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A strategy to design and implement a robust controller for a class of underactuated mechanical systems, with two degrees of
freedom, which solves the problems of regulation and trajectory tracking, is proposed. This control strategy considers the partial
measurement of the state vector and the presence of parametric uncertainties in the plant; these conditions are common in the
implementation of a control system. The strategy is based on the use of robust finite time convergence observers to estimate
the unmeasured state variables, unknown disturbances, and other signals needed for the control system implementation. The
performance of the control strategy is illustrated numerically and experimentally.

1. Introduction

Antecedents and Motivation. Control of underactuated me-
chanical systems, systems with fewer number of control
inputs than their degrees of freedom, has received much
attention in the last decades.This is because of the theoretical
challenges as well as practical applicability; robots, aerospace
vehicles, underwater vehicles, and surface vessels are some
examples of underactuatedmechanical systems. Some impor-
tant papers which address this control problem for different
situations are [1–9]. While many interesting techniques and
results have been presented for this class of systems, the
control of them still remains an open problem. Important
issues are as follows: how control models can be formulated
for such systems and how closed-loop control problems can
be solved and implemented. These issues are addressed in
this paper for a particular class of uncertain underactuated
mechanical systems. These problems have been addressed by
many authors and important solutions have been proposed,
some of which are as follows.

In [10] a sliding mode control method for a class
of second-order underactuated mechanical systems is pro-
posed; the controller has the double-layer structure. Firstly,
the system states are divided into several different subsystems.
For each of these subsystems, a first-layer sliding plane

is constructed; from that, a second-layer sliding plane is
constructed. By analyzing the features of the model of the
plant, they derive the sliding control law. Here, the proposed
controller only solves the regulation problem; furthermore,
the implementation of the controller requires the measure-
ment of full state vector; this condition is not satisfied in
practice. For a similar class of systems, in [11], the Olfati
transformation is applied first to represent the system into
a special cascade form. Since, in general cases, some of
the terms in the new space might become too complex to
drive, they are regarded as uncertainties. A backstepping-like
adaptive control based on function approximation technique
is designed so that the system in the new space can be
stabilized with uniformly ultimately bounded performance.
This paper assumes knowledge of all system parameters and
the measurement of all state variables and the perturbation
terms that appear in the approach are well known, but
experimental results are not presented.

Other works deal with particular systems, for example,
[1, 3, 12, 13], but many of them only deal with the regulation
problem and present performance results through numerical
simulations. Reference [14] addresses the observer-based
multivariable control of a class of nonlinear, underactuated
Lagrangian systems with application to trajectory tracking
and sway control of a 3D overhead gantry crane subject to
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Coulomb friction. A second-order sliding mode observer is
used for the estimation of velocities. Based on these estimates,
the sliding function of a second-order slidingmode controller
for trajectory tracking and antiswing control is proposed.
This is a very important paper because it considers a very
common situation in practice, the lack ofmeasurement of the
velocities, but it only show numerical results.

An important work is presented in [15] where, for a class
of second-order underactuated mechanical systems, a robust
finite time control strategy is proposed. The robust finite
time controller drives the tracking error to be zero at the
fixed final time. By utilizing a Lyapunov stability theorem, the
controller can achieve finite time tracking of desired reference
signals for underactuated systems, which are subject to both
external disturbances and system uncertainties. However, the
complete measurement of the state vector is assumed and
only stabilization problem is solved. Moreover, illustration
controller performance is through numerical simulations.

Main Contribution. We propose a strategy to design and
implement a robust controller for a class of underactuated
mechanical systems, with two degrees of freedom, which
solves the problems of regulation and trajectory tracking.
This control strategy considers the partialmeasurement of the
state vector and the presence of parametric uncertainties in
the plant; these conditions are common in the implementa-
tion of a control system.

The strategy is based on the use of robust finite time
convergence observers to estimate the unmeasured state vari-
ables, unknown disturbances, and other signals needed for
the control system implementation. The performance of the
control strategy is illustrated numerically and experimentally.

Paper Structure. This paper is organized as follows: Section 2
provides the control problem, the model of the plant, and
the control objective. In Section 3, we propose the solution
to the problem; to implement such solution is necessary
to know the velocities, the exact value of the disturbances,
and the availability of auxiliary signals and their derivatives,
which are unknown. One way to implement this control
signal is presented in Section 4, where with the help of
robust observers with finite time convergence we estimate all
the terms needed for implementation. Section 5 shows the
performance of the controller through numerical simulations
and experimental results. Finally, in Section 6, we present
some general conclusions.

