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Carpooling is becoming a more and more significant traffic choice, because it can provide additional service options, ease traffic
congestion, and reduce total vehicle exhaust emissions. Although some recommendation systems have proposed taxicab carpooling
services recently, they cannot fully utilize and understand the known information and essence of carpooling. This study proposes
a novel recommendation algorithm, which provides either a vacant or an occupied taxicab in response to a passenger’s request,
called VOT. VOT recommends the closest vacant taxicab to passengers. Otherwise, VOT infers destinations of occupied taxicabs
by similarity comparison and clustering algorithms and then recommends the occupied taxicab heading to a close destination to
passengers. Using an efficient large data-processing framework, Spark, we greatly improve the efficiency of large data processing.
This study evaluates VOT with a real-world dataset that contains 14747 taxicabs’ GPS data. Results show that the ratio of range
(between forecasted and actual destinations) of less than 900M can reach 90.29%. The total mileage to deliver all passengers is
significantly reduced (47.84% on average). Specifically, the reduced total mileage of nonrush hours outperforms other systems by
35%. VOT and others have similar performances in actual detour ratio, even better in rush hours.

1. Introduction

Urban air and soil quality are essential to the health of urban
residents. Good urban air and soil quality can greatly improve
the function of the nervous system, enhance the efficiency
of work, and ensure the healthy status of urban residents
[1]. However, taxicab exhaust emissions have an extremely
negative effect on urban soil [2] and air quality [3]. In Beijing,
a taxi can run hundreds of thousands of kilometers a year
[4, 5]. Under normal circumstances, exhaust emission from
a taxi is more than 5 times the emission from a private car.

Carpooling services can effectively reduce the excessive
emissions from taxis by reducing the total mileage to deliver
all passengers. But unlike regular taxicab services that arbi-
trarily assign one vacant taxicab to a new passenger [6,
7], taxicab carpooling services require catching a particular
taxicab, which refers to a taxicab with existing passengers
heading to a direction similar to that of the new passenger.
However, the occupied taxicab could not be found for a
passenger based on the existing solutions for finding a vacant
taxicab.

For the carpool service, there are mainly two categories:
static and dynamic carpooling. In the static carpooling
research, most researches focus on how passengers with
similar destinations are assigned to a car [8–10] and how
to improve the timeliness for the real-time performance of
the carpooling service [11–13]. In all, the static carpooling
problem in a sense can be regarded as a special member of
the general class of the Dial-a-Ride Problem (DARP) [14].

Although the static carpooling researches have greatly
improved the performance of carpooling services, the above
researches are all built on the premise that the information
of all passengers is known in advance. But the travel routes
and time of existing passengers in taxicabs are not accessible
for us on the basis of the existing infrastructure, unless we
spend a huge fortune building a new thorough taxi system. In
addition, the size of increasing vehicle data goes far beyond
the range of DARP. Since the general DARP is NP-hard
[15], only small datasets can be dealt with optimally [16, 17].
However, the further development of big-data-processing
technology and the upgrading of taxi equipment (GPS [18]
and fare meters), forming a huge GPS records database
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with rich semantic information, provide an opportunity for
predicting existing passengers’ information, namely, the core
of dynamic carpooling.

This paper belongs to the dynamic carpooling research.
In dynamic carpooling, we do not have any information
about travel routes and travel time of passengers in advance.
What is more, reasonable request matching needs to be
timely and efficiently accomplished with continuous query
requests generated in real time. Thus, dynamic carpooling
has the characteristics of real time, quick response, reasonable
matching, and so forth.These characteristics are undoubtedly
quite suitable for the large-scale taxi scene andmore in accord
with the needs of the public.Thus, this paper focuses on real-
time dynamic carpooling based on taxicabs’ GPS records.

Based on big-data-processing technology and historical
taxicab GPS data, some researches [19, 20] provide a dynamic
real-time carpooling service. However, existing dynamic
carpooling researches have four defective aspects: (I) inade-
quate information mining, (II) ignoring valuable situations,
(III) ignoring destination distribution characteristics, and
(IV) one-sidedness of screening criteria. In Section 2, we
will elaborate on these defective aspects and propose our
motivations.

In this study, we proposeVOT, a taxicab recommendation
system based on extremely large taxicab GPS data. By using
a unified standard to distinguish taxicab performances, VOT
provides both carpooling and conventional taxicab services,
which can effectively reduce the excessive emissions of taxis.
The key contributions of this study are as follows:

(i) To the best of our knowledge, we propose the first
carpool service, which can significantly reduce the
total mileage to deliver all passengers under the
premise of fully ensuring the interests of passengers.
In addition, for raw GPS datasets with unstructured
format, Spark is applied to improve the efficiency of
large data processing.

(ii) To achieve our goal, we design a novel method to
predict the occupied taxicabs’ destination by simi-
larity comparison and clustering algorithms. It can
obtainmore accurate forecasting destinations by fully
mining GPS datasets and eliminating interferences
from worthless destinations.

(iii) To more comprehensively evaluate the taxicab car-
pooling performance, we further propose a novel
metric calledDistanceDispersion, which is defined as
an average distance between a particular passenger’s
destination and possible destinations of occupied
taxicabs.

(iv) We evaluate VOT with a real-world dataset, contain-
ing 14747 taxicabs’ GPS data. The results show that
the ratio of range (between forecasted and actual
destinations) of less than 900Mcan reach 90.29% and
VOT can reduce 53% of the total mileage to deliver all
passengers, especially outperforming other systems
by almost 35% at 0:00 to 7:00AM.

The rest of the paper is organized as follows. Section 2
introduces our motivation. Section 3 presents taxicab net-
works research. Section 4 proposes our system overview.
Section 5 depicts the system implementation. Section 6
validates our design with datasets. Several practical issues
are discussed in Section 7, followed by the conclusion in
Section 8.

2. Motivation

In this section, we present our motivations to improve the
four legacy defects for taxicab carpooling services based on
empirical data from a real-world taxicab network of 14747
taxicabs in Shenzhen [21].

First, we demonstrate theoretically four defects in the
existing dynamic carpooling system and then further clearly
interpret these deficiencies by figures and experiments.
Finally, we discuss themethodswe adopt tomake up for these
weaknesses.

2.1. Inadequate Information Mining. In dynamic carpooling
services, we need to predict the potential destinations of
these real-time occupied taxicabs for detecting this one
with the best carpooling performance. However, we argue
that although the potential destinations would be obtained
eventually, little information (only the origin of occupied
taxicabs and real-time passengers) is used to predict des-
tinations in existing dynamic carpooling research. In other
words, the potential destinations are inferred by finding
similar trajectories that start at the same origin (the real-time
occupied taxi) and pass the same location (starting point of
passenger 𝑃) in other researches.

As shown in Figure 1(a), the passenger 𝑃 sends a carpool
request to the server at 𝑂𝑃. At this point, the real-time
occupied taxi 𝑇 (taking the existing passenger on𝑂𝑇, passing
through L1, L2, L3, . . . , L9 to an unknown destination) in L9
can serve as a potential carpooling option for the passenger𝑃, so we need to infer the destination of 𝑇 (or the existing
passenger) for quantifying its carpool performance.

