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We discuss the approximate controllability of second-order impulsive neutral partial stochastic functional integrodifferential
inclusions with infinite delay under the assumptions that the corresponding linear system is approximately controllable. Using
the fixed point strategy, stochastic analysis, and properties of the cosine family of bounded linear operators combined with
approximation techniques, a new set of sufficient conditions for approximate controllability of the second-order impulsive partial
stochastic integrodifferential systems are formulated and proved. The results in this paper are generalization and continuation of

the recent results on this issue. An example is provided to show the application of our result.

1. Introduction

Impulsive effects exist widely in many evolution processes
in which states are changed abruptly at certain moments of
time, involving fields such as physics, chemical technology,
population dynamics, biotechnology, and economics; see
[1-4] and the references therein. However, in addition to
impulsive effects, stochastic effects likewise exist in real
systems. A lot of dynamical systems have variable structures
subject to stochastic abrupt changes, which may result from
abrupt phenomena such as stochastic failures and repairs
of the components, changes in the interconnections of sub-
systems, sudden environment changes, and other areas of
science. Therefore, it is necessary and important to consider
the impulsive stochastic dynamical systems. Particularly, the
authors in [5-7] studied the existence of mild solutions for
a class of abstract impulsive neutral stochastic functional
differential and integrodifferential equations with infinite
delay in Hilbert spaces.

The concept of controllability leads to some very impor-
tant conclusions regarding the behavior of linear and non-
linear dynamical systems. In the case of infinite-dimensional
systems, two basic concepts of controllability can be dis-
tinguished. There are exact and approximate controllability.

However, the concept of exact controllability is usually too
strong [8]. Therefore, approximate controllability problems
for deterministic and stochastic dynamical systems in infinite
dimensional spaces are well developed using different kind
of approaches (see [9, 10]). Stochastic control theory is a
stochastic generalization of classic control theory. So signif-
icant progress has been made in the approximate controlla-
bility of linear and nonlinear stochastic systems in Banach
spaces (see, e.g., [9-12]). Several papers [13-16] have appeared
on the approximate controllability of nonlinear impulsive
stochastic differential systems in Hilbert spaces.

In many cases, it is advantageous to treat the second-
order stochastic differential equations directly rather than
to convert them to first-order systems. The second-order
stochastic differential equations are the right model in con-
tinuous time to account for integrated processes that can be
made stationary. Recently, based on the fixed point theory, the
existence and approximate controllability of mild solutions
for various second-order stochastic partial differential equa-
tions and impulsive stochastic partial differential equations
have been extensively studied. For example, Ren and Sun
[17], Cui and Yan [18], and Mahmudov and McKibben
[19] proved the approximate controllability of second-order



neutral stochastic evolution differential equations. Muthuku-
mar and Balasubramaniam [20] established sufficient condi-
tions for the approximate controllability of a class of second-
order nonlinear stochastic functional differential equations
of McKean-Vlasov type. Balasubramaniam and Muthukumar
in [21] discussed the approximate controllability of second-
order neutral stochastic distributed implicit functional dif-
ferential equations with infinite delay. Sakthivel et al. in
[22] studied the approximate controllability of second-order
impulsive stochastic differential equations. On the other
hand, many systems arising from realistic models can be
described as partial stochastic differential or integrodifferen-
tial inclusions (see [23-27] and references therein), so it is
natural to extend the concept controllability of mild solution
for second-order impulsive stochastic evolution equations
to second-order impulsive systems represented by stochastic
partial differential or integrodifferential inclusions. In this
paper, we consider the approximate controllability of the
following second-order impulsive neutral partial stochastic
functional integrodifferential inclusions with infinite delay in
Hilbert spaces of the form

d[x' - g(tx0 % )]
€ [Ax (t) + Bu(t)] dt

+F <t, X X (1), Jt h (t, S, xs,x' (s)) ds) dw(t),
0

te], t#t,
Lttt )

Ax(tk) =Ik (x(tk),x, (tk))’ k= 1,...,m,

Ax’ (tk) =]k (x(tk),x, (tk))’ k= 1,...,m,

Xg =@ € B,

x'(0) = ¢,
where the state x(-) takes values in a separable real Hilbert
space H with inner product (., -);; and norm || - [|5. The

operator A : D(A) — H is the infinitesimal generator of a
strongly continuous cosine family on H. The control function
u € LP(],U), a Hilbert space of admissible control functions,
p > 2 is an integer, and B is a bounded linear operator from
a Banach space U to H. Let K be another separable Hilbert
space with inner product (-, -) x and norm || - || . Suppose that
{w(t) : t > 0} is a given K-valued Wiener process with a
covariance operator Q > 0 defined on a complete probability
space (Q, %, P) equipped with a normal filtration {F},,,,
which is generated by the Wiener process w. The time history
x; ¢ (-00,0] — H given by x,(0) = x(t + 0) belongs to
some abstract phase space & defined axiomatically; F, g, h,
I, Ji (k = 1,...,m) are given functions to be specified later.
Moreover, let 0 < t; < --- < t,, < b be prefixed points and
the symbol Ax(t,) = x(t{) — x(t;), where x(t;) and x(t])
represent the right and left limits of x(¢) att = ¢, respectively.
The initial data {¢(t) : —oo < t < 0} is an & j-adapted, B-
valued random variable independent of the Wiener process
w with finite second moment.
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To the best of the author’s knowledge, there are no results
about the existence and approximate controllability of mild
solutions for second-order impulsive second-order neutral
partial stochastic functional integrodifferential inclusions
with infinite delay, which is expressed in the form of (1). In
order to fill this gap, this paper studies this interesting prob-
lem. We derive the sufficient conditions for the approximate
controllability of system (1) by using the fixed point theorem
for multivalued mapping due to Dhage [28] with stochastic
analysis and properties of the cosine family of bounded
linear operators combined with approximation techniques.
The obtained result can be seen as a contribution to this
emerging field. Moreover, the operators I, J, (k = 1,...,m)
are continuous but without imposing completely continuous
and Lipschitz condition. The results shown are also new for
deterministic second-order systems with impulsive effects.

The rest of this paper is organized as follows. In Section 2,
we introduce some notations and necessary preliminaries.
Section 3 verifies the existence of solutions for impulsive
stochastic control system (1). In Section 4 we establish the
approximate controllability of impulsive stochastic control
system (1). Finally in Section5, an example is given to
illustrate our results.

2. Preliminaries

Let (Q, #, P) be a complete probability space equipped with
a normal filtration &,, t € [0,b]. Let H and K be the
separable Hilbert spaces and let w be a Q-Weiner process on
(Q, F,, P) with the covariance operator Q such that trQ <
00. We assume that there exists a complete orthonormal
system {e, } -, in K, a bounded sequence of nonnegative real
numbers {A,}, such that Qe; = Ae;, and a sequence f3; of
independent Brownian motions such that

(w(t),e)zz\/)t_,,(en,e)ﬁn(t), ecK, te], (2
n=1

and #, = #,’, where #" is the o-algebra generated by {w(s) :
0 <s<th Let L%) = L*(Q"?K; H) be the space of all Hilbert-
Schmidt operators from Q'K to H with the inner product
(v,0): = Tr(yQO™). Let LP(F,, H) be the Banach space
of all #,-measurable pth power integrable random variables
with values in the Hilbert space H. Let C([0,b]; LY (%, H))
be the Banach space of continuous maps from [0,b] into
LP(F, H) satisfying the condition suptE]Ellx(t)IIf; < 00.

We use the notations that 2(H) is the family of all subsets
of H. Let us introduce the following notations:

Py(H) ={xecP(H): x is closed},
Ppa (H) = {xe€ P (H) : x is bounded},
P, (H) ={xeP(H): x is convex},

P, (H) = {x € P (H) : x is compact} .
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Consider H; : (H) x »(H) — R" U {oo} given by

H, (Z, E) = max {su}zd (Ei, B) ,supd(Zﬁ)} , (4

dcA beB

where d(A,D) = inf, ;d(@,b) and d(@, B) = inf;_3d(@,D).
Then (P4 q(H), Hy) is a metric space and (4(H), H,) is a
generalized metric space.

In what follows, we briefly introduce some facts on
multivalued analysis. For more details, one can see [29, 30].

A multivalued map ® : H — 9(H) is convex (closed)
valued if G(H) is convex (closed) for all x € H. ® is bounded
on bounded sets if ®(D) = |J,p @(x) is bounded in H for
any bounded set D of H; that is, sup,.p{supillyly : ¥ €
D(x)}} < oco.

® is called upper semicontinuous (u.s.c., in short) on H,
if, for any x € H, the set ®(x) is a nonempty, closed subset
of H and if, for each open set B of H containing ®(x), there
exists an open neighborhood N of x such that ®(N) ¢ B.

® is said to be completely continuous if (D) is relatively
compact for every bounded subset D of H. If the multivalued
map © is completely continuous with nonempty compact
values, then @ is u.s.c. if and only if ® has a closed graph; that
is, x, = x,, ¥, — Y. and y, € O(x,) imply y, € O(x,).

® is said to be completely continuous if (D) is relatively
compact, for every bounded subset D € H.

A multivalued map @ : ] — P is said to be measurable
if, for each x € H, the functionY : ] — R" defined by
Y(t) = d(x, ©(t)) = inf{d(x, z) : z € O(t)} is measurable.

In this paper, A is the infinitesimal generator of a strongly
continuous cosine function of bounded linear operators
(C(t));er on H. The corresponding strongly continuous sine
family {S(¢) : t € R} ¢ L(H) isdefined by S(t)x = [, C(s)xds,
t € R,x € H. The generator A : H — H of {C(t) : t € R}
is given by Ax = (d*/dt*)C(t)x|,, for all x € D(A) =
{x € H: C)x € CYR,H)}. It is well known that the
infinitesimal generator A is a closed densely defined operator
on H. As usual we denote by [D(A)] the domain of operator
A endowed with the graph norm |x[| 4 = xll g + |Axlly x €
D(A). Moreover, the notation E stands for the space formed
by the vectors x € H for which C(-)x is of class C'lonR. It
was proved by Kisynski [31] that E endowed with the norm
xlg = lxllg + supge I1AS(H) x|y, x € [E, is a Banach
space. Such cosine and corresponding sine families and their
generators satisfy that the following properties.