2. Problem Statement

Consider a 2DOF underactuated mechanical system whose
dynamics are given by
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Some well known mechanisms that belong to this class
of underactuated systems are the mass-spring-damper, mag-
netic suspension, and the ball and beam systems.

A state space representation of system (1) is
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The control problem, for system (2), is to design a control
input 𝑢 such that the underactuated position 𝑥

3
tracks a

reference signal 𝑦
𝑟
(𝑡) in asymptotic form; in other words
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where 𝑦
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(𝑡) is aC𝑘 function, for a sufficiently large 𝑘.

To solve the control problemwe define the error variables
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Nowwe can say that the control problem is to design a control
input 𝑢 such that the origin of the error variables of sub-
systems (4) and (5) will be an asymptotic stable equilibrium
point, while the variables 𝑥

1
and 𝑥

2
stay bounded.

3. Control Strategy

In this section we present a strategy to solve the control prob-
lem considering that every disturbance terms and velocities
are known; the next section will show its implementation.
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System ((4)–(9)) is formed by two subsystems; the unac-
tuated part is
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and the actuated part is
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substituting it in (12) results in
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A control 𝑢 that stabilizes the origin of system (15) is
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substituting it in (15) we have
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If the constants 𝛼
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are positive the origin of system

(17) is an exponentially stable equilibrium point.
It is important to note that, because this section con-

sidered that we have the measurement of all terms, it is
not necessary to incorporate the term discontinuous in the
control (16); however this term is very useful when the
implementation is done because it will give robustness to
closed-loop system.

3.1. StabilityAnalysis. Toprove the stability of the closed-loop
system consider the error system
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This system can be rewritten in the form
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2
− V
2









1/2 sign (𝜖

2
− V
2
) ,

�̇�

2
= 𝑐

2,2
sign (𝜖

2
− V
2
) .

(31)

Making a change of variables

V
3
= 𝜖

2
− V
2
,

V
4
= 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) − 𝑧

2
− V̇
2
,

(32)

the dynamics of these variables are given by

V̇
3
= V
4
− 𝑐

1,2









V
3









1/2 sign (V
3
) ,

V̇
4
=

̇

𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + �̇�

2
(⋅) − V̈

2
− 𝑐

2,2
sign (V

3
) .

(33)

If | ̇

𝑓

2
(𝑥

3
, 𝑥

4
) + �̇�

2
(⋅) − V̈

2
| ≤ 𝛿

2
there exist constants 𝑐

1,2
and

𝑐

2,2
such that the trajectories converge in finite time to (V

3
=

0, V
4
= 0); therefore

0 = 𝜖

2
− V
2
,

0 = 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) − 𝑧

2
− V̇
2
.

(34)

Considering that for (28) V
2
= 0 in finite time, after this time,

we estimate the velocity error 𝑒
2
anddisturbance terms𝑓

2
(𝑒

1
+

𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅):

𝑒

2
= 𝑒

2
,

𝑧

2
= 𝑓

2
(𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

2
(⋅) .

(35)

As we can see 𝛾

2
(⋅) is estimated through 𝑧

2
.
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4.2. Estimation of 𝜀
2
, 𝛾
1
(⋅), and �̈�re. Nowwe design an observ-

er for system (15):

̇𝜀

1
= 𝜀

2
,

̇𝜀

2
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝑔

1
(𝑥

1
, 𝑥

3
) 𝑢

+ 𝛾

1
(⋅) − �̈�re,

𝑦

𝜀
= 𝜀

1
.

(36)

The observer is
̇

𝜀

1
= 𝑤

1
+ 𝑎

1,1









𝜀

1
− 𝜀

1









1/2 sign (𝜀

1
− 𝜀

1
) ,

�̇�

1
= 𝑎

2,1
sign (𝜀

1
− 𝜀

1
) ,

𝑦

1
= 𝜀

1
,

̇

𝜀

2
= 𝑔

1
(𝑥

1
, 𝑥

3
) 𝑢 + 𝑤

2

+ 𝑎

1,2









𝑤

1
− 𝜀

2









1/2 sign (𝑤

1
− 𝜀

2
) ,

�̇�

2
= 𝑎

2,2
sign (𝑤

1
− 𝜀

2
) ,

𝑦

2
= 𝜀

2
.