As shown in Figure 1(b), existing dynamic carpooling
studies use only C1 (the nearest intersection from 𝑇’s origin𝑂𝑇) and C4 (the nearest intersection from 𝑃’s origin 𝑂𝑃)
as the matching criteria. This approach ignores the valuable
information between 𝑂𝑇 and 𝑂𝑃. To the best of our knowl-
edge, the more detailed the matching data we provide is, the
more accurate our matching results will be. Therefore, the
method of applying the last manned trajectory (between 𝑂𝑇
and 𝑂𝑃) of 𝑇 as the matching data in VOT is a necessary
supplement to higher forecasting precision.

2.2. Ignoring Valuable Situations. The application of only
two origins (real-time occupied taxicabs and passengers) not
only results in the incomplete mining of the GPS dataset,
but also ignores a great deal of valuable historical trajectory
information (with high similarity).

Compared with the last manned trajectory of real-time
taxicabs, the historical manned trajectories, especially with a
higher degree of similarity, have a higher likelihood of having
the same destination as these real-time taxicabs. Because
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Figure 1: Real GPS records (VS) existing methods for dynamic carpooling.
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Figure 2: Ignoring valuable situations.

two pairs of latitude and longitude with the same value
hardly exist, we introduce the regional division in this paper.
Then, the map is divided into many marked regions (two-
dimensional value, like (63, 15)).

We extract a case from experiments applying real GPS
records and draw it up in Figure 2. As shown in Figure 2,
when a passenger 𝑃 asks for a carpooling request in (63.15)
region, there is a real-time occupied taxicab 𝑇 that can be
regarded as a potential carpool option. Then, VOT puts
the last manned trajectory data of 𝑇 as matching data and
compares it with the historical manned trajectory dataset.
Compared with “History 2,” the destination of “History 1”
with greater similarity is closer to the destination of 𝑇. This
confirms our previous conclusions.

2.3. Ignoring Destination Distribution Characteristics. After
obtaining the initial potential destinations collection, existing
dynamic carpooling schemes equally treat all destinations
that appear in this collection and regard the frequency of
potential destinations as their probability. However, there are
two drawbacks if we follow the existing methods:

(A) Existing researches ignore the fact that the historical
trajectories that generate the preliminary potential
destinations collection have different similarity. In
other words, each possible destination corresponds
to different possibilities (by quantifying the similarity
of historical trajectories). Compared with existing
studies, this paper aims to detect those destinations
with high similarity and high frequency, instead of
only focusing on frequency.

(B) In the existing dynamic carpooling, a large propor-
tion is allocated to massive possible destinations with
quite low frequency. It has little chance to be the
real destination when the region has few frequencies.
Moreover, existing studies ignore the characteristics
of destination distribution with regional distribution
[22–24]. In other words, the vast majority of destina-
tions are distributed in several hot spots.

Considering the above-mentioned limitations, we con-
centrate our efforts on finding the most likely regions and try
our best to eliminate the interference of loose and extremely
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low frequency destinations. Therefore, VOT makes use of
clustering algorithms to divide the potential destinations
and applies the cluster center to represent all the possible
destinations in the same cluster. In this way, it highlights
these regions with high frequency and high similarity to the
greatest extent. What is more, even if the true destinations
of real-time occupied taxicabs are not the forecasted cluster
centers, the distance between these true destinations and
cluster centers is quite small. To validate our design, we
propose a new parameter in Section 6, called Real Prophecy
Distance (RPD), to test VOT on the entire GPS dataset.

2.4. One-Sidedness of Screening Criteria. In this work, we
argue that although carpooling choice would be obtained
eventually, the ultimate carpooling choice should not be
obtained by a parameter that can only meet the requirements
of carpooling service in one side. Taxicab GPS records have
been used by several systems to provide dynamic carpooling
services. But existing researches, which mainly focus on
detour distance, cannot perform well in both the interests of
passengers and the mitigation of gas exhaust emissions.

As well known, if carpooling passengers have the same
destination as the existing passengers, they would debus at
the same time and place. Under this scenario, the carpooling
service achieves its best utility, in which the carpooling
passengers have no detour distance. Meanwhile, it reduces
the mileage of the whole trip of carpooling passengers.
In other words, a greater degree of closeness between the
carpooling passengers’ destination and the destinations of
occupied taxicabs indicates lower extra consumption and a
better carpooling performance.

Thus, we conduct our first work to provide carpooling
services, which applies a novel parameter called Distance
Dispersion to quantify the closeness between the destinations
of particular passengers 𝑃 and occupied taxicabs. The ulti-
mate carpooling strategy for 𝑃 in this paper is to select an
occupied taxicab with the minimum Distance Dispersion as
the “can-carpool” taxicab. In order to prove the superiority
of Distance Dispersion, we evaluate the performance of VOT
through actual detour ratio (%) and reduced totalmileage (%)
in Section 6.

3. Taxicab Networks Infrastructure

In this section, we present the taxicab networks infrastructure
and the implicit semantic information inferred from the raw
large GPS dataset.

3.1. Infrastructure. Underlying taxicab infrastructures in
large cities are presently equipped with GPS, communication
devices, and dispatch centers. Based on the upgrades of taxi-
cab devices, the taxicab network can be roughly divided into
two parts, namely, (1) numerous taxicabs, in the frontend,
which provide service and assume the role of the sensing
terminal at the same time, and (2) dispatching centers with
cloud servers, in the backend, to receive and store sensing
records for the taxicab service [25, 26].

The establishment of the large taxi GPS dataset is the
foundation of system implementation. Based on the popular-
ity of taxicabs’ underlying infrastructure, these locations and

statuses are periodically uploaded to the dispatching center,
which forms a large taxi GPS dataset. The formation step of
this dataset is presented as follows:

(1) Loaded with a wireless transmission module, the
taxicab would cyclically send its status to the nearest
cell tower.

(2) The status data would be forwarded to the cloud
server by the cell tower.

(3) The real-time GPS data are stored in the cloud server
established for analysis according to the fixed format.

Each GPS record of the large GPS dataset contains all the
attribute categories of the taxicab real-time information. A
GPS recordmainly consists of the following parameters: plate
number, which is the unique identification of taxicabs; date
and time, which demonstrate the time of this record gener-
ated by the GPS device; GPS coordinates, which monitor the
global status of the taxicab; Status Bit, which indicates if some
passengers exist when this record is uploaded.

Real-time GPS records of tens of thousands of taxicabs
would be uninterruptedly transmitted to the cloud server,
forming large amounts of GPS trajectory information. Such
raw large GPS dataset has a very high resolution, which can
be used to locate a particular taxicab at fine granularity related
to both time and space. Nonetheless, such a fine-granular
large GPS dataset has many erroneous and missing records.
Meanwhile, such a raw GPS dataset could not be obtained
firsthand as it is in a format that is not ready for analysis [27].
In the next subsection, we extract useful implicit semantic
information about the taxicab service from the raw large
dataset.

3.2. Implicit Information in Underlying Infrastructure. Based
on historical and real-time GPS records, we observe four sta-
tuses related to passenger demand by continuously tracking
the GPS records of the same taxi.

(1) Take-In Status. For the same taxicab, if its status value
turns from “0” to “1” in two consecutive records, then
this taxi just picked up a passenger. The location of
Take-In Status is considered an origin or a take-in
location of a trip.

(2) Drop-Off Status. If the status value turns from “1” to
“0” in two successive records, then this taxicab just
dropped off a passenger. The location of Drop-Off
Status is considered a destination of a trip.

(3) Occupied Status. Continuously observing the same
taxi, if the status value keeps “1,” then the taxi is
heading to the destination of the passengers. We
believe the location of Occupied Status is the middle
section of one trajectory.