Lemma 1 (see [32]). Suppose that A is the infinitesimal
generator of a cosine family of operators {C(t) : t € R}. Then,
the following hold:

(a) There exist Ml > 1 and a > 0 such that |C(t)||
M, e and hence ||S(t)||; < M,e™.

IN

IN

(b) Consider A I: Sw)xdu = [C(r) — C(u)]x for all 0
s<r <00

(c) There exists M, > 1 such that |S(s) — S(r)ly
M, | J;s e“'eldelfor all0 <r < s < oo.

IN

The existence of solutions of the second-order linear
abstract Cauchy problem

£ ()= Ax()+F (@), te],

x(0) = z,, (5)
x'(0) = z,,

where h : J — H is an integrable function, has been
discussed in [33]. Similarly, the existence of solutions for
semilinear second-order abstract Cauchy problem has been
treated in [32]. We only mention here that the function x(-)
given by

x (1) :C(t)zO+S(t)z1+JtS(t—s)F(s)ds,
0

te], (6)

is called a mild solution of (5) and if z, € E, the function x(-)
is continuously differentiable and

x' (t) = AS(t) 2z, +C (t) z, + Lt C(t-s)F(s)ds, o)

te].

A function x : [u,7] — H is said to be normalized
piecewise continuous function on [y, 7] if x is piecewise
continuous and left continuous on (y,7]. We denote by
PE([u, 7], H) the space formed by the normalized piecewise
continuous, F,-adapted measurable processes from [y, 7]
into H. In particular, we introduce the space %% formed
by all #,-adapted measurable, H-valued stochastic processes
{x(t) : t € [0,b]} such that x is continuous at t # t, x(t;) =
x(t;) and x(t;) exists for k = 1,2,...,m. Similarly, "
formed by all #,-adapted measurable, H-valued stochastic
processes {x'(t) : t € [0,b]} such that x" is continuous at
t # tp, x'(t) = x'(t;), and x'(£;) exists for k = 1,2,...,m.
In this paper, we always assume that 2% is endowed with the
norm [[xl| pg = (Supoc,, Elx(t)I7) /2. Then (PB, || - [l ) is
a Banach space. Next, for x € %", we represent by x(t) the
right derivative at t € (0,b] and by x'(0) the right derivative
at zero. It is easy to see that %" is provided with the norm
lxll gt = llxll o + ||x'||g,<g being a Banach space.

In this paper, we assume that the phase space (%, |- [ ) is
aseminormed linear space of #;-measurable functions map-
ping (—00, 0] into H and satistying the following fundamental
axioms due to Hale and Kato (see, e.g., [34]).

(A) If x : (00,0 +b] — H, b > 0, such that x|, ;) €
P€ (0,0 + b], H) and Xy € 9B, then for every t €
[0, 0 + b] the following conditions hold:

(i) x, is in %B;
@iD) x(®llg < Hllxgll 3
(iii) Ixllg < K@ - o)sup{lx(s)ly :
t} + M(t — 0)llx, |l 5> where H > 0is a constant;
K,M : [0,00) — [l,00), K is continuous
and M is locally bounded, and H, K, and M are
independent of x(-).

o < s <



(B) For the function x(:) in (A), the functiont — x, is
continuous from [0, 0 + b] into %.

(C) The space A is complete.

Example 2. The phase space %%, x L (h,H). Let r > 0,

1<p<+coandleth : (~0o,—r] — R be a nonnegative
measurable function which satisfies conditions (h-5) and (h-
6) in the terminology of Hino et al. [35]. Briefly, this means

that /1 is locally integrable and there is a nonnegative, locally
bounded function y on (-0, 0] such that hE+1) < p& (1)
forall§ < 0and § € (-co,~7) \ N, where N; € (—00,-r)isa
set whose Lebesgue measure is zero. We denote by P€, x
LP(h, H) the set consisting of all classes of functions ¢ :
(-00,0] — H such that P € PE([-r,0],H), ¢(-) is

Lebesgue measurable on (-oo,-r), and lelq)HP is Lebesgue
integrable on (—00, —r). The seminorm is given by

ro_ 1/p
lolls = sup ol +([ Aol ar) . ®

The space B = PE, x LF (h, H) satisfies axioms (A)—(C).
Moreover, when r = 0 and p = 2, we can take H=1 M@ =
y(=)"%, and K(t) = 1 + ( jft h(r)dz)'?, for t > 0 (see [35,
Theorem 1.3.8] for details).

Remark 3 (see [4]). In retarded functional differential equa-
tions without impulses, the axioms of the abstract phase space
& include the continuity of the function t — x,. Due to
the impulsive effect, this property is not satisfied in impulsive
delay systems and, for this reason, has been eliminated in our
abstract description of A.

Remark 4. In the rest of this paper M, and K, are the
constants defined by M, = sup,.;M(t) and K;, = sup,;K(¢).

For x € €, we denote by X, k = 0,1, ..., m, the unique
continuous function X;. € C([ty, ty,,]; H) such that

x(t) fort e (tpty],
% (t) = )
x(t;) fort=t.

Moreover, for B € %% we denote by By, k = 0,1,...,m, the
set Ek = {X; : x € B}. The notation B,(x, H) stands for the
closed ball with center at x and radius r > 0 in H.

Lemma 5. A set B C 96 is relatively compact in 5E if and
only if the set By is relatively compact in C([ty, t,,; L,(Q, H)),
foreveryk =0,1,...,m.

Furthermore, we need the following result.

Lemma 6 (see [36]). Letv:] — H be an integrable function
such that v € PE. Then the function v(t) = fot C(t — s)v(s)ds
belongs to PE, the function s — AS(t — s)v(s) is integrable
on [0,8], t € J, and v (t) = w(t) + A [, S(t — s)(s)ds = v(t) +
[y AS(E - s)(s)ds, t € .
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Let x;,(xy; u) be the state value of system (1) at terminal
time b corresponding to the control u and the initial value
Xy = @(t) € %B. Introduce the set

B (b,xy) = {x, (x5u) (0) : () e LP (J,U)},  (10)

which is called the reachable set of system (1) at terminal time
b, and its closure in H is denoted by %B(b, x,).

Now we give the definitions of mild solutions and approx-
imate controllability for system (1).

Definition 7 An  %,-adapted  stochastic =~ process
x : (-oo,b] — H is called a mild solution of system
Difx, = ¢ € A, x'(0) = ¢, x|y € PE', and

the impulsive conditions Ax(t,) = Ik(xtk,x'(tk)) and
Ax'(t;) = ]k(xtk,x'(tk)), k=1,...,m, are satisfied and

(i) x(¢) is adapted to F,, t > 0.

(ii) x(t) € H has cadlag paths on t € J a.s. and, for each
t € ], x(t) satisfies the integral equation

x(t)=CH)e0)+S®)[¢p-g (0.9 ¢)]
+ Jt Ct-s)g (s, X5 x' (s)) ds
0

+Jt8(t—s)Bu(s)ds
0

t (1)
+J S(t-s)f(s)dw(s)
0

+ ) Clt-t) I (% X' (1))

0<t,<t
+ Z S(t—tk)]k(xtk,x’(tk)), tG],
0<tp<t
where f € Sy, = {f € LP(K,H) : f@) e«

E(t, x,, x'(t), _[Ot h(t, s, x, x'(s))ds) a.e. t € J}.

Definition 8. System (1) is said to be approximately control-
lable on the interval J if B(b, x,) = H.

It is convenient at this point to define operators

b
b _ J S, (b—s)BB'S" (b—s)ds,
0<t<b,
. (12)
It = j S(b-s)BB'S" (b—s)ds,

0

R(a18) = (a+12)" fora>o,
where B* denotes the adjoint of B and S*(¢) is the adjoint

of S(¢). It is straightforward that the operator Fg is a linear
bounded operator:
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(SD aR(a,l“f) — 0,0<7T<s<basa — 0"in the
strong operator topology.

Lemma 9. Assumption (SI) holds if and only if aR(a, I‘f) -
0, 0<t<s<basa — 0 in the strong operator topology.

The proof of this lemma is a straightforward adaptation
of the proof of [9, Theorem 2].

Lemma 10 (see [10]). For any X, € LP(F,, H) there exists
¢ € L (Q; L*(0,b; LY)) such that X, = EX,, + j(f P(s)dw(s).

Now for any a > 0 and X, € L?(%,, H) we define the
control function

u’ (t) = B*S* (b—1) (a1+l"é’)_1 [Exb
b o~
" L & (s)dw (s)-C () 9 (0)
-5 [9-9 0.0 | -5'5" -0

. Jb (aI + Ff)_l Cb-s)g (s, X5 x (s)) ds
’ (13)
b

“B'S (b-t) | (ar+10) " Sb=s) f(s)dw(s)
S f

0

~B*S" (b—1)(al + rf)_1

Y C-ty) I (x,,x () -B"S" (b-1) (al
k=1

1) S S 010 (e ().

where f € Sp, = {f € LP(K,H) : f(t) € F(t, x,, x (),

[3 h(t, s, x0 %' (5))ds) ae. t € J}.
The next result is a consequence of the phase space
axioms.

Lemma 11. Let x (-00,b] — H be an F,-adapted
measurable process such that F y-adapted process x, = ¢(t) €
L%(Q, RB) and x|; € PE (], H); then

x5 < MyE |||l + K sup Ellx ()1l - (14)
0<s<b

Lemma 12 (see [37]). For any p >

1 and for arbitrary
LY(K, H)-valued predictable process ¢(-),

s 2p
sup E J ¢ (v)dw (v)
s€[0,t] 0 H
S INVIRY (15)
<(pp-0) ([ (elol2) " as)

t € [0,00).

The consideration of this paper is based on the following
fixed point theorem due to Dhage [28].

Lemma 13. Let H be a Hilbert space, and let ®, : H —
PoepdH) and ©, : H — P, (H) be two multivalued
operators satisfying that

cp,cv

(a) @, is a contraction

(b) @, is completely continuous.
Then either

(i) the operator inclusion x € O, x + D, x has a solution or

(ii) theset G = {x € H : x € AD;x + AD,x} is unbounded
for A €(0,1).