(37)

To show the stability of the observer define the errors 𝜖

3
=

𝜀

1
− 𝜀

1
and 𝜖

4
= 𝜀

2
− 𝜀

2
, whose dynamics are given by

�̇�

3
= 𝜀

2
− 𝑤

1
− 𝑎

1,1









𝜖

3









1/2 sign (𝜖

3
) ,

(38)

�̇�

1
= 𝑎

2,1
sign (𝜖

3
) , (39)

�̇�

4
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�

𝑒
− 𝑤

2

− 𝑎

1,2









𝑤

1
− 𝜀

2









1/2 sign (𝑤

1
− 𝜀

2
) ,

(40)

�̇�

2
= 𝑎

2,2
sign (𝑤

1
− 𝜀

2
) . (41)

Making a change of variables for the first two equations ((38)-
(39)),

V
5
= 𝜖

3
,

V
6
= 𝜀

2
− 𝑤

1
,

(42)

we obtain the subsystem

V̇
5
= V
6
− 𝑎

1,1









V
5









1/2 sign (V
5
) ,

V̇
6
= ̇𝜀

2
− 𝑎

2,1
sign (V

5
) .

(43)

According to (30), if | ̇𝜀

2
| ≤ 𝛿

3
there exist constants 𝑎

1,1
and

𝑎

2,1
such that the trajectories converge in finite time to (V

5
=

0, V
6
= 0) [20]; therefore

𝑤

1
= 𝜀

2
, (44)

in finite time.
For the last two equations in ((40)-(41)),

�̇�

4
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�re − 𝑤

2

− 𝑎

1,2









𝜖

4
− V
6









1/2 sign (𝜖

4
− V
6
) ,

�̇�

2
= 𝑎

2,2
sign (𝜖

4
− V
6
) .

(45)

Making a change of variables

V
7
= 𝜖

4
− V
6
,

V
8
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�re − V̇

6

− 𝑤

2
,

(46)

the dynamics of these variables are given by

V̇
7
= V
8
− 𝑎

1,2









V
7









1/2 sign (V
7
) ,

V̇
8
=

̇

𝑓

1
(𝑥

1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) + �̇�

1
(⋅) −

...

𝑥re − V̈
6

− 𝑎

2,2
sign (V

7
) .

(47)

If | ̇

𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + �̇�

1
(⋅) −

...

𝑥re − V̈
6
| ≤ 𝛿

4
there exist

constants 𝑎

1,2
and 𝑎

2,2
such that the trajectories converge in

finite time to (V
7
= 0, V

8
= 0) [20]; therefore

0 = 𝜖

4
− V
6
,

0 = 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�re − V̇

6

− 𝑤

2
.

(48)

Considering that for (43) V
6
= 0 in finite time, after a finite

time, we have

𝜀

2
= 𝜀

2
,

𝑤

2
= 𝑓

1
(𝑥

1
, 𝑥

2
, 𝑒

1
+ 𝑦

𝑟
, 𝑒

2
+ �̇�

𝑟
) + 𝛾

1
(⋅) − �̈�re.

(49)

Now, the control inputs (13) and (16)may be implemented
in the following form:

𝑥re ≈

1

𝑔

2

(−𝑧

2
+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
) ,

𝑢 ≈

1

𝑔

1
(𝑥

1
, 𝑥

3
)

(−𝑤

2
− 𝛼

1
𝜀

1
− 𝛼

2
𝜀

2
− 𝛼

3
sign (𝜀

1
)) .

(50)

The implementation of the controller must be in several
stages. First we have to apply a signal 𝑢, in open loop, such
that the behavior of the system will be bounded; in this
way the observers can estimate the state and disturbances in
finite time. After this time, the control signals (50) can be
implemented and then close the control loop.

5. Control System Performance

This section shows the performance of the control system
through numerical simulations and experimental results; the
control systems are a ball and beam system and a spring-
mass-damper mechanism.

5.1. Control of a Ball and Beam System. Consider the ball and
beam system shown in Figure 1; its model is given by

(𝐽 + 𝑚𝑥

2
) �̈� + 2𝑚𝑥�̇��̇� − (𝑚𝑔𝑥) cos (𝛼) + 𝛿

1
�̇� = 𝑢,

7

5

�̈� − 𝑥�̇�

2
− 𝑔 sin (𝛼) + 𝛿

2
�̇� = 0,

(51)
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Lever arm

Ball

Beam

x

u

𝛼

Figure 1: Ball and beam mechanical system.

where 𝑥 is the position of the ball, 𝛼 is the angle of the frame,
𝐽 = 0.032 kg⋅m2 is the moment of inertia of the beam, 𝑚 =

0.06 kg is the mass of the ball, 𝛿
1
and 𝛿

2
are viscous friction

coefficients, and 𝑔 = 9.8m/seg2 is the gravitational force.
Defining the state variables as 𝑥

1
= 𝛼, 𝑥

2
= �̇�, 𝑥

3
= 𝑥, and

𝑥

4
= �̇� and substituting the values of the constants we have

the model

�̈� =

𝑚𝑥�̇��̇�

(𝐽 + 𝑚𝑥

2
)

+

(𝑚𝑔𝑥) cos (𝛼)
(𝐽 + 𝑚𝑥

2
)

−

𝛿

1

(𝐽 + 𝑚𝑥

2
)

�̇�

+

𝑢

(𝐽 + 𝑚𝑥

2
)

,

�̈� =

5

7

𝑥�̇�

2
−

5

7

𝛿

2
�̇� +

5

7

𝑔 sin (𝛼) .