(4) Wander Status. When we continuously observe the
GPS records of taxicabs, the taxi is at Wander Status
if the status value holds “0” all the time.

Based on the implicit semantic information mined from
the real-time GPS dataset, the regular taxicab recommen-
dation systems can efficiently locate and recommend vacant
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taxicabs to real-time particular passengers. Some existing
recommendation systems even could provide a carpooling
option when no nearby vacant taxicab is available. But they
fail to guarantee result accuracy because of the low utilization
of the large dataset and the inference from numerous worth-
less destinations with low frequency and low similarity.What
is more, existing dynamics carpooling researches ignore
the characteristics of destination distribution with regional
distribution and cannot perform well in both the interests of
passengers and the mitigation of gas exhaust emissions and
traffic congestion.

Our extensive understanding on the large GPS dataset
and carpooling service provides an opportunity to obtain
higher inference accuracy. Based on the above analysis and
discussion, our recommendation system locates and recom-
mends the best taxicab in the performance of carpooling
and conventional service to the real-time passenger, which is
presented in the next section.

4. System Overview

This recommendation system is designed to mine GPS
records in depth for enhanced recommendation quality. Con-
sidering that regular services are commonly understood, we
provide a scenario in which carpooling services are applied,
and then we present the main idea of our recommendation
system.

4.1. Scenario Demonstration. Figure 3 presents a scenario in
which passenger𝑃 requests for a taxi at origin (𝑂𝑃) heading to
destination (𝐷𝑃). Built on the implicit semantic information
in underlying taxicab infrastructure and specific passenger
information, no taxis in the Wander Status are found around
the passenger 𝑃. But, based on the observation on real-time
GPS records, the recommendation system can locate nearby
occupied taxi 𝑇 as a potential “can-carpool” taxicab (heading
to an unknown destination) that will pass the origin of 𝑃
soon. Owing to the limited knowledge on the destinations of
existing passengers on taxicab𝑇, carpool service could not be
reached just with the request of passenger 𝑃.

By reverse tracking on the real-time GPS records based
on time,VOT obtains the lastmanned trajectory (between𝑂𝑇
and 𝑂𝑃) of𝑇. Compared with this last manned trajectory, the
historical trips, especially with a higher degree of similarity,
have a higher likelihood of having the same destination as the
existing passengers.Thus,VOT fully mines the historical and
real-time GPS records and regards the destinations of highly
similar historical trajectories as potential destinations.

VOT further optimizes the potential destination sets by
the clustering algorithm catching center regions, which can
efficiently summarize the features of destination distribution
and thoroughly reduce the interference from worthless des-
tinations with low frequency and similarity. In this study, we
catch these center regions by using different clustering algo-
rithms (𝐾-means [28, 29], density-based spatial clustering
of applications with noise (DBSCAN) [30, 31], and balanced
iterative reducing and clustering using hierarchies (BIRCH)
[32, 33]).

When a nearby occupied taxicab provides a carpooling
service to the particular passenger 𝑃, the real trip of 𝑃 gener-
ates additional consumption comparedwith the conventional
taxi service.Therefore, the optimal carpooling strategymeans
a “can-carpool” taxi with the lowest consumption. A greater
degree of closeness between the destinations of carpooling
passengers and occupied taxicabs indicates lower consump-
tion and a better carpooling performance.

Therefore, a novel parameter called Distance Dispersion
is used to quantify the degree of closeness in VOT. Distance
Dispersion could be obtained by averaging the Manhattan
and the Euclidean Distances between the real-time passen-
gers’ destination and forecasted potential destinations.Differ-
ent occupied taxicabs have different destinations, resulting in
different Distance Dispersions for 𝑃 to carpool. The optimal
carpooling strategy for 𝑃 is to select an occupied taxicab with
the least Distance Dispersion as the “can-carpool” taxicab.

4.2. Main Procedure. The main procedure of VOT is pre-
sented in Figure 4.

4.2.1. Manned Trajectory Distributions. The taxicab manned
trajectory distribution, which is the foundation of carpooling
service, plays a crucial role in our recommendation system.

We separate individual trips from the entire historical
GPS dataset by continuously tracking and observing the
change in Status Bit on the GPS records of the same taxicab.
The distribution, generated from the large GPS dataset,
contains historical GPS records for all taxicabs. With the
context of a particular passenger, such a distribution can
generate the potential destinations of trajectories with a high
degree of similarity compared to another certain trajectory.

4.2.2. Distance Dispersion Calculation. Based on the manned
trajectory distribution, when receiving a request from pas-
senger 𝑃, our recommendation system would apply the
similarity comparison and clustering algorithm to calculate
an expected Distance Dispersion 𝜌𝑃𝑇 for 𝑃 to carpool with
a particular nearby taxicab 𝑇 according to six different
calculation models. All calculation models are divided into
the following four steps:

(1) All systems first locate a nearby taxicab set 𝑇, where
taxicabs are near the origin, based on the traces of
taxicabs in the dataset for a particular day.

(2) According to the manned trajectory distribution and
passenger 𝑃 information, we can calculate a prelimi-
nary potential destination set 𝑀𝐷𝑃𝑇 for taxicab 𝑇.
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(3) Based on the context information, our system opti-
mizes 𝑀𝐷𝑃𝑇 by removing worthless destinations to
achieve a compact size in basic and advancedmodels.
We then calculate𝑅𝐷𝑃𝑇 containing the representatives
of all potential destinations by the clustering algo-
rithms for a further optimization.

(4) On the basis of 𝑅𝐷𝑃𝑇, the recommendation system
assigns probabilities and calculates the Distance Dis-
persion of this particular occupied taxi.

Basic K-Means

(1) When we receive a request, this scheme can calculate
set 𝑇, where taxicabs are all near the request origin
based on the real-time GPS records.

(2) By calculating the similarity between historical tra-
jectories and the last manned trajectory of 𝑇, our
system obtains the set𝑀𝐷𝑃𝑇, in which every potential
destination has two attributes (frequency and average
similarity).

(3) In the basic design, if a destination is the polar
opposite of a passenger destination, then our recom-
mendation system would eliminate this destination,
due to that large consumption compared with con-
ventional taxi service. As shown in Figure 5, when the
possible destination 𝐷2𝑇 of 𝑇 is in B, 𝐷2𝑇 is a closer
destination to 𝐷𝑃, which diminishes consumption
compared with 𝐷1𝑇 in A.𝐾-means is then used to deeply optimize and highly
generalize the characteristics of the taxi destination
distribution.

(4) In the basic design, with assigning equal probabil-
ities for the destinations in 𝑅𝐷𝑃𝑇, VOT calculates a
weighted average 𝜌𝑃𝑇 by their locations.

Advanced K-Means. Advanced K-means is similar to basic K-
means except for two differences.

In (3), the advanced design is built upon the basic design.
However, in the advanced design, based on richer underlying
information, our system further reduces the size of 𝑀𝐷𝑃𝑇 by
two steps of depth optimization.

Step 1. We firstly census a set, called Recent Occur Desti-
nations (ROD), which contains the destinations and their
frequencies that have occurred in the recent days according to
historical manned trajectories. And there are some potential
destinations that do not appear in ROD or have onlyminimal
frequencies (less than three times). Therefore, since these
destinations have a small probability of being the real destina-
tion,VOT in the advanced model removes these destinations
that have rarely occurred in recent days to improve prediction
accuracy.