3. Existence of Solutions for Impulsive
Stochastic Control System

In this section, we prove the existence of solutions for impul-
sive stochastic control system (1). We make the following
hypotheses:

(H1) A is the infinitesimal generator of a strongly contin-
uous cosine family {C(t) : t > 0} on H and the
corresponding sine family {S(¢) : t > 0} satisfies the
conditions [[C(t)l;; < Me ™™, |IS(t)|y < Me ™, and
IAS(t)]l;; < Me ™, t > 0 for some constants M, «, B,
and y.

(H2) C(¢), t > 0, is compact.

(H3) The function g : ] x % x H — H is continuous and
there exist L >0 such that

E ”g (t v 0) _g(tz’llfz’%)”il

< Ly [t =to] + vy = vl + E vy - 3l71] "
forallt; e J, y; € B, y; € H, i =1,2,and
Ellg (.30l = Ly (Il + EDpIE +1), .
te], ye3RB, yeH,
with L {MPb" (par)™ + 2710 +

Mo (py) ' HRPTIKD + 1) < 1.

(H4) The function h : ] X ] x %8 x H — H satisfies the
following conditions:

(i) For each (t,s) € J x J the function h(t,s,-,-) :
% x H — H is continuous and, for each
(v, ¥) € &# x H, the function h(-,-, v, y) : J X
J — H is strongly measurable.

(ii) There exists a continuous functionmy, : Jx] —
[0, 00), such that

B sy Dl <m 690, (Wl +bIL) 09



for ae. t,s € J,(y,y) € B x H, where
®, : [0,c0) — (0,00) is a continuous
nondecreasing function.

(H5) The multivalued map F : J x B x Hx H —
Praaer (LK, H)) satisfies the following conditions:

(i) For each t € J, the function F(t,-,-,*) : B x H X
H — Pyqa(LK, H)) is ws.c. and, for each
(v, y,2) € #B x H x H, the function F(,-,-) is
measurable and the set

Sky = {feLP (J,L(K,H)): f(t)

t
eF(t, v,y (t),J0 h(tsyvoy' (s) ds> 19)

for a.e. te]}

is nonempty.

(ii) There exist a continuous function m o] -
[0,00) and a continuous nondecreasing func-
tion © : [0,00) — (0, 00) such that

IF (& v, 3. 2)15;
» » , (20)
<m0 O (vl + Elylf+ Elzlfy).
aete ],y eRB,yzeH, with
L 1+5+0,(s)+0;(s) $70% (21)

where

IF (.2 = sup [EIfI : FeF (w2} @2)

p(t)

0 0 0

where

W (t) = B'S* (b—1) (al +T2) [Exb
b —~
+J0 F(s)dw(s) - C(b) ¢ (0)
s [¢—g(o,¢,¢>]] _B'S (b1

. Jb (al + I‘Sb)_1 Cb-s)g (s, %S,E' (s)) ds

0

0.
- {J Ct-5)g(s%.% (s))derj S(tfs)Bu;(s)derJ St=5)f©dw(s)+ Y Clt-t) L (%, (6)+ Y S(t-t) I (%% (1)), tel,

0<ty<t 0<t<t
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(Hé) The functions I, J;, : #xH — H are continuous and
there are constants ¢, dj, k = 1,2,...,m, j=1,2,3,4
such that

E|L (v, )|I5
0< lim sup ”I(Ly)"gﬁ -

Wi+l — oo [ W15 + E | ]15:

E )IP
0<  lim sup ||£k (v y)||1; .
Wi, +Elyi?, — oo |55 + E 17151

(23)

k

foreveryy € B, y € H.

Lemma 14 (see [38]). Let ] be a compact interval and let H
be a Hilbert space. Let F be a multivalued map satisfying (H5)
(i) and let T be a linear continuous operator from LP(J, H) to
C(J, H). Then the operator T oS : C(J,H) — PCP’CV(C(], H))
is a closed graph in C(J, H) x C(J, H).

Remark 15. In what follows, we set M; = |Blg M, =
Mmax{l,e_“b, e"ﬁb,e_”b}, and N, = max{l,e"‘b,e'gb, eyb}.

Theorem 16. If assumptions (HI1)-(H6) are satisfied, further,
suppose that, for all a > 0, system (1) has at least one mild
solution on ], provided that

12°7'L,
_ _ _ Z (24)
+(10°7 KL + 1227 ) mP I MY (g +dy) | NP
k=1
< 1.
Proof. Let 932 = {x : (-oo,b] — H;x, = 0,x|; €

26, x'(0) = 9(0,¢,¢)} endowed with the norm of PEL.
Thus (J%’g, | - ll %) is Banach space. Now we can define the
multivalued map @ : B, — (%)) by Ox the setof p € B,
such that

t € (—00,0], (25)

b

BS -0 [ (al 1) S@-9 F©dw ()

0
~B'S" (b-t) (al +1%) "

m

Y C-t) I (x,,% () -B'S" (b-t) (aI
k=1

o) is (b-t) )i (.7 (1),

k=1
(26)
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and f € Spx = {f € LP(L(K, H)) f() €
F(t,X, % (1), |, ht,5, 5,7 (s))ds) ae.t € J}, and X
(-00,0] — H issuch that X, = ¢ and X = x on J. In what
follows, we aim to show that the operator ® has a fixed point,
which is a solution of problem (1).

Let {0, : n € N} beadecreasing sequencein (0,t,) ¢ (0,b)
such that lim, _, .,0,, = 0. To prove the above theorem, we
consider the following problem:

d [x' -9 (t, xt,x’ (t))]
€ [Ax (t)+ Bu (t)] dt

+F <t, X4 X (), Jt h (t, S, xs,x' (s)) ds> dw(t),
0

0

where
ul(t) = B*S* (b-t) (al+r§)'1 [Exb
b P
+] F@dw©-cpO

s [¢—g<o,¢,¢)1] B (b

. Jb (aI +1“sb)71 Clb-9s)g (S,ES,E' (s)) ds
0

b _
B @0 [ (al 1) S@-9 F©dw )
0
0, t € (—00,0],
(A,x) @) = ¢ o
J C(t—s)g(s,xs,x (s))ds, te],
0
(Y,x) ()
0,

0.
) |JtC(t - s)g(s,ES,E' (s)) ds + JrS(t - 5) Bu (s)ds + ItS(t—s)f(s)dw (s) + Z C(t-t)C(o,) Ik (}tk,y’ (tk)) + Z NEIANCA (Elk)f’ (tk)), tel],
o

o 0<tp<t

7
te], t#+1t,
Ax (tk) = C(Un) Ik (x (tk) ,x, (tk)) N k = 1,. Lo, m,
Ax' (t) = S(0,) Ji (x (t).x' (t), k=1,....m,
Xo =@ € B,
x' (0) = ¢.
(27)

We will show that the problem has at least one mild solution
x, € By,

For fixed n € N, set the multivalued map @, : B) —
P(RB)) by ®,x the set of p, € B such that

t € (—00,0], (28)
~B*S" (b-1t)(al + rf)_1
: ZC (b-t)C(0,) I (ftk’? (fk)) -B'S, (b
k=1
—0)(al+10) " Y S (-1 S(0,) T (%, % (1))
k=1
(29)

and f € Spz. It is easy to see that the fixed point of @, is a
mild solution of the Cauchy problem (27).

Let ¢ : (-00,0) — H be the extension of (—00, 0] such
that ¢(8) = ¢(0) = 0 on J. Now, we consider the following
multivalued operators A ,, and Y,, defined by

(30)

t € (—00,0],

= t t
j S(t—s)Bu;(s)ds+LS(t—s)f(s)dw(s)+ Y Clt-t)Co) L (Fp® 1))+ Y S(t-t)S(0,) T (5o F (8) tel.

0 0<ty <t

It is clear that ®, = A, + Y,. The problem of finding
mild solutions of (27) is reduced to find the solutions of
the operator inclusion x € A,(x) + Y, (x). In what follows,
we show that operators A, and Y,, satisfy the conditions of
Lemma 13.

Step 1. A, is a contraction on %’2.

0<ty<t

Lett € Jandx™,x™" ¢ %’2. From (H3) and Lemma 11, we
have

E|(A,x") ()= (A x") D)5 = E

Jo(s (), () @)

J:C(t—s)




p

-9 (s, (xT*)t , (xT*)’ (s))] ds

< MPE Ht et
0

H

9(s(3),.(+) )
o5 () @), ]
e | (),
=) @, 4s

e P9 g, |:2le5

p

t
SMpLgb‘HJe ”

0

+E|( || "(s) -

< MPL gbf’*l J
0

s€[0,b]

—x* (s)” + sup E" (s) (s)" ]
se[0,b]

< MPL b (pa)” [21’ lKPs:%%]E"x (s)

RO #

) -6 6l

(since X = x on J)

< MPL P (pa) ™ (2P'KE +1) |x" = x""|E 0
(31
By Lemma 6, we have
A1) =g(t%,% (1))
+ Lt AS(t-9) g (XX (s))ds, te]. .
Similarly, for any ¢ € [0, b], we have
E|(ALx") - (A x") @)}, < 28 1E"g(
(), (=) ©) -9 (6. ),. ) O,
+2F 1 HO as(t-9)[g(s (), () (s))
~o(s.(7),. ) @)
<2 ), - G, + B ) @
=) ol
2P I MPL ! j e (|6, - () !
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B[ - () o] as

<2 1L [ZP 1K‘D supE"x (t) —x* (t)“P
¥ telob)

+ supE‘l (f) ** (t)” ]

te[0,b]

+2P ' MmPL ng‘l r

e P9 g [ZP_IKf
0

o (s)" + sup E " (s)
s€[0,b] s€[0,0]

=) ol ] <[,
+2P I MPPL e b ( py)“] [217‘11(5

. supE”x (s)—x" (s)||P + supE"(x ) (s)

s€[0,b
- (=) (s)“i] (since X = x on J)

<277, [1+ MPOP T (py) ] (22K + 1) i

-x" "96%1'
(33)
Taking supremum over t, it follows that
A x A**”@%ﬂ < Lo x* _x**”@%“ (34)
where L, = LAMPL  (py™  + 271 +

MZPbP_l(py)_l]}(Zp_1K£+ 1) < 1. Hence, A ,, is a contraction
0

on A,

Step 2. Y, has compact, convex values and it is completely

continuous.