(52)

A state variable representation is as follows:

�̇�

1
= 𝑥

2
,

�̇�

2
=

𝑚𝑥

3
𝑥

2
𝑥

4

(𝐽 + 𝑚𝑥

2

3
)

+

(𝑚𝑔𝑥

3
) cos (𝑥

1
)

(𝐽 + 𝑚𝑥

2

3
)

−

𝛿

1

(𝐽 + 𝑚𝑥

2
)

𝑥

2

+

𝑢

(𝐽 + 𝑚𝑥

2

3
)

,

�̇�

3
= 𝑥

4
,

�̇�

4
=

5

7

𝑥

3
𝑥

2

2
−

5

7

𝛿

2
𝑥

4
+

5

7

𝑔 sin (𝑥

1
) ,

𝑦

1
= 𝑥

1
,

𝑦

2
= 𝑥

3
.

(53)

In this example, without loss of generality, the model is free
from uncertainties and external disturbances. It is important
to note that the variable 𝑥

1
is the argument of the sine

function, so the control will have a bounded amplitude.
The control objective is that the ball position 𝑥

3
tracks the

reference signal𝑦
𝑟
(𝑡). Define the error variables 𝑒

1
= 𝑥

3
−𝑦

𝑟
(𝑡)

and 𝑒

2
= 𝑥

4
− �̇�

𝑟
(𝑡) and the auxiliary control 𝑢

𝑒
= sin(𝑥

1
) to

obtain the following system:

�̇�

1
= 𝑥

2
,

�̇�

2
=

𝑚𝑥

3
𝑥

2
𝑥

4

(𝐽 + 𝑚𝑥

2

3
)

+

(𝑚𝑔𝑥

3
) cos (𝑥

1
)

(𝐽 + 𝑚𝑥

2

3
)

−

𝛿

1

(𝐽 + 𝑚𝑥

2
)

𝑥

2

+

𝑢

(𝐽 + 𝑚𝑥

2

3
)

,

̇𝑒

1
= 𝑒

2
,

̇𝑒

2
=

5

7

𝑥

3
𝑥

2

2
−

5

7

𝛿

2
𝑥

4
− �̈�

𝑟
(𝑡) +

5

7

𝑔𝑢

𝑒
,

𝑦

1
= 𝑥

1
,

𝑦

𝑒
= 𝑒

1
,

(54)

where 𝑢

𝑒
only may take values in the [−1, 1] interval.

The ideal controller 𝑢

𝑒
to stabilize the origin of system

(54) is

𝑢

𝑒
=

7

5𝑔

(−

5

7

𝑥

3
𝑥

2

2
+

5

7

𝛿

2
𝑥

4
+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
) , (55)

where 𝑘

1
= 30 and 𝑘

2
= 10. Thus, the reference signal for 𝑥

1

is

𝑥re = arcsin(

7

5𝑔

(−

5

7

𝑥

3
𝑥

2

2
+

5

7

𝛿

2
𝑥

4
+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1

− 𝑘

2
𝑒

2
)) .

(56)

Define new error variables 𝜀

1
= 𝑥

1
− 𝑥re and 𝜀

2
= 𝑥

2
− �̇�re

whose dynamics are given by

̇𝜀

1
= 𝜀

2
,

̇𝜀

2
=

𝑚𝑥

3
𝑥

2
𝑥

4

(𝐽 + 𝑚𝑥

2

3
)

+

(𝑚𝑔𝑥

3
) cos (𝑥

1
)

(𝐽 + 𝑚𝑥

2

3
)

−

𝛿

1

(𝐽 + 𝑚𝑥

2
)

𝑥

2

− �̈�re +
𝑢

(𝐽 + 𝑚𝑥

2

3
)

.