Step 2. If a region appears many times in a short period of
time, this indicates that there has been a great service demand
for this region in the last few hours. In other words, this
region has a great possibility of being the real destination.
Therefore, VOT firstly censuses these regions, which are the
final destinations for manned trajectories that have occurred
in recent hours. Then, VOT in the advanced model detects
and marks the region with high frequency. At the end of
clustering algorithms, we can obtain the middle region of
the marked region and the cluster center in which this
marked region is located. At last, the intermediate region
replaces the original cluster center as the representative.These
measures in Step 2 not only effectively solve the problem of
short-term carpooling request surge caused by unexpected
emergencies, but also compensate for the omission of real-
time emergencies in Step 1.

In (4), after obtaining the clustering result from𝐾-means,
the recommendation scheme assigns probabilities to different
representatives based on their individual frequencies, result-
ing in an accurate calculation in the Distance Dispersion. In
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other words, the visits of these representatives are used as the
basis for assigning probability. For example, if 10 trips starting
from 𝑂𝑇 exist in the distribution, four of them have 𝐷𝑥𝑇 as
their destination, whereas the others have 𝐷𝑦𝑇; our system
then assigns Pr(𝐷𝑥𝑇) = 4/10 and Pr(𝐷𝑦𝑇) = 6/10 to calculate a
weighted average 𝜌𝑃𝑇 .

Basic and advanced K-means optimize 𝑀𝐷𝑃𝑇 by the 𝐾-
means algorithm, a typical clustering algorithm based on
distance. 𝐾-means uses distance as the similarity evaluation
index; thus, the closer the two objects are, the greater the
similarity is. The function method to find the extremum is
used for the adjustment rules of iterative operation [28, 29].
The entire process is calculated as

𝐾∑
𝑖=1

𝑁∑
𝑗=1

((𝐹𝑗 − 𝐹𝑖)2 + (𝑆𝑗 − 𝑆𝑖)2)1/2 , (1)

where 𝐾 is the number of initial cluster centers and 𝑁 is the
number of remaining destinations. 𝐹 represents frequency,
and 𝑆 denotes average similarity.

The Minkowski Distance formula between two regions
and the cluster center coordinate are shown below:

MK = ( 𝑛∑
𝑘=1

(𝑥1𝑘 − 𝑥2𝑘)𝑝)
1/𝑝

(𝐾+𝑁∑
𝑖=1

𝐹2𝑖𝐾 + 𝑁, 𝐾+𝑁∑
𝑖=1

𝑆2𝑖𝐾 + 𝑁) .
(2)

When 𝑝 = 1, the Minkowski Distance is the Manhattan
Distance; when 𝑝 = 2, the Minkowski Distance is the
Euclidean Distance.

Basic and advanced DBSCAN are similar to basic and
advanced K-means, but they use DSBSCAN to optimize𝑀𝐷𝑃𝑇. DBSCAN is a spatial clustering algorithm based on
density, which is not sensitive to distance. The algorithm
divides the regions with sufficient density into clusters and
finds the clusters of arbitrary shapes in noisy spatial databases
[30, 31]. Based on the above reasons, advanced DBSCAN
has the best performance in both Distance Dispersion and
reduced total mileage on average, except when the density is
uneven and the distance between clusters is very different at
some time, which can also be proved in Section 6.

Basic and advanced BIRCH are also similar to basic and
advanced K-means, but they use BIRCH to optimize 𝑀𝐷𝑃𝑇.
BIRCH is a clustering algorithm based on hierarchy [32].This
algorithm uses two concepts, namely, clustering feature and
clustering feature tree, to generalize clustering description
[33].

4.2.3. Online Recommendation. The algorithm recommends
a real-time taxi with the minimum expected Distance Dis-
persion for a particular passenger by analyzing the Distance
Dispersion for every nearby taxi whether in theWander or in
the Occupied Status.

5. System Implementation

5.1. Calculation Framework. Although the raw GPS dataset
is typically of a large volume and interconnects multidimen-
sional recordswith high resolution,much of the raw dataset is
of no interest in our design.We need tomap this raw physical
GPS dataset to a filtered and compressed logical dataset for
analysis. Moreover, we should process this raw physical GPS
dataset by an intelligent method in order to meet the high
timeliness and low latency requirements. In this aspect, a
large data-processing framework can be a good solution to
the problem of raw and massive data processing.

Spark [34] is the latest generation of software framework
for distributed processing of large-scale data, which has the
advantages of high efficiency, high fault tolerance, and low
cost [35]. Memory distribution dataset goes into operation in
Spark, which improves the performance of iterative computa-
tion by caching data in memory [36]. Thus, Spark meets the
requirements of the real-time taxi recommendation system
for high timeliness and low latency [37]. In conclusion, our
recommendation system uses Spark to deal with the raw GPS
dataset.

As a burgeoning big-data-processing model, Spark pro-
vides the basic abstraction that is a resilient distributed
dataset (RDD [38]). RDD represents an immutable, parti-
tioned collection of elements that can be operated in parallel.
Data manipulation in Spark programs can be divided into
three steps: the creation of RDD, the transformation of the
existing RDD, and the operation of the RDD returning the
computing result. In detail, before submitting the Spark pro-
gram, Spark runs the program’s main function and builds a
Spark context.Then, Spark programs load data by abstracting
data into a RDD. Finally, based on the user-defined logic,
the data processing and transformation are realized on the
basis of user-defined functions and the operator (map, filter,
groupByKey, sortByKey, etc.) provided by Spark.

However, although the types of operators provided by
Spark are rich, there are still some complex and unique
operation logics, which need to be implemented by the
combination with user-defined functions and the operators
provided by Spark.

5.2. Historical Manned Trajectory Distribution. Each GPS
record has a pair of latitude and longitude, but if the GPS
latitude and longitude point are regarded as a mark of
matching the trajectories, we could not map the particular
trajectories because two pairs of latitude and longitude with
the same value hardly exist. Therefore, we introduce regional
division in VOT. The map is divided into many marked
regions. A marked region would contain several GPS records
of the same taxicabs by continuously tracking the GPS
records. The taxicab trajectory can then be represented by a
series of marked regions. In this manner, trajectory matching
becomes possible by searching for particularly same regions.

Based on the raw large GPS dataset and regional division,
VOT could obtain the manned trajectory distribution, in
which each manned trajectory consists of a series of marked
regions instead of one-by-one GPS latitude and longitude
point to describe the entire taxi-manned trajectory. As shown
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Table 1: Original GPS records and areas of manned trajectory.

Number Time Longitude Latitude Area Status
23953 19:32:45 PM 114.0993 22.5451 Jd43Wd7 0
23953 19:32:49 PM 114.0989 22.5518 Jd43Wd7 1
23953 19:33:08 PM 114.0990 22.5401 Jd43Wd6 1
23953 19:33:26 PM 114.0988 22.5391 Jd43Wd6 1... ... ... ... ...
23953 19:47:55 PM 114.0489 22.5321 Jd35Wd5 1
23953 19:48:01 PM 114.0479 22.5316 Jd35Wd5 1
23953 19:48:10 PM 114.0429 22.5312 Jd34Wd5 1
23953 19:51:20 PM 114.0409 22.5298 Jd34Wd5 0

(1) Input taxicabs GPS data after cleaning
(2) Using 𝑚𝑎𝑝 transformation, the format of raw taxicabs GPS records is
converted to (plate number, (date and time; marked region; status bit))
(3) Using groupByKey transformation, all the taxicabs GPS data of the same
plate number are gathered.
(4) if (Using 𝑓𝑖𝑙𝑡𝑒𝑟 transformation, we inspect and detect if there are
real-time taxicabs in Wander Status){

(1) Using 𝑚𝑎𝑝 transformation, we calculate the distance between
these real-time taxicabs and 𝑃. Then, (corresponding distance,
plate number) are exported.