(1) Y, x is convex for each x € 990
~1 =2

In fact, if p,, p, belong to Y, x, then there exist f,, f, €
Sk such that

gl(t) = rS(t—s)B {B*S* (b-ys) (al+r§’)'1 Ex,
0
b ~
+[ Fawin-cereo
-S5O [9-9 0.0 -5’5 09

: Lb (al+ rj)'l C-n)g(nx,x (1)dy
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—-B*S* (b-5s)

b -1
j (a1+1)) S

0

(b-1n) f; (n) dw (n)

~B'S" (b-s) (al +1%)"

S C-1)Cloy) I (7, % (6)) - B'S" (0

k=1

—-) (aI + 1“5)_1
' is (b-1)S(0,) Ji (%, %' (tk))} ds

j S(t=s)fi(s)dw(s)+ Y C(t-t)

0<t<t

Y S(t-t,)S(o,)

0<t<t

-C(0,) Ik (Et,gxl (fk)) +

Tk (Et,a?l (tk))> te[0,b], i=1,2.

Let0 < A < 1.Foreacht € [0,b] we have

(A +(1-M5) (1) = JtS(t—s)B <|B*S* (b-s)
0
- b _
.(a1+r§) ! [Ea"c’b+L é (1) dw () - C (b) ¢ (0)
—sw>w—g«x%¢n]—Ws:w—»

b -1
j (a1+1)) C

0

(b-n)g(n%,% (n)dn
b 1

~-B'S(b-s) L (al+17) S(b-n)

Af () + (= 2) £, ()] dw ()

C(b-t)C (o)

Mz

~B'S" (b-s)(al+18)"

k=1

5 (%, % (1) - B'S" (b-9) (al +18) "
' is (b-t)S(0,) Ji (%, %' (tk))} ds

+ L St=s)[Af; )+ (1=Q) f,(s)] dw (s)

+ Y Clt-t)Co) (%7 (1) +

0<ty<t

~t) S (0,) Ji (xtk’

0<t;<t

x (t)).

st

(35)

(36)

Since Spx is convex (because F has convex values) we have
(AP + (I-2)p, ) €Y,x.
(2) Y,, maps bounded sets into bounded sets in %’2.
Indeed it is enough to show that there exists a posmve
constant & such that, for each p, € Y,x,x € B,(0, %)) =
{x € 930 ”x"@gl < r}, one has ||pn||g>gl <ZLIfp, € Y, x,
then there exists f € Spx such that, for each t € J,

P (1) = Lt S(t—s) Buz (s)ds

t
+J St-s) f(s)dw(s)
0

(37)
+ Z C(t-t,)C(0,) I (Etk’f, (tk))
0<ty<t
+ Z S(t—t)S(0,) Ji (xtk x (tk))
0<ty<t

However, on the other hand, from the condition (H6),
we conclude that there exist positive constants €, (k =
1,...,m), y, such that, for all ||1//||P% + ||y||€1 > Vi

E|L (v )} < (ac+e) [IvllE + ElyIE] -
ET (v »)Ifs < (di+ ) [Ivll5 + ElIE]
120710+ (10°7'KP +1287") (38)

m
mP_IMZPZ (Ck+dk+2€k) Nf <1.

k=1
Let
Fo={y vl +EllE<n}
Fy={y: vl + ElylIE>nt (39)
Cy = max {[I (v, y)lp> x € B}
Therefore

Harea) (WIS +EDIL). (4o

(di+eo) (Wl + EIIE) - (4D

E "Ik (V”J’)”p <C

E|Ji (v y)lf < Co+
If x € B,.(0, B »)> from Lemma 11, it follows that
%015 < 277" (My gl )° +27 7' KJr = 1", (42)

By (H1)-(H5) and (40)-(41), from (37) we have for t € |
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b

E|p |} <4'E L S(t-s)B {B*s* (b-9) (al+1) " [Efw L ¢ (1) dw () -C () 9 (0)-S(B) [p- g (0,9, 9)]

b -1 ! % Q¥ b -1
-B*S" (b-5s) Jo (aI+1"f;) C(b—n)g(n,%n,f (n))dn—B S (b-s) L (a1+1“f;) S(b-1) f; (n)dw(n)

~B'S" (b-s)(al+18)" ic (b-t) C (o) I (%, % (1))

k=1
qm p t P
~B'S" (b-9)(al+T,) Y S(b-1)S(0,) Je (%, ¥ (tk))}ds +47'E U S(t-s) f(s)dw(s)
k=1 H 0 H
P p
+4P | Y C(t-t)Clo,) L (%, % (8))] +47'E| Y S(t-t)S(0,) Ji (%, X ()| < 207" MPe PP
0<t <t H 0<t <t o

Lo —pfbyg2opp-1 [ 2pps | o1 — P b —, p 1P P2
S MEE P Le 2| |E5, |+ C, L [Elg )] an

b
+ M [E o ) +27 [l + g (0.9 ¢>||2]J] oML [ [ [+ B[R G, 1] dn

p/2
+CpMp [Jb [e_pﬁ(b_”)E ||f (11)"‘;;]2/? dﬂ] +mp_lMZPie_p“(b_tk)e_p“a"E "Ik (Etk,il (tk))”PH
0

k=1

m p/2
ey P E ), (5, % <tk>)||f;} assarict | [ [ g | ol as)
k=1 0

+(4m)P! MZPie_P“(t_t")e_P“""E | (%, %' (tk))”Z +(4m)P™! MZPie_Pﬁ(t_t")e_Pﬁa”E e (=, % (tk))||2
k=1 k=1

t b
< 207 M L pppe o popp) J e {4}’_1 ["E?b”iﬁcpbp/z_l J E|¢ (), dn
ab 0 0 H

b
2 (B 27 Jolf +lo 0.0 AN | 4071, [0 ([ [ B[ Gl +1]

+C,MPHP! J: PPN ()0, <'|x,1||; +E[ )]+ Lﬂ my, (1,7) (%1% + E[ 07, dv) dn

+ mp_lMZPie_P“(b_tk)e_PM” [Cl + (g +€) (“Etk "; +E "E' (tk)"}:)]
k=1

+ mp_lMZPie_pﬁ(b_tk)e_pﬁ“" [Cl +(di +€) (“Etk“; +E "E' (tk)“Z)] } ds+ 417_1CpMpbp/2_1 J: e_pﬁ(t_s)mf (s)
k=1

Oy (”ESHPQ +E "E' (s)”; +bP1 J: my, (s, 7) O (”ET"; +E “E’ (T)"Z) d‘l’) ds+ (4m)p_1
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-MZpie_p“(t_t")e_pw" [Cl + (¢ +€) ("Etk "; +E “E’ (tk)";:)] + (4m)P™! MZPie_pﬁ(t_t")e_pﬁ”” [Cl +(d +€)
k=1

k=1

([l B @l )] < 207 M2 e a2 {4 el o [ el Gl an

b
3 (Bl O 2 [l Lo @ ]|+ M0 11, o) [y

b m
+ CpMpbp/z_l(Df (r**) Jo e_pﬁ(h_")mf (n)dn+ mp_lMZPe_p“be_pM”Nfz [C+ (g +e) (r+7)]

m
+mp_1M2Pe_Pﬁbe_Pﬁa”NfZ [C, +(de+e) (r" +71)]
k=1

m m
+(4m)? ™ MEMPe P NP Y [C + (g +€) (™ +7)] + (4m)P™! MfMPe_P‘BU”NfZ [C+(di+e) (r"+71)]

k=1

=,

where r** = r* + r + b7} J: my,(s, s)0,(r)ds, C, = (p(p -
1)/2)?’?. By Lemma 6, we have

t

B () = J-o C (t—s) Buz (s)ds

+AJtC(t—s)f(s)dw(s)
0

+ Y AS(t-t,)C(0,) I (%, % (1)) (44)

0<ty<t

+ Z C(t-t)S(0,) ) (Etk’}’ (tk)) ,

0<ty<t

te].
Similarly, for any ¢ € J, we have
~I P -1 1
E|p, )], < 20 Mfa—p
e e jesi

/2-1 b e p
«C [ B8 dn

+MPe* [E o O]

11
k=1
b
w4, MPP O, () L PP (5)ds
k=1
(43)
+2 [l +la 0.9 D] + Moo 1L, (0
b
+r+ 1) JO e_p‘x(h_rl)d,,,+CPMPbp/2—l®f (7’**)
- Bb—1)
'L e PP m (n)dy
k=1
+(gte)(r+7)]
m
+mP MR PPN Y [
k=1
el
-1 /2-1 % b (b—s)
+4F CPMPbP ®f (T )J‘0 o Palb=s mf (S) ds
m
+(4m)”! MfMpe_PM"NfZ [Cy + (6 +e) (r
k=1
Al TS 6+
k=1
+e) (r'+1)] = 2,
(45)
Take & = £, + &,. Then for each p, € Y,x, we have
1p12,. < .
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(3) Y,, is a compact multivalued map.

To this end, we decompose Y, by Y, = I} + I?, where the
map Fl B, (0, %’b) — 9’(%’ ) is defined by I‘lx and the set
7. € By such that

HOIOE Jt S(t - s) BuZ(s)ds
' (46)

t
+J St-s) f(s)dw(s),
0

p T, P
-Bu (s)ds| +6/'E J- S(t, —s) Bugz (s)ds

H T H
+6/'E rl [S(1y=5)=S(1,=9)] f (s)dw (s)

<6’ 'E [L IS (73 = s) = S (11 = 5)||; | Bux (5)|| 5 ds

+67C, || [IS(-9)-Sm-9)LElf 5]

ol
I

11 —&

T,—¢€ p
< 6P‘1bPM{’j IS (ry = 5) = S (r, = )[[F, Myds + 1277 MP P H 1 e_ﬁ(T‘_s)ds]
0 T —¢€

T,—€ p

B ) -7 @l = 67 E| [ (500 -9) - (7= 9] B ()
H
+6"'E

+6P‘1E
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and the map F2 B, (0, %0) — 9’(%’ ) is defined byT x,and
the set J € %’b such that

HOE Z C(t-t,)C(o,) Ik (ztkjl (tk))

0<ty<t

+ ) S(t-t;)S

0<ty<t

(47)

(9,0) Ji (}tk’El (tk)) .