(57)

Then, an ideal control to stabilize the origin of system (57) is

𝑢 = (𝐽 + 𝑚𝑥

2

3
)(−

𝑚𝑥

3
𝑥

2
𝑥

4

(𝐽 + 𝑚𝑥

2

3
)

−

(𝑚𝑔𝑥

3
) cos (𝑥

1
)

(𝐽 + 𝑚𝑥

2

3
)

+

𝛿

1

(𝐽 + 𝑚𝑥

2
)

𝑥

2
+ �̈�re + 𝑢

𝑜
) ,

𝑢

𝑜
= −𝜎

1
𝜀

1
− 𝜎

2
𝜀

2
− 𝜎

3
sign (𝜀

1
) ,

(58)

where 𝜎

1
= 40, 𝜎

2
= 10, and 𝜎

3
= 0.7. Figure 2 shows the

results when the reference 𝑦

𝑟
takes different constant values;

this is the case of regulation. Steady state error is practically
zero and the control signal takes values suitable for a possible
implementation.
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Figure 2: Simulation results with the ball and beam system; per-
formance for the regulation problem.

The same situation occurs when the reference is a time-
varying signal. Figure 3 shows that the output signal 𝑥

3
of

the nonactuated link converges to a time-varying signal with
an almost zero steady-state error and a control signal with
adequate performance for experimental implementation.

5.2. Control of a Mass-Spring-Damper System. Consider the
2DOF underactuated mass-spring-damper mechanical sys-
tem shown in Figure 4, with the model

𝑚

1
�̈� = −𝑘

1
𝑥 − 𝛿

1
�̇� + (𝑧 − 𝑥) 𝑘

2
+ (�̇� − �̇�) 𝛿

2
+ 𝑘

𝑚
𝑢

+ 𝛾

1
(⋅) ,

𝑚

2
�̈� = − (𝑧 − 𝑥) 𝑘

2
− (�̇� − �̇�) 𝛿

2
+ 𝛾

2
(⋅) ,

(59)

where 𝑥, �̇�, and �̈� are the position, velocity, and acceleration
of the first mass, 𝑧, �̇�, and �̈� are the position, velocity, and
acceleration of the second mass, 𝑢 is the control input, and
𝛾

1
(⋅) and 𝛾

2
(⋅) are disturbances that include terms produced

by parameter uncertainties.
The nominal parameters are 𝑘

1
= 𝑘

2
= 189.65N/m,

𝛿

1
= 10.54 kg/sec, 𝛿

2
= 1.19 kg/sec, 𝑚

1
= 0.77 kg, 𝑚

2
=

0.60 kg, and 𝑘

𝑚
= 2.85N/V; these are the nominal parameter

values for the mass-spring-damper system manufactured by
Educational Control Products Inc. A state representation of
system (59) is

�̇�

1
= 𝑥

2
,

�̇�

2
= −491.74𝑥

1
− 15.23𝑥

2
+ 10245.87𝑥

3
+ 1.55𝑥

4

+ 3.69𝑢 + 𝛾

1
(⋅) ,
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Time (s)

x
3
−
y
r
(t
)

(m
)
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0.01

x
3
,y

r
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)

(m
)
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u
(N

m
)

Figure 3: Simulation results with the ball and beam system; per-
formance for the tracking problem.

u

m1 m2

k1 k2

𝛿1 𝛿2

x1
x3

Figure 4: Underactuated mass-spring-damper mechanical systems.

�̇�

3
= 𝑥

4
,

�̇�

4
= 312.72𝑥

1
+ 1.97𝑥

2
− 312.72𝑥

3
− 1.97𝑥

4
+ 𝛾

2
(⋅) ,

𝑦

1
= 𝑥

1
,

𝑦

2
= 𝑥

3
.

(60)

The control objective is

lim
𝑡→∞









𝑥

3
− 𝑦

𝑟
(𝑡)









= 0, (61)

with a bounded behavior in 𝑥

1
, 𝑥
2
, and 𝑥

4
.

Define the error 𝑒
1
= 𝑥

3
−𝑦

𝑟
(𝑡)whose dynamics are given

by

̇𝑒

1
= 𝑒

2
,

̇𝑒

2
= −312.72𝑒

1
− 1.97𝑒

2
− 312.72𝑦

𝑟
(𝑡) − 1.97�̇�

𝑟
(𝑡)

− �̈�

𝑟
(𝑡) + 1.97𝑥

2
+ 𝛾

2
(⋅) + 312.72𝑥

1
,

𝑦

𝑒
= 𝑒

1
,

�̇�

1
= 𝑥

2
,
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�̇�

2
= −491.74𝑥

1
− 15.23𝑥

2
+ 10245.87𝑥

3
+ 1.55𝑥

4

+ 3.69𝜏 + 𝛾

1
(⋅) ,

𝑦

1
= 𝑥

1
.