(2) Ascending order of corresponding distance can be obtained by𝑠𝑜𝑟𝑡𝐵𝑦𝐾𝑒𝑦(true) transformation.
(3) Using take(1) operation, we obtain and recommend the nearest

taxicab in Wander Status to the passenger 𝑃.}
(5) else{

(1) Using 𝑓𝑖𝑙𝑡𝑒𝑟 transformation, we inspect and detect if there are
real-time taxicabs in Occupied Status.

(2) Using 𝑚𝑎𝑝 transformation, GPS data for each taxicab are
arranged in reverse chronological order. Then, we output plate
number and the corresponding last manned trajectory, namely,
several continuous GPS records in which the status bit is 1.}

Procedure 1: Access to real-time taxicab information.

in Table 1, serval original GPS records are used as examples
to demonstrate the above conversion.

The original GPS records are transformed to several
marked regions (e.g., Jd43Wd6) after the regional division in
Table 1. A series of raw GPS records describe the details of
the above entire trajectory, which can be mapped on a given
region map, corresponding to a unique carpool graph. Thus,
a manned trajectory is extracted from raw GPS records and
represented by a series of marked regions.

5.3. Function Implementation. The procedure of Spark data
processing is a series of RDD transformations and operations.
Hence, a series of key RDD transformations and operations
are used to explain the critical details of the mechanisms and

algorithms in this section. In the following, the significant
RDD transformations and operations are described.

5.3.1. Access to Real-Time Taxicab Information. Upon receiv-
ing a request from passenger 𝑃 in 𝑂𝑃, we first need to search
for taxicabs around passenger 𝑃 through the real-time GPS
records. In Procedure 1, the real-time taxicabs in Wander
Status orOccupied Status are obtained by testing the time and
Status Bit of GPS records.

If there are several real-time taxicabs in Wander Status
around 𝑃, the distances between 𝑂𝑃 and these taxicabs are
regarded as an attribute of vacant taxicab performance.Then,
we select the nearest vacant taxicab to 𝑃. If there is no
real-time vacant taxicab around 𝑃 but only a few real-time
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Step 1. Obtaining Initial Destination Sets
(1) Input the historical taxicab manned trajectory data. Then, the storage level of these trajectory data is put into
StorageLevel.MEMORY ONLY by 𝑐𝑎𝑐ℎ𝑒 method due to the need for repeated comparisons.
Input the last manned trajectory of real-time taxicabs in Occupied Status. 𝑡𝑒𝑥𝑡𝐹𝑖𝑙𝑒 method is used to load the HDFS file
into Spark as an initial RDD.
(2) Using 𝑚𝑎𝑝 transformation, we can obtain the similarity between the last manned trajectory of these taxicabs
and the historical manned trajectory data.
After the above operations, the new RDD with the format of (similarity, destination) is transformed.
(3) Using sortByKey (false) transformation, the descending order about similarity of potential destinations is obtained.
(4) Using take(n) operation, we can obtain n taxicab historical manned trajectories which have higher similarity, and
destinations of these manned trajectories are regarded as a preliminary set 𝑀𝐷𝑃𝑇.
(5) In order to deal with these data more conveniently and quickly, we change the form of 𝑀𝐷𝑃𝑇 to (destination, similarity)
by 𝑚𝑎𝑝 transformation. After that, the new 𝑀𝐷𝑃𝑇 is exported to HDFS to facilitate filtering operations later.

Step 2. Forecast Final Destinations
(1) 𝑡𝑒𝑥𝑡𝐹𝑖𝑙𝑒 method loads and abstracts 𝑀𝐷𝑃𝑇 into RDD, and then 𝑉𝑂𝑇 gathers the similarity of the same potential destination
by 𝑔𝑟𝑜𝑢𝑝𝐵𝑦𝐾𝑒𝑦 transformation.
(2) Using multiple operators provided by Spark and user-defined functions, downsized and optimized 𝑀𝐷𝑃𝑇 is obtained in
basic and advanced models.
(3) Using 𝑓𝑜𝑟𝑒𝑎𝑐ℎ operation, we calculate the visit frequency and the average similarity of potential destinations in 𝑀𝐷𝑃𝑇
and export the data in the format of (potential destinations, (frequency, average similarity)) to HDFS.
(4) The new 𝑀𝐷𝑃𝑇 in HDFS is abstracted as RDD by the 𝑡𝑒𝑥𝑡𝐹𝑖𝑙𝑒 method. Then, through a series of transformations and
actions including user-defined functions, we implement and complete three different types of clustering
algorithms and output the representatives 𝑅𝐷𝑃𝑇 of 𝑀𝐷𝑃𝑇.
The format of initial 𝑅𝐷𝑃𝑇 is ((destinations and these attributes in Cluster A), (destinations and these attributes in Cluster B). . .)
(5) Based on 𝑚𝑎𝑝 transformation and initial 𝑅𝐷𝑃𝑇, cluster centers and total visit frequency of clusters are calculated
by user-defined functions.
The format of the output file is ((the cluster center 𝐶A and total visit frequency 𝑁A of Cluster A),. . .).
(6) We traverse each element of the RDD by the 𝑓𝑜𝑟𝑒𝑎𝑐ℎ operation to count the total visit frequency 𝑁. Then, the ultimate𝑅𝐷𝑃𝑇 with the format of ((𝐶A, 𝑁A/𝑁), . . .) is exported to HDFS.

Procedure 2

taxicabs in Occupied Status, we further calculate the last
manned trajectory of the real-time taxicabs in Occupied
Status (see Procedure 1).

5.3.2. Potential Destinations of Occupied Taxicabs. In Proce-
dure 2, in order to obtain potential destinations of real-time
taxicabs in Occupied Status, our algorithm is roughly divided
into two steps.

Step 1 (obtaining initial destination sets 𝑀𝐷𝑃𝑇). By the com-
parison between the last manned trajectory of these real-time
occupied taxicabs and the historical manned trajectory data,
VOT calculates and acquires the destinations of 𝑛 trajectories
which have higher similarity, namely, 𝑀𝐷𝑃𝑇.
Step 2 (forecast final destinations 𝑅𝐷𝑃𝑇). Based on the fre-
quency and average similarity of every potential destina-
tion in 𝑀𝐷𝑃𝑇, different clustering algorithms (𝐾-means,
density-based spatial clustering of applications with noise
(DBSCAN), and balanced iterative reducing and clustering
using hierarchies (BIRCH)) complete clustering operations.
Then, we calculate and regard the cluster centers set 𝑅𝐷𝑃𝑇
as the representative of potential destinations in the same
cluster.

5.3.3. Distance Dispersion Calculation and Optimal Recom-
mendation. In order to screen out the real-time occupied

taxicab with the best carpooling performance, Procedure 3
is divided into two steps.

Step 1. Our algorithm calculates the Distance Dispersion of
every real-time taxicab in Occupied Status.

Step 2. This real-time taxicab in Occupied Status with the
best carpooling performance is selected by VOT and recom-
mended to the particular passenger 𝑃.