First, l“i (B, (0, 35’2)) is a compact multivalued map. We
begin by showing that I‘ (B, (0, %b)) is equicontinuous Let
0 < 1) <1, <b. Then, Wehave,foreachx € B,(0, %)),

+6°7'E

[ (5-9-5(-9)

J-OTI_‘S [S(1,=5)=S (7, -5)] f (s)dw (s) Z

T, P
J S(1,-5) f (s)dw(s)
T H

P T
c6 B[ [ ()~ (- e I O]

T —¢ p/2
15 (= Ve O]+, [ [ s (2-9) =50~ B ) ]

] e, [ st e ol ]

71 Tl
J e_ﬁ('ﬁ_s)
T,—¢€

M,ds

T, p-1 (1, T,—€
+6/ ' MP M?F H eiﬁ(rfs)ds] J e PO, ds + 6P71CP [L [HS (1, -5)=S(r; -9)|%, mg (s)

!

s 2/p
-0, <||x5||; +E[7 o)}, +b" L my (5,70, (|%1% + E|& @},) dr)] ds]

T
+ 12p_1CpMp [J [e_pﬁ(Tl_s)mf (s)
T,—¢

2/p
®f<||x HP +E||x (s)" +bP” IJ my, (s, 7) O (||x ||P +E” (T)"Z)d‘l’)] ds]

+6P7!C MP“ [ PR Smf(s)
T

p/2

p/2

= I? —! p - (° — |1 —! p 2/p s 1 » T—E
o (Il + B @l + v [ m ooy (5l B[R @) ar ) ds] <ol [ s (o

T
—5) =S (1, = s)||5, Myds + 12P ' MPMEPBIF J

T, —€

T
e PO M, ds + 6P MP ME B J

e® (Tz_s)Mzds

T
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o 2(p-1]"""
+6271C,0, (r*" “ [IS (=) =S (7, = 9)|%; mf(s)] ds] +1207'C ,MP@; (r™") [?]

1-p/2
g 28(p-1 g
. J e’ﬁ(“’s)mf (s)ds+ 6P’1CPMP®f (r"™) [Lz)] J: e’ﬁ(rfs)mf (s)ds,

T,—¢ -
(48)
where T S VR L LN i [C1
k=1
-1 —ppb 1 * -
E |l (9)|f, < 577 ' MPe PP > +(dy +e) (r +”)]} = M,.
(49)

APRENP L apl | s 1P
MibN, {4 ["Exb“H The fact of the compactness of S(t) for t > 0 implies the

continuity in the uniform operator topology. Soas 7, — 7, —
0, with € being sufficiently small, the right—hancol side of the
above inequality is independent of x € B,(0, 9%3;) and tends

+ Cpbp/z 1 L E “(/) (”)“Z dn to zero. T}(lle equzcontlnu};tws for the cases tL'l < Tj <Oor ‘rl <
0 < 1, < bare very simple. Thus the set {le x € B,(0, B )
is equicontinuous.

+ M2 [E o O, We now prove that I (B,(0, BD)(t) = 7A(¢t) : 7A(t) e
F (B,(0, B »))} is relatively compact for every t € [0,b]. Let
4 op1 P lla(0,0,8)|F ] + MPVPTIL (r* 0'<t<s<bbe fixed and let £ be a real number satisfying
[||¢||H lg (0. ¢)“HH g( 0 < & < t. For x € B,(0, B;), we define
b ~ pa(b—1) t—¢
+r+1)JOepa Wd;,] ?:L,s(t)zj- S(t—s)Bu;(s)ds
\ b (50)
— - *k —pB(b—
#5PC, M0, () [ e () t]Se-9 f©dwe),
+mp—1M2pe—pocbe—po¢o'an§ C, where f € Sgx. Using the compjctness of S(t) for t O> 9,
e we deduce that the set U,(t) = {y,.(t) : x € B.(0,%,)} is
. relatively compact in H for every ¢, 0 < ¢ < t. Moreover, for
+ (G +e) (r" +7)] every x € B,(0, B,) we have
» t P t P
E |7, () -9, )], < 2°'E IJ S(t—s)Bug (s)ds| +2F'E J S(t—s) f (s)dw(s)
g t—e H t—e H
-1 bRy P B pye 17
<2 MPE [ [ e ||Bu¥(s)||Hds] +2r7C,MP U [P IE | £ (9)]] ds]
t—e t=¢
t p-1 .t t
< 2P ' MPMmP “ eiﬁ(tfs)ds] J e PIMyds + 2P C ,MP “ [efpﬁ(tfs)mf (s) (51)
t—¢ t—¢ t—¢

S 2ap PP
o (IRl + I Ol +t [ mu 0, (Il + 57 @l Jar )| ]

t
—1 1-
<2 MPMPB PJ

t—e

1-p/2 ¢
2 -1
e PN ds + ZP_ICPMP®f (r™*) [—ﬁ (p-1) ] J e‘ﬁ(t"s)mf (s)ds.
P -2 t—e

There are relatively compact sets arbitrarily close to the set ~ compact in H. Hence, the Arzela-Ascoli theorem shows that
Wi(t) = {(Fnlx)(t) : x € B,(0, B )} and W (t) is a relatively l"rll is a compact multivalued map.
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Secondly, T 3(3,(0, 95’2)) is a compact multivalued map.
We begin by showing that I(B,(0, %)) is equicontinuous.
For each x € B,(0, 95’2), t € (0,b) is fixed, t € [t;,t;,,], and
97 € I’x, such that

7ot) = Z C(t-t,)C(0,) I (xtkj, (tk))
0<t <t
(52)
+ ) S(E-1)S(0,) i (%o % (1)) -
0<tp<t

Next, for 7, < s <t < 1,, € > 0, we have, using the property
of compact operator,

Ell[ﬂxr»—m.(mu;s<zm>p-1

-ZEH[C

T (Zo ® ()], + @m)P (53)
: ZE (s (=

T (%o ® ()]

As 7, — 1, — 0, the right-hand side of the above
inequality tends to zero independently of x due to the sets
{ClO) (X, X (1) = x € B.(0, B}, (C(0,) (X, X' (1)) :
x € B,(0, B )} which are relatively compact in H and the

)=C(r-1)]C(0,)

) =S (1 -1)] S (0,)

strong continuity of C(:),S(:). So [ﬁ],, i=12,...
equicontinuous.

,m, are
Now we prove that [;/‘Z]i(t), i =1,2,...,m,is relatively
compact for every t € [0, b].

From the following relations

[)’n] (t) = Z C(t-t;)C(0,) Ik (xtkj, (tk))

0<ty<t

+ Z S(t—t)S(0,) Ji (ft,g?’ (tk)) e 2m)P™!

0<t <t
B.[0,H]) (¥

’ ZC (t - tk) C (Un) Ik (Br" [0) ‘%] >
k=1

+(2m)P™

ZS(t t)S

we conclude that [J2(B.(0,B))];(t), i = 1,2,...,m, is
relatively compact for every t € [t;,t;,,]. By Lemma 5, we
infer that F,f (B,(0, e%’2)) is relatively compact. Moreover, using
the continuity of the operators C(t), S(t), for all ¢ € [0, b], we
conclude that operator I'- is also a compact multivalued map.

(4) Y, has a closed graph.

Letx) — x*, 5 € Y, x, x
p.. From axiom (A), it is easy to see that (x(J))S

) Ji (B,- [0, %], B, [0,H]),

)eB .(0, 95’2) and p ~(])

— x s
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uniformly for s € (—co,b] as j — ©co. We prove that p, «
Y, x*. Now p/) € Y,x x() means that there exists ) ¢ S

such that, for each t € [0, D], o
ﬁr(,J)
JS(t s)Bu 5 (s)ds
+J S(t—s) f9(s)dw (s)
0
_ oy (55)
C(t-t,)C(o,)I D) (xD) (¢
r X Cl-C(@) (), () )
+ Y 5= ((9) L (39) ®),
0<t <t b
te],
where
W (1) = B'S" (b-t) (al +T3) [Ex‘h
b _~
+L $(9)dw ()~ C (b) 9 (0) - S (b)

* b b -1
16-90.0)1| -85 6-0 [ (ar+1?)
-C(b—s)g(s,(ﬁ) ,(W)%s))ds

* Q% b b -1
B @-0) [ (ar+1?) ' s@-9) (56)
0

9 (s)dw (s) - B"S” (b—t) (al +T?)
Scl-1)co), (=), .(:9) )
k=1 k

B -0 (al 1) Y (b-1)5(0,)
k=1

J (7). (39) ®).

We must prove that there exists f, € Sy = such that, for each
t € [0,b],

pn ()

= JtS(t—s)Buxf*(s) ds
0

t
+J St-s) f, (s)dw(s)
0

+ Y Clt-14)C(0,) L ((x_*)tk ) (x—)' (tk))

0<t <t
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+ X 8181 (), () @), - ¥ s-1)5((37), . (39) @)

0<ty<t 0<ty<t k
tel, .
(57) - <ﬁ:: 0 - [ se-9
where ,
. AB* S (b-s)(al +12) [1:“ 5(n)d
Ul (t) = B*S" (b—1) (al +T3) I[Efb { b=s)(al + 1) xb+Jo #r) o (o)
b_ -CMb)p () -=S®)|[¢d-g(0,0,
+Lgb(s)dw(s)—C(b)qn(O)—S(b) b) @ (0) ~S®)[p-g( 4"/’)]]
* Q% b -1
[¢_g(0,¢,¢)]:|_B*S*(b—t)J:)(aI+rf)1 -B'S (b—S)JO (aI+FZ) C(b_rl)g
=\ () B (h b)~!
Cb-9g(s (7). (¥) () ds~B'S" (v (1 (), () () dn = B'S" (0= 9) al +17)
(58) m SN
I Jb (1 412) 569 F* 9w (s -I;C(b—tk)c(on)lk((x ), () (1)
o -
~B'S" (b—1)(al+1?)" iC(b—tk)C(an) “B S, (b-9) (al+T0) " Y S(b-1)S(0,) Ik
k=1 k=1
(), () (8) - B S5 (b -1) (al (), ,(F)’(tk))}ds— Y Clt-t) 1,
k 0<te<t
BN _ — =\ o -
) Esteseon@, W) (@) @) s
Since g, I, Ji, k = 1,2,...,m, are continuous, we obtain that »
o } .((F)tk,(F)’(tkD) 0
ﬁflj)—JOS(t—s)B{B*S* (b—s)(a1+l“g) H
as j — 0o.

b
B [ F v -corp

(59)

