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Abstract
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solution of a generalized equilibrium problem, a variational inequality problem and a
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1 Introduction
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively, C be a nonempty, closed, and convex subset of H . It is well known that for
any x ∈ H , there exists a unique point y ∈ C such that

‖x – y‖ = inf
{‖x – y‖ : y ∈ C

}
.

Here, y is denoted by PCx, where PC is called the metric projection of H onto C.
Let us recall some kinds of nonlinear mappings as follows, which are needed in the next

sections. A mapping T : C → H is called L-Lipschitzian if there exists a constant L > 
such that ‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C. In particular, if L ∈ [, ), then T is said to be a
contraction; if L = , then T is called a nonexpansive mapping. Let us fix a sequence {an}
in [,∞) with an → . If the inequality ‖Tnx – Tny‖ ≤ ‖x – y‖ + an holds for all x, y ∈ C
and n ≥ , then T is said to be nearly nonexpansive [, ] with respect to {an}. Let {Tn} be
a sequence of mappings from C into H . Then the sequence {Tn} is called a sequence of
nearly nonexpansive mappings [, ] with respect to a sequence {an} if

‖Tnx – Tny‖ ≤ ‖x – y‖ + an, ∀x, y ∈ C,∀n ≥ . (.)
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It is obvious that the sequence of nearly nonexpansive mappings is a wider class of se-
quence of nonexpansive mappings. A mapping A : C → H is called α-inverse strongly
monotone if there exists a positive real number α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C,

and a mapping F : C → H is called η-strongly monotone if there exists a constant η ≥ 
such that

〈Fx – Fy, x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C.

In particular, if η = , then F is said to be monotone.
Let G : C × C → R be a bifunction and B be a nonlinear mapping. The generalized

equilibrium problem, denoted by GEP, is to find a point x ∈ C such that

G(x, y) + 〈Bx, y – x〉 ≥  (.)

for all y ∈ C, and the solution of the problem (.) is denoted by GEP(G), i.e.,

GEP(G) =
{

x ∈ C : G(x, y) + 〈Bx, y – x〉 ≥ , ∀y ∈ C
}

.

If B = , then the GEP is reduced to equilibrium problem, denoted by EP, which is to
find a point x ∈ C such that

G(x, y) ≥ 

for all y ∈ C. The set of solutions of EP is denoted by EP(G). In the case of G = , then GEP

is equivalent to find a x ∈ C such that

〈Bx, y – x〉 ≥  (.)

for all y ∈ C. The problem (.) is called variational inequality problem, denoted by
VI(C, B), and the solution of VI(C, B) is denoted by �, i.e.,

� =
{

x ∈ C : 〈Bx, y – x〉 ≥ , ∀y ∈ C
}

.

The generalized equilibrium problem includes, as special cases, the optimization prob-
lem, the variational inequality problem, the fixed point problem, the nonlinear comple-
mentarity, the Nash equilibrium problem in noncooperative games, the vector optimiza-
tion problem, etc. Hence, the existence of solutions of generalized equilibrium problems
has been extensively studied by many authors in the literature (see, e.g., [–]).

Let S : C → H be a nonexpansive mapping. The following problem is called a hierarchi-
cal fixed point problem: Finding x∗ ∈ Fix(T) such that

〈
x∗ – Sx∗, x – x∗〉 ≥ , x ∈ Fix(T), (.)
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where Fix(T) is the set of fixed points of T , i.e., Fix(T) = {x ∈ C : Tx = x}. The problem
(.) is equivalent to the following fixed point problem: Finding an x∗ ∈ C that satisfies x∗ =
PFix(T)Sx∗. Since Fix(T) is closed and convex, the metric projection PFix(T) is well defined.

It is well known that the hierarchical fixed point problem (.) links with some monotone
variational inequalities and convex programming problems; see [–]. Therefore, there
exist various methods to solve the hierarchical fixed point problem; see Yao and Liou in
[], Xu in [], Marino and Xu in [] and Bnouhachem and Noor in [].

Now, we give some iteration schemes which are related with the problems (.), (.),
and (.). In , Ceng et al. [] investigated the following iterative method:

xn+ = PC
[
αnρVxn + ( – αnμF)Txn

]
, ∀n ≥ , (.)

where F is a L-Lipschitzian and η-strongly monotone operator with constants L,η > 
andV is a γ -Lipschitzian (possibly non-self-)mapping with constant γ ≥  such that
 < μ < η

L and  ≤ ργ <  –
√

 – μ(η – μL). They proved that under some approxi-
mate assumptions on the operators and parameters, the sequence {xn} generated by (.)
converges strongly to the unique solution of the variational inequality

〈
(ρV – μF)x∗, x – x∗〉 ≤ , ∀x ∈ Fix(T). (.)