As shown in Procedure 3, our recommendation strategy
specifies a map transformation that puts the representatives𝑅𝐷𝑃𝑇 and 𝑃’s request (origin and destination) as input file to
calculate Distance Dispersion of real-time occupied taxicabs.
The generic calculation formulas are as follows:

𝜌𝑃𝑇 = ∑
𝐷𝑇∈𝑅𝐷

𝑃

𝑇

Pr (𝐷𝑇)(EM𝐷𝑃𝐷𝑇 + MH𝐷𝑃𝐷𝑇2 )

EM = ( 𝑛∑
𝑘=1

(𝑥1𝑘 − 𝑥2𝑘)2)
1/2

MH = 𝑁∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥1𝑘 − 𝑥2𝑘󵄨󵄨󵄨󵄨 ,

(3)
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(1) Input and abstract clustering results 𝑅𝐷𝑃𝑇 to new RDD.
(2) Using 𝑚𝑎𝑝 transformation, the carpool performance of a single potential destination of a real-time taxicab in Occupied
Status is quantified (Distance Dispersion) by user-defined functions.
(3) Using 𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦 transformation, the carpool performance of a single real-time occupied taxicab is obtained
by aggregating all Distance Dispersion of potential destinations in 𝑅𝐷𝑃𝑇.
(4) By the 𝑠𝑜𝑟𝑡𝐵𝑦𝐾𝑒𝑦 transformation, the descending order of the carpool performance (the ascending order of Distance
Dispersion) is processed.
(5) Using take(1) operation, we obtain and recommend the real-time taxicab in Occupied Status with the best
carpooling performance to the passenger 𝑃.

Procedure 3: Distance Dispersion calculation and optimal recommendation.

where 𝑅𝐷𝑃𝑇 is the representative of 𝑀𝐷𝑃𝑇 and 𝐷𝑇 is a repre-
sentative of the potential destinations. EM𝐷𝑃𝐷𝑇 is the Euclidean
Distance between passenger 𝑃’s destination 𝐷𝑃 and the real-
time taxicab 𝑇’s destination 𝐷𝑇. MH𝐷𝑃𝐷𝑇 is the Manhattan
Distance between these destinations. Every destination has
a different probability according to the frequency by which
it appears in 𝑅𝐷𝑃𝑇. Pr(𝐷𝑇) = |𝐷𝑇|/|𝑅𝐷𝑃𝑇|, where |𝐷𝑇| is the
total frequencies of 𝐷𝑇 and |𝑅𝐷𝑃𝑇| is the total frequencies of
all destinations. If𝑇 is a vacant taxicab, then operations return
0 as the Distance Dispersion, given that no distance exists for
a vacant taxicab.

6. Evaluation

The sample dataset, which contains 4.5 million GPS raw
records of 14747 taxicabs, is used to test our recommendation
system. Owing to the large size of the dataset, we find amajor
amount of errant records. Twomain errors exist: (i) abnormal
error (e.g., although the state value is 1, which means the
taxicab is moving, the continuous GPS records show that the
latitude and longitude are maintained, which is illogical) and
(ii) matching error (after matching with the electronic map,
the GPS coordinates indicate that a taxicab is off the road)
[39].

These errors may result from different causes, such as
GPS devicemalfunctions, software issues, and human factors.
Before data processing, we clean the original data using
simple preprocessing operations to delete abnormal and
invalid GPS records.

6.1. Evaluation Setup. In this study, VOT compares three
clustering algorithms (𝐾-means, DBSCAN, and BIRCH) in
basic and advanced models. The taxi-manned trajectory
distributions, which show real passenger requests, can be
obtained based on the historical GPS datasets. Real requests,
which occurred in the dataset at one day, are regarded as
future requests to test our recommendation system. Based
on a specific manned trajectory, for example, take-in time𝑇𝑥, origin area 𝑂𝑥, drop-off time 𝑇𝑦, and destination area𝐷𝑦, in the taxi-manned trajectory distributions, a passenger
request (request time 𝑇𝑥, origin 𝑂𝑥, and destination 𝐷𝑦) can
be generated.

All recommendation algorithmsmatch this actual request
with the real-time GPS records for a nearby taxicab set 𝑇

based on the trajectories of taxicabs in the dataset for a par-
ticular day. If vacant taxicabs exist in 𝑇, all recommendation
algorithms suggest the closest vacant taxicab to passengers.
Otherwise, basic𝐾-means calculates theDistanceDispersion
for every occupied taxicab in 𝑇 based on the basic model
and the 𝐾-means algorithm in Section 4.2 and then rec-
ommends the occupied taxicab with the minimum attribute
value. Other algorithms function similarly, except that these
algorithms calculate Distance Dispersion based on different
clustering algorithms (DBSCAN and BIRCH) and different
models (advanced models).

Distance Dispersion is regarded as a key metric to
show the efficiency of taxicab service, which is obtained
by (EM𝐷𝑃𝐷𝑇 + MH𝐷𝑃𝐷𝑇)/2; this metric is used to evaluate the
closeness between passenger and taxicab destinations. For
vacant taxicabs, the Distance Dispersion is 0; for occupied
taxicabs, we compare and recommend the occupied taxi-
cab with the minimum Distance Dispersion to passengers.
Hence, Distance Dispersion can provide a recommendation
which maximizes passengers’ interests for both carpooling
and conventional taxicab services.

What is more, we justify carpooling services by showing
reduced total mileage (%). Unlike Distance Dispersion which
concentrates on the interests of an individual passenger,
reduced total mileage is used to calculate how much total
mileage can be reduced (leading to less gas exhaust emis-
sions and less traffic congestion) by an efficient system
recommending more suitable taxicabs in Occupied Status for
passengers. SupposingM is the total mileage for individually
delivering all passengers and m is the total mileage for
delivering all passengers with either conventional taxi or
carpool service, then the percentage of reduced mileage
equals (𝑀 − 𝑚)/𝑀.

In order to prove the superiority of Distance Dispersion,
we use actual detour ratio to evaluateVOT, which is regarded
as a key metric to show the efficiency in other recom-
mendation systems. Compared to conventional taxi service,
carpooling service has a detour distance (ActualDistance −
DirectDistance).Thus, actual detour ratio can be obtained by(ActualDistance − DirectDistance)/DirectDistance.

Then, we propose a new parameter, called Real Prophecy
Distance (RPD), to demonstrate the ratio of correctly pre-
dicted destinations, which is obtained by quantifying this
distance between true destinations and forecasted cluster
centers.
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Figure 6: Distance Dispersion (M).

We evaluateVOT at different cluster numbers and various
region sizes, according to the above metrics. This evalua-
tion leads to different service effects in terms of the same
algorithm. The default setting of cluster number is 5, and
the default setting of region length is 600M. For the entire
dataset, we use the real requests from a one-day dataset and
test all the algorithms with the trajectories of taxicabs on
other days. The average results are reported.

6.2. Distance Dispersion. In this subsection, we investigate
the average Distance Dispersion performance.

Figure 6 shows the average Distance Dispersion in dif-
ferent 1 h time slots of one day. During rush hours, such
as 8:00 to 10:00AM and 18:00 to 20:00 PM, the average
Distance Dispersion for all versions is lower than during
nonrush hours, such as 1:00 to 7:00AM. This result is due to
the fact that passengers during rush hours have more fixed
destinations and that more historical GPS data are available
for predictions. Therefore, our recommendation system can
more accurately predict the destinations of occupied taxicabs
by context information and manned trajectory distributions.

