone and friction compensation (AF DSMC DF).
Experimental results for sine-wave command inputs are
shown in Figure 4, where it can be seen that the proposed
AF DSMC DF has much better tracking performance than
those of deadzone compensation alone (AD DSMC D) and
no compensation (AF DSMC). In Figure 5, the estimated
results for the fuzzy output weights, uncertainty, friction, and
deadzone parameters are given for a sine-wave command
input.

To quantitatively evaluate the tracking performance of
each control system, the RMS tracking errors for a sine-wave
command are summarized in Table 3. The size of the RMS
tracking error is decreased by asmuch as 36% in the proposed
control scheme compared to that of the AF DSC system.

The circle trajectory tracking results are represented in
Figure 6, where it can be seen that, due to compensation
of friction and deadzone, the circle tracking errors in the
AF DSMC DF system are much lower than the errors of the
AF DSMCandAF DSMC D systems. To evaluate robustness
to external disturbance, an additional mass of 1.8 kg was

attached to link2 as shown in Figure 7 and pulse disturbances
of 2 and 0.2V for 0.5 sec of pulse widths were applied to
each motor drive at 5, 10, 15, and 20 sec, respectively. The
two control schemes with the deadzone and friction com-
pensators with SMC (AFE DSMC DF) and without SMC
(AFE DSC DF) were evaluated. As can be seen in Figure 7,
the proposed AFE DSMC DF system is more robust to
disturbance because of the SMC.

The RMS tracking errors for a circle command are
summarized in Table 4, where the magnitude of the RMS
tracking error is decreased as much as 16.5% in the proposed
control scheme compared to that of the AF DMSC system.

5. Conclusion

In this paper, a nonmodel based dynamic surface sliding
mode control scheme has been developed to provide signif-
icantly enhanced position tracking performance of a MIMO
robot manipulator system in the presence of both deadzone
and friction on the part of the actuator. An adaptive fuzzy sys-
tem is considered to approximate the unknown uncertainty
of the complex manipulator dynamics. To enforce the
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Table 4: RMS tracking error for the circle command.

Control system RMS error (rad) RMS error (%)
Link1 Link2 Link1 Link2

AF DSMC 6.30 × 10−4 2.66 × 10−4 100 55.3
AF DSMC D 2.84 × 10

−4
1.26 × 10

−4 45.1 47.4
AF DSMC DF 1.04 × 10−4 0.80 × 10−4 16.5 30
AF DSC DF
(disturbance) 3.66 × 10−4 1.31 × 10−4 58.1 49.3

AF DSMC DF
(disturbance) 2.69 × 10

−4
0.81 × 10

−4 42.7 30.5

robustness of the DSC scheme, a SMC is also considered as
well to introduce estimators for the unknown parameters of
the Elastoplastic friction model and deadzone. The recursive
steps of the DSC design procedure provide adaptive laws
for the controller, friction, and deadzone estimators. As an
example application, a Scorbot robotmanipulator in the pres-
ence of joint friction and deadzone was tested. The favorable
positioning performance of the proposed control scheme has
been experimentally validated to effectively compensate for
deadzone, friction, and uncertainty.
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