(62)

In this case the signal 𝑢
𝑒
= 𝑥re and is given by

𝑥re = 3.19

× 10

−3
(−𝑐

1
𝑒

1
− 𝑐

2
𝑒

2
− 1.97𝑥

2
− 𝛾

2
(⋅) + Θ) ,

(63)

where 𝑐

1
= 𝑐

2
= 10 and Θ = 312.72𝑦

𝑟
(𝑡) + 1.97�̇�

𝑟
(𝑡) + �̈�

𝑟
(𝑡).

To design the control 𝑢 define the errors

𝜀

1
= 𝑥

1
− 𝑥re,

𝜀

2
= 𝑥

2
− �̇�re,

(64)

with dynamics given by

̇𝜀

1
= 𝜀

2
,

̇𝜀

2
= −491.74𝑥

1
− 15.23𝑥

2
+ 10245.87𝑥

3
+ 1.55𝑥

4

+ 3.69𝑢 + 𝛾

1
(⋅) − �̈�re,

(65)

and the control input for this subsystem is

𝑢 = 0.270 (491.74𝑥

1
+ 15.23𝑥

2
− 10245.87𝑥

3

− 1.55𝑥

4
− 𝛾

1
(⋅) + �̈�re + 𝑢

𝑜
) ,

𝑢

𝑜
= −𝛼

1
𝜀

1
− 𝛼

2
𝜀

2
− 𝛼

3
sign (𝜀

1
) .

(66)

The observer used to estimate the unknown signals 𝑒
2
and

𝛾

2
(⋅) is

̇

𝑒

1
= 𝑧

1
+ 𝑐

1,1









𝑒

1
− 𝑒

1









1/2 sign (𝑒

1
− 𝑒

1
) ,

�̇�

1
= 𝑐

2,1
sign (𝑒

1
− 𝑒

1
) ,

𝑦

1
= 𝑒

1
,

̇

𝑒

2
= −312.72𝑒

1
− 1.97𝑒

2
− 312.72𝑦

𝑟
(𝑡) − 1.97�̇�

𝑟
(𝑡)

− �̈�

𝑟
(𝑡) + 312.72𝑥

1
+ 𝑧

2

+ 𝑐

1,2









𝑧

1
− 𝑒

2









1/2 sign (𝑧

1
− 𝑒

2
) ,

�̇�

2
= 𝑐

2,2
sign (𝑧

1
− 𝑒

2
) ,

𝑦

2
= 𝑒

2
,

(67)

where 𝑧

1
≈ 𝑒

2
and 𝑧

2
≈ 𝛾

2
(⋅).
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Figure 5: Simulation results with the mass-spring-damper system;
performance for the regulation problem.

The observer to estimate 𝜀

2
, 𝛾
1
(⋅), and �̈�re is

̇

𝜀

1
= 𝑤

1
+ 𝑎

1,1









𝜀

1
− 𝜀

1









1/2 sign (𝜀

1
− 𝜀

1
) ,

�̇�

1
= 𝑎

2,1
sign (𝜀

1
− 𝜀

1
) ,

𝑦

1
= 𝜀

1
,

̇

𝜀

2
= −491.74𝑥

1
+ 10245.87𝑥

3
+ 3.69𝑢 + 𝑤

2

+ 𝑎

1,2









𝑤

1
− 𝜀

2









1/2 sign (𝑤

1
− 𝜀

2
) ,

�̇�

2
= 𝑎

2,2
sign (𝑤

1
− 𝜀

2
) ,

𝑦

2
= 𝜀

2
,

(68)

where𝑤
1
≈ 𝜀

2
and𝑤

2
≈ −491.74𝑥

1
−15.23𝑥

2
+10245.87𝑥

3
+

1.55𝑥

4
+ 𝛾

1
(⋅) − �̈�re.

The control inputs (13) and (16) may be implemented in
the following form:

𝑥re ≈

1

𝑔

2

(−𝑧

2
+ �̈�

𝑟
(𝑡) − 𝑘

1
𝑒

1
− 𝑘

2
𝑒

2
) ,

𝑢 ≈

1

𝑔

1
(𝑥

1
, 𝑥

3
)

(−𝑤

2
− 𝛼

1
𝜀

1
− 𝛼

2
𝜀

2
− 𝛼

3
sign (𝜀

1
)) ,

(69)

where 𝑘

1
= 10, 𝑘

2
= 1, 𝛼

1
= 20, 𝛼

2
= 20, and 𝛼

3
= 0.4.

5.2.1. Numerical Results. Figure 5 shows the results when the
reference 𝑦

𝑟
, red line, takes different constant values; this is

the case of regulation. As can be seen, the output signal 𝑥
3

(black line) reaches asymptotically the reference after a short
transient. The steady state error 𝑥

3
− 𝑦

𝑟
(𝑡) is practically zero

and the control signal 𝑢 takes values suitable for a possible
implementation.