Consider the linear continuous operator T' : L(J,H) —

C(J,H),
—s<b)[¢—g(o,¢,¢)]]—B*S* (b-s) (. H)

, r(f)(r):J S(t—s)f(s)dw(s)+J S(t—s)
J (aI+I‘fl)_1C(b—17)g 0 0
0

: (n, (W),7 , (W)’ (n)) dn

RS (o) (ar+12) " ic (b-t)C (o)1,

. [BB*S* (b-5s) (60)

([ ey sem s pan)

From Lemma 14, it follows that T o S is a closed graph

( x(f) x(f (t )) B*S” (b- s) aI 4T ) operator. Also, from the definition of ', we have that, for every
¢ t € [0,b],
k_ S(b-1)S(0,) Ji ( (x@). . (x9) (tk))} ﬁfj)—LS(t—s)B{B*S* (b-s)(al +17) I[Efb

0<t <t

- Y cle-t((x f>)tk,(W) (1)) +J0b$(q)dw(q)—C(b)go(O)—S(b)
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16-0000.9)| -5 0-9 [ ar+12)
C(b- 11)9< (x J))n,(m)’(mdﬂ
S*(b- s(aI+F) ZC(b t,)C(a,)
Ik((x(f) ,(W)'(tk)>—3*§; (b-s)(al
) Ys0-3()

]k<(x(1) ,(W)'(tk))}ds- Y c

0<ty<t

—tk)1k<<ﬁ)t (W) tk)> Y s(t-t)

Ik<(x(f ), (=00 ) (tk)> €T (S,7)-

k

(61)

Since x() — x*,forsome f* € Sex
t € [0,b], we have

— it follows that, for every

P, (1) - rS(t—s)B {B*s* (b-s)(ar+18)" [Exb

b~

+L¢(71)dw(11)—C(b)<p(0)—S(b)
b -1
-[¢—g(0,<p,¢)]] -B"S" (b-s) L (al+17)
co-ng(n (F)ﬂ,(F)' (n))dn—B"S" (b
~9(ar+1) " Ye(b-1)C(,)
k=1

(), (5) () - B85 =9 (ar

) Z S(b-t)S(0,)

k=1

-]k<(F)tk,(x_*)’(tk))]>ds— Y C(t-1)

0<t <t

-Ik<(x_*)tk,(x_*),(tk))— Y S(t-t)

0<t<t

Journal of Function Spaces

T (), () () = JS(t 9 F* (9 dw(s)

+ Jt S(t-s) [BB*S* (b-s)
0

'<Jb(“”r3)_15(b—fv)f* (n)dn)] ds.

0
(62)

Therefore, Y,, is a completely continuous multivalued map,
u.s.c. with convex closed, compact values.

Step 3. We will show that the set G = {x € B} : x € AA . x +
AY,x for some A € (0, 1)} is bounded on J.

Let x € B, and then there exists f € Sz such that we
have

x(t)=2A J:C(t—s)g(s,fs,fl (S))ds

ArS(t—s)Bug(s)ds
0

/\rS(t—s)f(s)dw(s)
0

#A Y Cl-1)C o) I (%, % (1)

0<t;<t

+A Z S(t—tc)S(0,) Ji (Etk’xl (tk)) ,

0<ty<t

(63)

te].
It also follows from Lemma 6 that

X' (t) =g (t, %, % (1))
+A Jt AS(t-s)g (S,ES,E’ (s)) ds
0

A JtC(t—s) Bu (s)ds
0

A Jt C(t—s)f(s)dw(s) (64)
0

+A z AS (t_tk)C(Un) Ik (ftk’xl (tk))

0<ty<t

+A z C(t—tr)S(0,) Ji (Et,gx, (tk)) >

0<ty<t
te].

This implies by (H1)-(H5) and (41) that for each t € ] we have
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t t
Elx@)If, < 5'E +5771E LS(t—s)Bug(s)ds +5771E LS(t—s)

p
H

p
H

Jt Ct-s)g (s,%s,il (s)) ds
0

p
fdw(s)| +57E| Y C(t-t,)C(0,) I (%, % (t))]| +5"'E

0<ty <t

Y. S(t=1)S(0,)

0<t <t

p
H

H
P

t
e pattes) [ _ o 1
<577 MPRPL L e P IR )L + B[R ()]}, +1] ds +20° MPe -

Tk (Etk’ EI (tk))

H
gty [ oo [jgsig e [ elgel o
0 0
b
+ M7 [Ell O +27" [[#]5+ |9 (0.0 ¢>)||£IH] ML | O [ ] B 1] dn
b n
+ CpMpbp/z*1 J efpﬁ(bfn)mf (n)©; <||§,1||; +E ”7 (17)“’;1 +bP! J my, (1,7) O, (||EV||; +E "E' (v)”;) dv) dn
0 0

e 37y e [y o) ([ I 2 )
k=1

et N P G ) ([ | B R @) } Ll
k=1

-9, <||x5||; +E[7 ()| +b" L m, (s,7) O, (||§T||f;3 +E[7 @, ) dr) ds+ (5m)P™!

-Mz"’iefpo‘(t*tk)(fp"“’11 [Cl + (g +€) ("Etk "; +E “E' (tk)";)] + (5m)P™? MZPiefpﬁ(tftk)efpﬁa” [Cl +(di +e)
k=1 k=1

(el 2 = @l)]-

Similarly, for any ¢ € J, we have

Elx 0}, <6 L, [[=|5+E|F @}, +1]+6" MPp 'L, Lt eI x|+ B[ o)), +1] ds
+ ZOP—IMpe—poctaipMPe—pabepbp—l J: ezpocs <|4p—1 ["Efb“iﬁ'cpbp/z_l J’: E "‘E(W)"Z d’7
b
+ M [E o )F+ 277 [l + |9 (0.9, ¢>||z]]] ML [ [ |+ B IR G, 1] dn

+ CpMpbp/z_1 J: e_Pﬁ(b_")mf (n)©; <||E,1'|; +E "E' (11)“; +bP! J: my, (1,v) ®, ("EVHP% +E "E' (v)”;) dv) dn

Y CRSSI (A AN 1A
k=1

MY PO 1 (d v e) (R |+ EF Wn:;)]} ds 4 SCMI [ I ()
k=1

(65

17

)
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Oy (”ES"P% +E ”E' (s)”; +bP71 JS my, (s, 7) O (”ET"P% +E “E' (T)"Z) dr) ds+ (5m)P™! MZPie_yp(t_t") [Cl
0 k=1

+(c +e) ("Etk ||Z +E “?' (tk)";;ﬂ +(5m)P™! MZPZe_“p(t_tk) [Cl +(di +€) ("Etk ||§ +E “E' (tk)";)] )
k=1

By Lemma 11, it follows that

sup {"3_65”;, :0<s< t}
<27 (ME |l¢l.,)" (67)

+2P K sup {E |Ix ()], : 0 s <t}
Consider the function defined by

u(t) =2"" (ME ol )°

+ 2‘”71K£7 sup {E lx (s)IF, : 0<s< t}

(68)
207! sup {E "E' (s)"l; :0<s< t} ,
0<t<b,
where
=5+ = ol
< sup {[|x[|7, - 0<s <t} (69)

+ sup {E "3_6, (s)"i :0<s< t} .
For each t € [0, b], we have
-1 1 —pat [
Ellx (0l < 57 MPOPL e P L P u(s)ds
1207 e L
ab
t
MR PP L o208 { 4P [” Ex)|”,
p/2-1 b g p
+Cb™ ! [ E[F o, an

e [l Ol 2 [l + o 0. 915

b
+MPBPL, J-o e PO [ () + 1] dn

(66)

b
+ CPMPbP/Z—l e—Pﬁ(b—ﬂ)mf (r])
0

"9y (u () +b7"! J: my, (1,7) Oy (1 (v)) dV> dn

m
+ mP_IMZPZe_P“(b_tk)E_Pw" [C)+ (g +e) p(n)]
k=1

m
PN PR G, 1 (4 ) (rm} ds
P}

t
+ SP—ICPMPbP/Z—l JO e—Poc(t—S)mf (s) ®f <M (s)
+bP! J my, (s,7) @, (u (1)) dr) ds+ (5m)P™!
0

'MZPZe_p“(t_tk)e_pM“ [C, + (g +€) p(s)] + (Gm)P ™!
k=1

. M2P Ze—pﬁ(t—tk)e—pwn [Cl + (dk +€) u (s)] ,
k=1

E ”x' (t)"; <6/ 'L, [u(t)+1]

¢
_ _ _ _ _ 1

+6P 7 MPBP nge pytj epysy(s)ds+24p 'MPe p‘xt—p
0 a

t
MY [ {4}” [||Egb||g
/2-1 b T p
+Cb™ ! [ E[F o, dn
e (Bl [+ 2 ol lo 0.0 A1)
-1 b —pa(b—n)
+MFPpP ngoep Tlu(n)+1]dny
/2-1 . Bb—1)
+C,M"p? Jo e PP Vm ()
n
0, () +0 [ (1)@, (e ) )

+ mP_IMZPZe_p“(b_tk)e_PM" [C)+ (g +e) (u(n)]
k=1
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+mP My e PGP [ (d e (s (n»]} ds
k=1

t
+ 6P*1CPMPbP/2*1 JO e*POt(t—S)mf (s) ®f <[,L (s)
+bP7! J my, (s,7) Oy, (1 (1)) d‘r> ds+ (6m)P™!
0

MY PP O 1 (g + ) (1 ()] + (6m)7
k=1

. MZPg"e*poc(t—i.‘k)e*pocaﬂ [C1 n (dk + ek) ([/{ (S))] .
k=1
(70)

Since lim o, = 0, it follows that

n— 00

u(t) <27 (ME fl,) + 2 KEEIx O,

+2F'E ”x' (t)”; <M+ lzpfngy ()

t
+N1MpbP71Lgefp& J epasy (s)ds
0

t
+ N, MPe PN, J P ds
0

t
+ N, MPe PN, J P u(s) ds
0

p1.p/2-1_—pét ! pds (71)
+N,C,M"b e Oe mf(s)

"0y <M (s)+ b7 J my, (s,7) @y, (4 (7)) dT) ds
0
+(10°7' KL + 12771

m
-mpflMZPefpathZ (6 +e) (1) + (107K
k=1

+ 121’71) mpflMZPefp&Nfz (de+e)p ),
k=1

where
M =271 (MyE gl 5)f +12P' K] L,
+ N;m’ MPNPMPC,,
N, = (10°7'KE +1277),

8 = min {«, B, y},

N, =287 aipMf’e‘P‘”’MbeP‘1 {4"‘1 [||Exb||g

/2—-1 b e P
+Cob™ | E|F )],

19
e £l o,
+2 [l Lo 00015

b
+Mpbp_1Lg L e PO [[4 (17) + 1] dn

b
_ —p8(b—
+CPM‘Db‘D/2 IJ e PO ”)mf(n)(af u(n)
0

1
+bP! Jo my, (1,7) ©, (u () dv) dn

+mP MPePPPNPC, } ,

11 - - R
N, =2° la—PMpe POMPBP T MP NP MPmP Y (g

k=1

+ Ek) + (dk + ek)] .
(72)

Since L = [12"’1Lg + (10P7'KY + 1227 ymP I MPP Y (o +
d, +2€,)IN? < 1, we obtain

1 —
eé‘my (t) < = [MNf

1-L

t
+N1Mpbp_1Lg L e u(s)ds
‘ape e
+N1MPNZI eF Sds+N1MPN3J ePu(s)ds (73)
0 0
L
+N1CPMpbp/2_IJ ef ‘my(s) @y (‘u(s)
0

+bP! JOS my, (s,7) Oy, (1 (1)) dT) ds] .