A comparison of the three clustering algorithms indi-
cates that DBSCAN has the best performance, with a

minimum Distance Dispersion, and performs well in both
basic (2.560 km) and advanced (1.671 km) scenarios, which
effectively guarantees the interests of passengers. That is
because DBSCAN can find clusters of arbitrary shapes, which
provides it with the highest prediction accuracy. 𝐾-means
has a good carpool quality in the advanced model, but
the performance is poor in the basic model, with a large
difference at 1.524 km. That is because many abnormal and
worthless data seriously interfere with 𝐾-means in the basic
model.

6.3. Reduced Total Mileage. In this subsection, we evaluate
the performance of VOT through the percentage of reduced
total mileage (%).

Figure 7 shows the percentage of reduced total mileage
in different 1 h time slots. During rush hours, such as 8:00 to
10:00AM and 18:00 to 20:00 PM, the percentages of reduced
totalmileage for all six schemes are higher than those on non-
rush hours, especially 1:00 to 7:00AM.This result is attributed
to the increased carpooling service demands during rush
hours compared to those on nonrush hours.Meanwhile, with
more accurate carpooling recommendations for passengers,
our recommendation system also leads to a much bigger
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Figure 7: Reduced total mileage (%).

reduction in the total mileage to deliver the same number of
passengers than the reduced total mileage on nonrush hours.

In both 𝐾-means and BIRCH algorithms, the advanced
model outperforms the basic one by 15.06% and 10.05%
on average, respectively, indicating the superiority of the
advanced model. With high carpool quality, DBSCAN is not
sensitive to basic and advanced scenarios, which confirms
our previous observations. From the overall view, DBSCAN
is the best choice because of its stable and high carpool
quality with 47.84% in reduced total mileage on average in
the advanced model. Nevertheless, 𝐾-means outperforms
DBSCAN at some hours in the advancedmodel, such as 9:00-
10:00 and 21:00.

6.4. Actual Detour Ratio. Figure 8 shows the performance for
the average actual detour ratio in different 1 h time slots of
one day. During the busy commuting time, such as 8:00 to
10:00AM and 18:00 to 20:00 PM, the average actual detour
ratio for all three algorithms in the advanced model is higher
than those on nonbusy hours, such as 1:00 to 7:00AM. The
variation trend of VOT is almost the same as that of similar
researches.

With the best performance among the three algorithms,
the actual detour ratio (%) of DBSCAN at any 1 h time
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Figure 8: Actual detour ratio (%).

slots of one day is no more than 10%, which is clearly
superior to other researches in the busy commuting time.
Then, although 𝐾-means and BIRCH do not have a good
performance, their worst cases are still no more than 15%,
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Figure 9: Real Prophecy Distance (M).

14.04%, and 12.84% respectively. What is more, there is only
3.48% difference on average between advanced DBSCAN
with the best performance and advanced 𝐾-means with the
worst performance. In other words, all versions ofVOT in the
advanced model can fully guarantee and control the actual
detour ratio.

Based on the results of the above supplementary exper-
iments, we demonstrate that VOT can perform well in both
the interests of passengers (actual detour ratio (%)) and the
mitigation of gas exhaust emissions (reduced total mileage
(%)). Therefore, Distance Dispersion is regarded as a key
metric to show the efficiency of conventional and carpooling
service in VOT, instead of actual detour ratio (%).

6.5. Real Prophecy Distance Distribution. Figure 9 shows the
percentage of Real Prophecy Distance distribution under the
default region length (600M).

The distributions (<900M) of RPD for six versions are
all over 85% (except for basic 𝐾-means, 83.26%), especially
advanced DBSCAN with 90.29%. Remarkably, because the
default region length is set to 600M, the worst condition of

the RPD distributions (<900M) is that there is only less than
two regions between true destinations and forecasted cluster
centers. What is more, the distributions (<500M) of RPD
for six versions are almost all over 25%, in which advanced
DBSCAN has the best performance with 30.90%. Notably,
RPD, which is less than 500M, means only one situation: the
predicted cluster centers are in the same region as the real
destinations (or adjacent when region length is 400M). In
other words, the prediction result must be absolutely correct,
if RPD is less than 500M.

For 𝐾-means, DBSCAN, and BIRCH, the advanced
model outperforms the basic model by 5.22%, 2.97%, and
3.29% on average, clearly indicating the superiority of the
advanced model. A comparison of these clustering algo-
rithms suggests that DBSCANhas the best performance. And
DBSCANworks well in the three different RPD distributions
(<500M (30.90%), <700M (72.14%), and <900M (90.29%)),
which clearly demonstrates the prediction accuracy of VOT.
These results confirm that VOT is actually able to guarantee
high prediction accuracy.
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Figure 10: Distance Dispersion versus cluster number.

6.6. Cluster Number Effect. In this subsection, we learn the
influence of recommendation radius onVOT performance at
9:00AM of one day.

6.6.1. Distance Dispersion with Different Cluster Numbers.
Figure 10 shows the effect of different cluster numbers on
the performance of the 6 schemes in terms of Distance
Dispersion. We change the cluster number from 3 to 8,
which in turn alters the number of destinations to be used
to summarize the distribution characteristics of occupied
taxicabs.

For all six visions of VOT, the Distance Dispersion
under the advanced model is invariably better than that in
the basic model. That is because better recommendations
are provided to passengers by eliminating the worthless
candidate destinations in the former. Minimum Distance
Dispersion is achieved when the cluster number is 5, and the
increase for 6 versions of VOT slows down when the cluster
number is close to 8. Comparedwith the numbers 3 and 8 that
cannot precisely generalize the characteristics of destination
distribution, the number 5 is consistent with the destination
distribution of a vast majority of taxicabs.

6.6.2. Reduced Total Mileage (%) with Different Cluster Num-
bers. Figure 11 shows the effects of different cluster numbers
on the percentage of reduced total mileage at 9:00AM of one
day.

The maximum reduced total mileage occurs when the
number of the clusters is 5. When the cluster number is close
to 8, the decrease for 6 versions of VOT slows down. In other
words, the minimumDistance Dispersion and the maximum
reduced totalmileage, which indicate the best carpool quality,
occur at 5 at the same time. Thus, we recommend that the
number of clusters be set to 5 for enhanced carpool quality.
And in the advancedmodel,𝐾-means outperformsDBSCAN
in terms of reduced total mileage at 9:00 of one day, which
confirms our previous observations.

6.7. Region Length Effect. In this subsection, we study the
effect of recommendation radius on VOT performance for
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Figure 11: Reduced total mileage (%) versus cluster number.
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Figure 12: Distance Dispersion in advanced𝐾-means versus region
length.

24 h on one day in the advanced model. Due to the great
similarity in tendency of the three algorithms, we just present
the performance in 𝐾-means algorithm.

6.7.1. Distance Dispersion with Different Region Lengths. Fig-
ure 12 shows the effect of different region lengths in advanced𝐾-means on Distance Dispersion. We change the region
length from 400M to 800M, which increases the size of
potential taxicabs that can be recommended and the number
of similar manned trajectories that can be analyzed.

For𝐾-means, with the increase in the radius from 400M
to 800M, the performance of VOT decreases. Nonetheless,
the decrease slows down when the region length is close
to 800M, which is due to the fact that the radius is large
enough to have a sufficient number of similar taxicab-
manned trajectories and taxicabs for analysis and inference,
and an even larger radius would not help. DBSCAN and
BIRCH also have the same trend. But there are still different
trends for 𝐾-means, DBSCAN, and BIRCH between 400M
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Figure 13: Reduced total mileage (%) in advanced 𝐾-means versus
region length.

and 800M, that is, 850.0760M, 491.1766M, and 671.8267M,
respectively.