The same situation occurs when the reference is a time-
varying signal. Figure 6 shows that the output signal 𝑥

3
(black

line) of the unactuated link converges to a time-varying signal
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Figure 6: Simulation results with the mass-spring-damper system;
performance for the tracking problem.
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Figure 7: Estimation errors of 𝑒
2
and 𝛾

2
(⋅).

𝑦

𝑟
(𝑡) (red line) with an almost zero steady-state error, 𝑥

3
−

𝑦

𝑟
(𝑡), and a control signal 𝑢 with good characteristics for

experimental implementation.
For this last case, we analyze the behavior of the state

observers. Figure 7 shows the behavior of the errors 𝑒

2
− 𝑒

2

and 𝛾

2
(⋅) − 𝛾

2
(⋅); these errors converge to zero in few seconds.

For the observer that estimates 𝜀

2
and the term that

includes 𝛾

1
(⋅) and �̈�re, it is not possible to compare the

actual values with the estimate values.Therefore we check the
behavior of the errors 𝜀

1
− 𝜀

1
and 𝜀

2
− 𝜀

2
; as these errors go

to zero, as we can see in Figure 8, the estimation of 𝜀
2
and the

term that includes 𝛾
1
(⋅) and �̈�re is correct.

5.2.2. Experimental Results. The proposed controller is
applied to a spring mass damping system manufactured by
Educational Control Products Inc., shown in Figure 9. In this
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Figure 8: Behavior of the internal errors of the observer that esti-
mates 𝜀

2
, 𝛾
1
(⋅), and �̈�re.

Figure 9: Mass damper spring system used in the experiments.

experiment it is assumed that the plant has the same param-
eters as those considered in the numerical simulation of the
previous section and did not conduct a rigorous procedure to
estimate the parameters of the real plant, creating a significant
challenge to the controller. This situation was resolved by
tuning the parameters of each observer, the internal control
signal 𝑢

𝑒
, and the total control 𝑢; where 𝑘

1
= 20, 𝑘

2
= 2,

𝛼

1
= 20, 𝛼

2
= 5, and 𝛼

3
= 0.4.

Experimental results are shown with a reference signal
𝑦

𝑟
with constant values at different times; that is, the control

objective is regulation. The results are shown in Figure 10,
where we can see that the transient takes about one second;
the amplitude of the steady-state error, 𝑥

3
− 𝑦

𝑟
, has a

maximum of 8 × 10

−6 meters and the control signal 𝑢 takes
values which are in the permissible range of the control
system, ±3 volts.

In the second experiment we apply a time varying signal;
a sine function, that is, the control target, is tracking. The
results are shown in Figure 11, where we can see that the
transient takes about 5.8 secondswith an initial error of about
0.01 meters, the steady-state error amplitude, 𝑥

3
− 𝑦

𝑟
(𝑡), has

a maximum of ±3 × 10

−4 meters, and the control signal takes
values which are in the permissible range control system, as
in the previous case, between ±3 volts.

6. Conclusions

The control strategy proposed formally guarantees the con-
trol objective, either regulation or trajectory tracking, and at



10 Mathematical Problems in Engineering

0 5 10 15 20 25 30 35 40
−0.02

0

0.02

Time (s)

x
3
,y

r
(m

)

0 5 10 15 20 25 30 35 40
−0.02

0

0.02

Time (s)

x
3
−
y
r

(m
)

0 5 10 15 20 25 30 35 40
−5

0

5

Time (s)

u
(N

)

Figure 10: Experimental results and the regulation case.
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Figure 11: Experimental results and tracking case.

the same time establishes a strategy for its implementation
considering partial measurement of the state variables and
parametric uncertainties. Although stability is not global, the
subspace that can ensure stability can be made as large as
needed in practice. Some of its limitations are the number
of parameters to adjust, both in the observers and in the
controller, and the need to use a real-time platform to
implement the controller to ensure a sample time less than or
equal to one millisecond, and thus the actual sliding mode,
produced by discontinuous terms, enough approaches the
ideal sliding mode.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] N. Adhikary and C. Mahanta, “Integral backstepping sliding
mode control for underactuated systems: swing-up and stabi-
lization of the Cart-Pendulum System,” ISA Transactions, vol.
52, no. 6, pp. 870–880, 2013.

[2] S. Andary, A. Chemori, M. Benoit, and J. Sallantin, “A dual
model-free control of underactuatedmechanical systems, appli-
cation to the inertia wheel inverted pendulum,” in Proceedings
of the American Control Conference (ACC ’12), pp. 1029–1034,
June 2012.