Denoting by () the right-hand side of the above inequality,
we have

ut) <) Vtel[o,b], (74)

(0) = (1/(1 - L))MN?, and

1 - 5
() = — N, MPBPL e (t)
+ N, MPN,e*?" + N, MP N, e 1 (t)

+ N, C,MPBP* e m (1) @ (,4 ®)
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+bP1 Lt my, (t,s) ©), (u(s)) ds)]

<

[NlMpbpfngep&e*P&C (1)

+ Ny MP N, + N MP N, e PP (1)

+ N,C,MPbP P m (1) © (ﬂ‘”( (t)

+bP7! Lt my, (t,5) O, (e 7L (s)) ds)] :

(75)

Let £(t) = e PoL(t) + bP! Iot my,(t, 5)0,, (e P> (s))ds; then
£(0) = £(0), e P2 ¢(t) < &(t), and for each t € ] we have

EW) = - pde P L)+ (1) e P + 6P my, (t,1)
-0, (e 77 (1)) < - poE (£)

1 .
r— [N, MPBP'L & (1) + Ny MP Ny

+N1MPN3ep5t€ (t)] + X ! 7 (76)

N, C,MPPP " m (1) @ (8 (1)) + b 'y, (1,1)
@, E@) <mB) [EBO+1+0, (1)
+0,EW)], te],

where

77 (t) = max {(—pS)

1 -1 267 PO 1
+—= [N\MPOP L+ N\ MPN;e™ |, ——
1-1 1
) (77)
- N, M*N,e”", —

: KbNICPMPbP/Z’lmf ), b 'my, (¢, t)} )

This implies that

&) 49 b p
< | m(t)dt < oco. 78
L(O>1+9+@f(9)+®h(9) Lm() o 79

This inequality shows that there is a constant K such that
&(t) <K, t € J,and hence [l x]| g < pu(t) < e P () < &) <
K, where K depends only on M, 3, p, C,, K;,andband on the
functions mf(-), my, (- ), ®f(-) and ©,,(-). This indicates that G
is bounded on J. Consequently, by Lemma 13, we deduce that
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A, + Y, has a fixed point x,, € &, which is a mild solution
of problem (27). Then, we have

x, (t) = J: Ct-s)g (s, En,sj; (s)) ds
t
+ J S(t—s)Buz (s)ds
0 .

+ jt S(t—s) f(s)dw(s) (79)
0

+ Z C(t-t;)C(0,) Iy (}n,tk’yll (tk))

0<ty<t

+ Y S(t—t)S(0,) Ji (%so X, (1)

0<ty<t

fort € [0,b], and some f, € Sgx .

Next we will show that the set {x,, : n € N} is relatively
compact in %;. We consider the decomposition x,, = x} +x,
where

xrll ) = Jt C(t-s)g (S,EH,S,EL (s)) ds

0
t

+ J S(t—s)Bus (s)ds (80)
0 n

+ JtS(t—s)f(s)dw(s)
0

for some f, € Spx ,and

X () = Z C(t-1t;)C(0,) I (En,tkj; (tk))

0<ty<t

+ Z N (t - tk) S (Gn> ]k (En,tk’y; (tk)) .

0<tp<t

(81)

Step 4. {xi(t) : n € N} is relatively compact in %’2.

(1) {x:l : n € N} is equicontinuous on J.

Fore > 0,x, € B,(0, %2),there existsaconstant0 < 7 < €
such that, for all ¢ € (0,b] and & € (0,%) with t + & < b, we
have

E|x,(t+8&)-x, @)}, <6"'E

t+&
|J C(t+&-3)
t

P
g (s, in,s,i; (5)) ds

H
+6P_1E”Jt [Ct+E-s)-C(t-9)]
0

P
+6F7!
H

LHES(L‘+€—5)

-9 (5%, %, () ds
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p t
Bul (s)ds| +6" J [S(t+&E-5)
n o 0
P t+&
~S(e-9)]Bul, (ds| +6E|[ st
H t
p
—s) f, (s)dw (s)
H
+6/'E Jt[S(t+E—s)—S(t—s)]
0
p
- f,(s)dw (s)
H

t+&
< 6P715P71M‘D J efp‘x(HE*s)LG (r* +r+ 1) ds
t

+6P P! Lt ICt+E-s)-Ct-s)|5 Lg(r*

+r+1)ds

t+

3
+6/ MP MPEPT! I e PEEI N ds

t

e M{p [ [Ise+E-9-se-9)]

- Myds+6""'C,MP@ , (r'") [ > 3

t+&
. J; e_ﬁ(HE_s)mf (5)ds+6"7'C, 0 (r"")

t p/2
.[L [||S(t+£—s)—S(t—s)||gmf(s)]z/pds] )
(82)

Using the compact operator property, we can choose & € (0, )
such that

t+&
6F ' EP MP J eiP“(H&S)LG (r"+r+1)ds < 2,
t

6P P! Lt ICt+E-s)-C(t-9)|%

-LG(r*+r+1)ds< 2,

t+&
6" MPMPEP! J e PO ML ds < %,
t

6"~ ML Lt (ISt +&~95)=S(t—9)|f,] Myds

<

>

| ™

21
: o [20(p-1)]"
6p ICpMp®f (1’ ) [?]
t+&
) —~Blt+E-s) €
Jt e mf(s)ds<6,
6p71Cp®f (r™")
t p2
. [Jo [”S (t+&E-s)=S(t —s)||g my (s)]Z/P ds]
e
< —.
6
(83)
By (83) one has
E|x, (t+8) -x, 0, <= (84)

Therefore, {x,ll(t) : n € N} is equicontinuous for t € (0, b].
Clearly {xrll(O) : n € N} is equicontinuous.

(2) {x:l(t) : n € N} is relatively compact in H.

Lett € (0,b], & > 0, x,, € B,(0, BPE); there exists & €
(0,t) such that

Elx, ) -5 )|

t P
< 3! J C(t—s)g(s,fn’s,f; (s))ds
t-& H
t P
+307! J S(t—s)Bus (s)ds
t-& " H
t P
371 j S(t—s) f,(s)dw(s)
£ H
' (85)
<3P TEPTIMPLG (rF 41+ 1) J e P g
&
t
+3P MPMP P L—: e P M, ds

_ 1-p/2
+3P7'C,MPO (") [—2/3151121)]

t-¢
. I eiﬁ(t*s)mf (s)ds < &,
t

where

t=§
xfl (t) = J Ct-s)g (s, %n)s,fil (s)) ds
0

=&
+ J S(t-s)Buz (s)ds (86)
0 n

-t
+J S(t-s) f,(s)dw(s)
0

for some f, € Spx . By the compactness of C(t), S(¢) for £ > 0,

we see that the set {xf,(t) : n € N} is relatively compact in
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H. Combining the above inequality, one has {x;(t) :n e N}
which is relatively compact in H.

Step 5. {x2(t) : n € N} is relatively compact in GBj.

(1) {xfl : n € N} is equicontinuous on J.

Foranye > 0,0 < t < b. Since C(0,,), S(0,,) are compact
operators, we find that the sets W, = {C(an)Ik(En,tk,E;(tk)) :
x, € B(0, %)} and W, = {S(0,)]i(X,;,, %, (1)) : x, €
B, (0, %’2)} are relatively compact in H. From the strong

continuity of (C(t)),s¢, for € > 0, we can choose 0 < 7j < b -t
such that

E|(Ct+E)-Ce)wP < W v, €Wy,
(87)
E[(S(t+E-S®)wf, < 2 v, €W,

when |&| < 7. For each x,, € B,(0, %’2), t € (0,b) is fixed and
te [tk’ tk+1]’ such that

E|[2], ¢ +0-[2], 0

<2\ 'E

Y. [Ct+E-1)-C(t-1)]C(a,)

O<ty<t

EING)

k

Ct-1,)C(a,)1; (En,r,.jl, (ti)) + ZS (t=1:)S(a,)J; (En,t,’}; (ti)) >

i=1

T~

k

s

i=1

-
I

i=1

where B,(0, 992) is a closed ball of radius r'. One has
[x21,(t), k = 1,2,...,m, which is relatively compact for
every t € [t,t;,,], and {x(t) : n € N} is relatively compact
in H.

These facts imply the relatively compact of {x,, : n € N}
in ;. Therefore, without loss of generality, we may suppose
that

xn—>x*e<%’2 as 1 — 00. (90)

Obviously, x, € ,; taking limits in (79) one has

x, () = Lt Ct-s)g (S,E*,S,EL (5)) ds

+ J.tS(t—s) Buf (s)ds
o .

C(tgr1 — 1) C(0,) I; (En,r,.jl, (ti)) + ZS (tkar =) S(0,) T; (En,:,j; (ti)) >
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p
Tk (}”»tk’ }:’l (tk))
H
+2P7'E Z [S(t+E-t)-S(t-t)]S(o,)
0<ty<t
p
Tk (in,tk’zz (tk)) < (214/1)1’71
H

SEfic+§-1)-c -1 )

Iy (%o % ()|, + 2)

S E[ls (-0 -5 -1 ()

T (B % (), < =
(88)

As& — 0andeis sufficiently small, the right-hand side of the

above inequality tends to zero independently of x,,, so [;C-Z] o
k =1,2,...,m, are equicontinuous.