Similar trends are maintained when the radius increases
from 400M to 800M, such as a better performance from
18:00 to 20:00 and aworse performance from 1:00 to 7:00AM,
which verify the previous inference in the previous sections.

6.7.2. Reduced Total Mileage with Different Region Lengths.
Figure 13 shows the effects of different region lengths on the
percentage of reduced total mileage for 24 h on one day.

With the increase in the radius from 400M to 800M,
the reduced total mileage of𝐾-means in the advanced model
increases given the increased carpooling service demands
and the more accurate inference available. However, the
increase for 𝐾-means slows down when the region length
is close to 800M. Hence, the default region length is set to
600M because the radius is sufficiently large to provide accu-
rate inference and calculation (only 2.76% between 600M
and 800M), and an even larger radius is not unnecessary.
DBSCAN and BIRCH also have the same trends.

The increase in region length from 400M to 800M leads
to the largest difference in the performance of 𝐾-means
between 400M and 800M, that is, 12.53%. By contrast, the
difference in the DBSCAN performance is insignificant (i.e.,
5.80%) because 𝐾-means (based on distance) is sensitive to
the change in region length, whereas DBSCAN (based on
density) is unresponsive to this change. Compared with K-
means, the performance of BIRCH has only 9.17% increase-
ment when the region length varies from 400M to 800M.

6.7.3. Real Prophecy Distance Distribution with Different
Region Lengths. In this section, we evaluate the influence of
region length on Real Prophecy Distance distribution under
the advanced model.

Tables 2, 3, and 4 show the effect of different region
lengths on the three different RPD distributions (<500M,<700M, and <900M) in the advanced model.

For the three different clustering algorithms, with the
increase in the region length from 400M to 600M, the ratio

Table 2: Real Prophecy Distance <500M versus region length.

<500 400 500 600 Max. difference𝐾-means 24.0256 24.6381 25.0975 1.0719
DBSCAN 30.6759 30.7728 30.8996 0.2237
BIRCH 26.2619 26.8249 27.2711 1.0092

of RPD shows an increasing tendency. That is because a
larger region length enlarges the range of a single grid, which
increases the possibility that the inferred cluster centers
contain the GPS records of the real destinations. But for
the three different RPD distributions (<500M, <700M, and<900M), the performance under 600M outperforms that
under 400Mby only 0.768%, 3.334%, and 4.740% on average.
Specifically, the minimal variation tendency of the RPD
distributions (<500M) is 1.07%, 0.22%, and 1.01% for 𝐾-
means, DBSCAN, and BIRCH, respectively. In other words,
even if the region length is set to 400M, all versions of VOT
in the advanced model also can guarantee good prediction
accuracy for the three RPD distributions.

In addition, in contrast to our previous comparison
experiments from 400M to 800M in the initial manuscript,
we do not carry out experiments with region lengths of 700M
and 800M. This is because if the region length is too long,
the situation satisfying the RPD distribution tends to be
homogeneous. For example, when the region length is set to
800M, the distributions (<500M and <700M) of RPD are
quite consistent. This results in an obscure tendency of RPD
distribution. Therefore, these inconclusive experiments are
not executed in this section.

7. Discussion

AlthoughVOT provides good carpooling performance, there
is room for further enhancements. Discussed below is the
system feasibility or implementability that warrants further
investigation.

7.1. Changes in Existing Taxicab System. Although there is
no need to build a completely new taxicab network, further
optimization and promotion are necessary to the existing
taxicab system for a better service. For example, a convenient
two-way communication needs to be deployed between the
taxicabs and the backend server, instead of one-way commu-
nication via GPS. With the development and popularization
of the fourth-generation mobile communication technology,
the convenience and practicability of mobile devices provide
an opportunity for realization of two-way communication.
Thus, we will study this respect in the further work.

7.2. An Acceptance by Passengers of Sharing the Taxi. In
VOT, we can only realize whether the taxicab has passengers
via the Status Bit of the GPS records. But if the two-way
communication between the taxicabs and the backend server
is realized successfully, the number of existing passengers
in real-time taxicabs can be obtained by uploading the
passengers’ information.
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Table 3: Real Prophecy Distance <700M versus region length.

<700 400 500 600 Max. difference𝐾-means 61.4596 64.0293 66.4653 5.0057
DBSCAN 71.0951 71.5964 72.1402 1.0451
BIRCH 64.3057 66.4358 68.2569 3.9512

Table 4: Real Prophecy Distance <900M versus region length.

<900 400 500 600 Max. difference𝐾-means 80.0751 83.6194 87.1817 7.1066
DBSCAN 89.1928 89.7317 90.2919 1.0991
BIRCH 82.7529 85.5416 88.7672 6.0143

Then, VOT can provide personalized carpooling options
according to the preferences of passengers. For example, the
acceptable number of taxi-sharing passengers is two and
female only; two and male only; two and no request for male
or female preference; three and female only; three and male
only; three and no request for male or female preference;
no request. We believe that a variety of carpool preferences
options can provide passengers with more comfortable car-
pooling services.

7.3. The Support from Relevant Law. Through the careful
and extensive investigation, currently in China, voluntary
carpooling is legally a contractual relationship that belongs to
the agreement of the parties’ autonomy. The drivers have the
obligations for ensuring the passenger safety. If man-made
accidents or unforeseen events happen, the accidents should
be dealt with based on the “General Principles of Civil Law”
[40], “Law of Tort Liability” [41], and “Road Traffic Safety
Law” [42].

There are currently no specific laws and regulations to
restrict taxicab carpooling services. With the popularity of
the concept of vehicle sharing, the government and a large
number of researchers are actively promoting the introduc-
tion of relevant laws.

7.4. The Extra Benefit in Fleet Managers. Because reduced
total mileage (%) can reach 47.84%, the cost for delivering all
passengers could be significantly reduced. Namely, taxis can
accomplish more delivery tasks at the same fuel costs. This
could increase the income of the company and the drivers.
And there are some researches [43–46] about the benefit
for passengers. In the further work, the benefit for the fleet
managers and passengers will be increased as an important
consideration in advanced VOT.

8. Conclusion

In this work, we analyze, design, and evaluate a recom-
mendation system for both carpooling and regular taxi
services based on large-scale historical GPS records. Our
recommendation system mines taxi-manned trajectory dis-
tributions from a historical GPS dataset. Real requests are
extracted from taxi-manned trajectory distributions, and
either a taxi in Wander Status with no Distance Dispersion

or an occupied taxi with minimal Distance Dispersion is
recommended to particular passengers. We employ a generic
big-data-processing model, Spark, to efficiently handle the
raw GPS dataset. Using the real-world dataset containing
14747 taxi GPS records to evaluate the system, the ratio of
range (between forecasted and actual destinations) of less
than 900M can reach 90.29%, which effectively guarantees
the interests of passengers. Our recommendation system can
significantly reduce the total mileage (47.84% on average).
Nearly half of the total mileage of the taxi is reduced, thereby
effectively reducing the air and soil pollution. Meanwhile, the
average reduced total mileage of 0:00 to 7:00 is increased to
45.03%, which outperforms other systems by 35%. For actual
detour ratio, VOT and others have similar performances,
even better in rush hours.
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