[3] M. Bettayeb, C. Boussalem, R. Mansouri, and U. M. Al-
Saggaf, “Stabilization of an inverted pendulum-cart system by
fractional PI-state feedback,” ISA Transactions, vol. 53, no. 2, pp.
508–516, 2014.

[4] L. Xu, Q. Hu, and G.Ma, “Output feedback stabilization control
for underactuated mechanical systems,” in Proceedings of the
31st Chinese Control Conference (CCC ’12), pp. 4267–4272, IEEE,
July 2012.

[5] F. Mnif, “VSS control for a class of underactuated mechanical
systems,” International Journal of computational Cognition, vol.
3, no. 2, 2005.

[6] P.Morin and C. Samson, “Control of underactuatedmechanical
systems by the transverse function approach,” in Proceedings
of the 44th IEEE Conference on Decision and Control, and the
European Control Conference (CDC-ECC ’05), pp. 7508–7513,
IEEE, December 2005.

[7] M. S. Park, D. Chwa, and S. K. Hong, “Decoupling control
of a class of underactuated mechanical systems based on
sliding mode control,” in Proceedings of the International Joint
Conference (SICE-ICASE ’06), pp. 806–810, IEEE, 2006.

[8] M. Reyhanoglu, A. van der Schaft, N. H. McClamroch, and I.
Kolmanovsky, “Dynamics and control of a class of underac-
tuated mechanical systems,” IEEE Transactions on Automatic
Control, vol. 44, no. 9, pp. 1663–1671, 1999.

[9] V. Sankaranarayanan andA.D.Mahindrakar, “Control of a class
of underactuated mechanical systems using sliding modes,”
IEEE Transactions on Robotics, vol. 25, no. 2, pp. 459–467, 2009.

[10] W.Wang, J. Yi, D. Zhao, and X. Liu, “Double layer sliding mode
control for second-order underactuated mechanical systems,”
in Proceedings of the IEEE IRS/RSJ International Conference on
Intelligent Robots and Systems (IROS ’05), pp. 295–300, IEEE,
August 2005.

[11] Y.-F. Chen and A.-C. Huang, “Controller design for a class
of underactuated mechanical systems,” IET Control Theory &
Applications, vol. 6, no. 1, pp. 103–110, 2012.

[12] S. Rudra, R. K. Barai, M. Maitra et al., “Global stabilization
of a flat underactuated inertia wheel: a block backstepping
approach,” in Proceedings of the 3rd International Conference on
Computer Communication and Informatics (ICCCI ’13), pp. 1–4,
IEEE, January 2013.

[13] J.-X. Xu, Z.-Q. Guo, and T. H. Lee, “Sliding mode controller
design for underactuated systems,” in Proceedings of the 12th
International Workshop on Variable Structure Systems (VSS ’12),
pp. 385–390, January 2012.

[14] R. M. T. Raja Ismail, D. T. Nguyen, and Q. P. Ha, “Observer-
based trajectory tracking for a class of underactuated Lagrangi-
an systems using higher-order sliding modes,” in Proceedings of
the IEEE International Conference on Automation Science and
Engineering: Green Automation Toward a Sustainable Society
(CASE ’12), pp. 1204–1209, August 2012.



Mathematical Problems in Engineering 11

[15] C.-C. Cheng, K.-S. Yang, and J.-H. Yang, “Robust finite time
controller design for second order nonlinear underactuated
mechanical systems,” Transactions of the Canadian Society for
Mechanical Engineering, vol. 37, no. 3, pp. 549–557, 2013.

[16] P. K. Khosla and T. Kanade, “Parameter identification of robot
dynamics,” in Proceedings of the 24th IEEE Conference on
Decision andControl, pp. 1754–1760, IEEE, Fort Lauderdale, Fla,
USA, December 1985.

[17] D. I. R. Almeida, J. Alvarez, and L. Fridman, “Robust observa-
tion and identification of nDOF Lagrangian systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 17, no. 9, pp.
842–861, 2007.

[18] H. K. Khalil, Nonlinear Systems, vol. 3, Prentice Hall, Upper
Saddle River, NJ, USA, 2002.

[19] A. Levant, “Robust exact differentiation via sliding mode
technique,” Automatica, vol. 34, no. 3, pp. 379–384, 1998.

[20] J. Davila, L. Fridman, and A. Levant, “Second-order sliding-
mode observer for mechanical systems,” IEEE Transactions on
Automatic Control, vol. 50, no. 11, pp. 1785–1789, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