2) {xfl(t) : n € N} is relatively compact in H.
Fort € [t;,ti ], k= 1,...,m,and x,, € Br(O,%’g), we
have that there exists 7' > 0 such that

t € (totin)s x, € By (0,8),

k-1
C(te—t;)C(0,) I (En,t(’zr’x (ti)) +C(0,) I; (En,r,j; (ti)) + Z‘S (te=1.)S(0,) J; (EWEL (ti)) +8(0,)J; (En,zﬁ; (ti)) t=t, x, € By (0) 952) >

(89)
t =ty X, € By (0,5)),
+ Jt St—s) f. (s)dw(s)
0
+ Z C(t-t) I (f*,tk,f; (tk))
0<ty<t
+ Z S(t—t) Jx (@,tk’xi (tk))
0<ty<t
(91)

for t € [0,b], and some f, € Sz , which implies that x, is a
mild solution of the problem (1) and the proof of Theorem 16
is complete. O
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4. Approximate Controllability of Impulsive
Stochastic Control System

In this section, we present our main result on approximate
controllability of system (1). To do this, we also need the
following assumptions:

(B1) The function g : ] x 8 x H — H is continuous and
there exists a constant C; > 0 such that

Elg(t.v. )} < C, (92)

for0<t<b,(y,y) € B xH.

(B2) There exists a constant C, > 0 such that

IF(t.v. . 2)5 < G, (93)

for0 <t <b,(y,y,2z) € B x Hx H, where

IF (£, v, y,2)|, = sup {E A2 : feF(tw, y, Z)} . (94)

Theorem 17. Assume that assumptions of Theorem 16 hold
and, in addition, hypotheses (S1), (B1), and (B2) are satisfied.
Then system (1) is approximately controllable on ].

Proof. Let x*(-) be a fixed point of ® in 9B). By Theorem 16,
any fixed point of @ is a mild solution of system (1). This
means that there is x* € ®(x"); that is, there is f € Spze
such that

XM () = J C(t—s)g(s,%j,(?)’ (s))ds

0

+

S ~

S (t—s) Buz (s)ds

+ t S(t—s) f(s)dw(s) (95)

o

+ Z C (t - tk) I (E‘tlk’ (}a)' (tk))

0<tp<t
+ Z S(t—ti) Ji (E?k>(§a)’(tk))’ te],
0<ty <t

where
W (t) = B'S* (b—1) (al +T2) ' | Ex,

b
+J ¢ (s)dw (s) - C (b) ¢ (0)

0

23
-5 9~ 00.0)]|-5'5" -0
. r (aI+I“sb)71 Clb-s)g (5,??, = (s)) ds
0
-B*S" (b-1) Jb (a1 +1%) " S(b=s5) f (s) dw (s5)
0
~B*S" (b-1)(al + rf)_1
'Zc(b_tk)lk (E?k(fa)’ (tk)) ~B'S, (b-1)
k=1
(ar+1%)"
Y S-t) (30 (&) (1), tel,
k=1
(96)

and by using the stochastic Fubini theorem, it is easy to see
that

b
x? (b) = Jo C(b—s)g(s,%?, (71)’ (s))ds
b b
+J S(b—s)Bu%(s)ds+J Sb-s)
0 0

- f (s)dw (s) + Z C(b-t;)

0<t;<b

I (7:,( 71)[ (tk))+ Z S(b-ty)

0<t;<b
Je(Z &) (4) = x,-a (al+r§)'1 [Exb
b ~
v L $(5)dw (s) - C (b) ¢ (0) S (b) (97)
b -1
16-00.0)1]-a [ @112 -9
! b -1
9(s5 &) @) ds-a| (ar+1?)
0
‘S(b—s)f(s)du)(s)—a(al+l"sb)_1

Sew-1)1, (7., &) (1)) -a(ar+18)"

DXIATACHCIION]

By conditions (Bl) and (B2), we get that the sequences
{g(s,%‘:,(?’)'(s))} and {f(s)} are uniformly bounded
on J. Thus there are subsequences, still denoted by
{g(s, x5, (x")(s))} and {f(s)} that converge weakly to,
say, g(s) in H and f**(s) in L(K, H), respectively. The com-
pactness of S(t), t > 0, implies that S(b—s)[g(s, X%, x'(s)) -
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g(s)] = 0,Sb-9)[f(s)= f**(s)] = 0.On the other hand,
by Lemma 9, for all t € J, a(al + l"tb )" — 0 strongly as

a — 0" and |a(al + I“tb)_lll < 1. Therefore, by the Lebesque
dominated convergence theorem it follows that

E|x® (b) - x|}, < 8°7'E Ha (al + rj)'1 Ex, - C (b)

9(0)-S®) [¢-9(0.9,¢)] llH
+8°7'E (Jj "a aI+F lgg(s)";ds)P/2
+ 87 1<Lb\la (a1 +1?)

p
[o(s7) ©)-9 )], an)

C(b—s)

L8P g (Jb "a (a1+1%) ' Cb-5)g (s)"H ds)p
0
+871E (Jb Ja (a1 +T0) " s 0-5)
’ (98)

2 \FP?
Tf)- £ (s)]"Hds)

L8P 1E <r "a (a1+1%) " S(b-5)
0
2\~
f (s)”Hds) +8P1E<

S -1 (3. ) 1)

+8P‘1E<

T (% () (1)

a (aI + l"sb)_1

J

a (aI + Fsh)_l iS b-t)
k=1

P
> —0 asa— 0"
H

So x?(b) — x;, holds, which shows that system (1) is
approximately controllable and the proof is complete. O
5. Example

Consider the following impulsive partial stochastic neutral
differential inclusions of the form

d [%z(t,x)—fmbl (s=t)z(s,x)ds

2

-b, (s)z' (¢, x)] z(t x)dt +1u(t,x)dt
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t
+ “ @, (t,t—s,%x,2(s,x))ds+¢; )z’ (t, %)

t rs
+J J G M), (s, T—s,x,2z(1,x))drds
0 J-oo

+ r G (s) Z (s, x) ds] dw(t),
0

0<t<b 0<x<m, t+t,

z(t,0)=z(,mn)=0, 0<t<b,

z(t,x)=¢(tx),

%Z(O,x)=¢(x),
<0, 0<x<m,
Lk
82 (tox) = [ (st 2 (s sk, (6)
Z (4 x),
t
AZ' (tp, x) = J ‘ e (s—ti)z (s, x)ds +k, (t;)

z (tx),

k=12,...,m

k=12,...,m
(99)

where (#;), € N is a strictly increasing sequence of positive
numbers and #(-) is a real function of bounded variation on
[0,b]. w(t) denotes a standard cylindrical Wiener process in
H defined on a stochastic space (Q, &, P).
Let H = L*([0,7]) with the norm || -
operator A by Aw = " with the domain

| and define the

D(A) ={w()

€eH:w,w are absolutely continuous, o (100)

€H,w(0)=w(m)=0}.

It is well known that A is the infinitesimal generator of a
strongly continuous cosine family {C(¢) : ¢+ € R} in H and
is given by

Ctw= i cos (nt) {(w,e")e", w e H, (101)

n=1

where €"(0) = \/2/msinnf, i =1,2,...,is the orthogonal set
of eigenvalues of A. The associated sine family S(¢), t > 0, is
compact and is given by

SHw = Z% sin (nt) (w,e") e", w € H.

n=1

(102)

Additionally, we will assume the following:

(i) The functions b, : R — R, i = 1,2, are continuous,
~ 0 —
and L, = (|___((5(s))*/h(s))ds)"* < co.
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(ii) The functions @; : :R* - R,i= 1,2, are continuous

and there exist continuous functions a; 'R - R,
j=1,2,3,4, such that
@, (ts,%,9)| <a O ay ) |y], (ts,xy) eRY,
) (103)
o, (t,s,x,y)| <as () as () |y], (tsxy)eR

with I, = ([°_(@(9)/h()ds)"> < co, L, =
(_[ ((ay(s)) 2 /h( s))ds)l/2 < 00.
(iii) The functionsg;, k; : R — R,i = 1,2, are continuous.
(iv) The functions 7,77, : R — R,k = 1,2,...,
continuous, 9, = (J_OOO((qk(s))z/fz(s))ds)l/2 < 00, and

9 = (' (((s)*/h(s)ds)' < oo for every k =
1,2,...,m

m, are

Take B = PE6, x L*(h, H) which is the space introduced
in Example 2. Set ¢(0)(x) = ¢(0, x) € 9B, defining the maps
g:10,b]xBxH — H,F:[0,b]x#3xHxH — 9(H)

by
a(tyy') )
= [00 b (s)y (s, x)ds+b, (1) v (t,x),
F(byav' Biy) ()
= [)OO @, (t5,%y(s,x))ds+¢ () y' (t, %)

+ By (x),
B,y (x)

J JO 6 (@, (s, 7, x,v(1,x))drds (104)
0 J-oo

+ J G () 1// (s, x)ds,

(=]

L (v, y') (%)
JO

T (woy') ()

M ()W (s, x)ds+ky (t) ¥ (tox)

0
= J, e ) (s, x)ds+k, (£) v (t x) -

Using these definitions, we can represent system (99) in
the abstract form (1). Moreover, it is easy to see that G, I,
and J are continuous, and G, Ik, Ji» and F are bounded
linear operators with E||G||1L’(d3, m < Lo EIIIklli(%H) < ¢
E”]k”L(ué’H) < f"’ k = 1,2,...,m, and E||F||L(53H) Lg,
where Lg = [Ly + [blloo]", 6 = [9 + lkylleo1P, di =
(9 + 11K, ll o175 and L = [llay oLy +llgi oo + 6o oo las i Ly +

25

lig3ll;117. Further, we can impose some suitable conditions
on the above-defined functions to verify the assumptions
on Theorem 16. Therefore, assumptions (H1)-(H6), (B1), and
(B2) all hold, and the associated linear system of (99) is
not exactly controllable but it is approximately controllable.
Hence by Theorems 16 and 17, system (99) is approximately
controllable on [0, b].
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