Recently, in , Sahu et al. [] introduced the following iterative process for the se-
quence of nearly nonexpansive mappings {Tn} defined by (.):

⎧
⎨

⎩
yn = ( – βn)xn + βnSnxn,

xn+ = PC[αnfxn +
∑n

i=(αi– – αi)Tiyn], ∀n ≥ ,
(.)

where f is a contraction and {Sn} is a sequence of nonexpansive mappings from C into
itself. They proved that the sequence {xn} generated by (.) converges strongly to the
unique solution of the following variational inequality:

〈

τ

(I – f )x∗ + (I – S)x∗, x – x∗
〉
≥ , ∀x ∈

∞⋂

i=

Fix(Tn).

In the same year, Bnouhachem and Noor [] introduced a new iterative scheme to find
a common solution of a variational inequality, a generalized equilibrium problem and a
hierarchical fixed point problem. Their scheme is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G(un, y) + 〈Bx, y – un〉 + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

zn = PC(un – λnAun),

yn = PC(βnSxn + ( – βn)zn),

xn+ = PC(αnfxn +
∑n

i=(αi– – αi)Viyn), ∀n ≥ ,

(.)

where Vi = kiI + ( – ki)Ti,  ≤ ki < , {Ti}∞i= : C → C is a countable family of ki-
strict pseudo-contraction mappings, A and B are inverse strongly monotone mappings.
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They proved that the sequence {xn} generated by (.) converges strongly to a point
z ∈ P�∩GEP(G)∩Fix(T)f (z) which is the unique solution of the following variational inequality:

〈
(I – f )z, x – z

〉 ≥ , ∀x ∈ � ∩ GEP(G) ∩ Fix(T),

where Fix(T) =
⋂∞

i= Fix(Ti).
In , Bnouhachem and Chen [] introduced the following iterative method:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F(un, y) + 〈Dxn, y – un〉 + ϕ(y) – ϕ(un) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C;

zn = PC(un – λnAun);

yn = βnSxn + ( – βn)zn;

xn+ = PC[αnρUxn + γnxn + (( – γn)I – αnμF)(T(yn))], ∀n ≥ ,

(.)

where D, A : C → H are inverse strongly monotone mappings, F : C × C →R is a bifunc-
tion, ϕ : C → R is a proper lower semicontinuous and convex function, S, T : C → C are
nonexpansive mappings, F : C → C is Lipschitzian and a strongly monotone mapping and
U : C → C is a Lipschitzian mapping. The authors proved the strong convergence of the
sequence generated by (.) to a common solution of a variational inequality, a generalized
mixed equilibrium problem, and a hierarchical fixed point problem.

In addition to all these papers, similar problems are considered in several papers; see,
e.g., [–].

In this paper, motivated by the above works and by the recent work going in this direc-
tion, we introduce an iterative projection method and prove a strong convergence theorem
based on this method for computing an approximate element of the common set of so-
lution of a generalized equilibrium problem, a variational inequality problem and a fixed
point problem for a sequence of nearly nonexpansive mappings defined by (.). The pro-
posed method improves and extends many known results; see, e.g., [, , , , ] and
the references therein.

2 Preliminaries
Let {xn} be a sequence in a Hilbert space H and x ∈ H . Throughout this paper, xn → x
denotes the strong convergence of {xn} to x and xn ⇀ x denotes the weak convergence.
Let C be a nonempty subset of a real Hilbert space H . For solving an equilibrium problem
for a bifunction G : C × C →R, let us assume that G satisfies the following conditions:

(A) G(x, x) = , ∀x ∈ C,
(A) G is monotone, i.e. G(x, y) + G(y, x) ≤ , ∀x, y ∈ C,
(A) ∀x, y, z ∈ C,

lim
t→+

G
(
tz + ( – t)x, y

) ≤ G(x, y),

(A) ∀x ∈ C, y −→ G(x, y) is convex and lower semicontinuous.

Lemma  [] Let C be a nonempty, closed, and convex subset of H , and let G be a bifunc-
tion from C × C into R satisfying (A)-(A). Let r >  and x ∈ H . Then there exists z ∈ C
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such that

G(z, y) +

r
〈y – z, z – x〉 ≥  (.)

for all x ∈ C.

Lemma  [] Suppose that G : C ×C →R satisfies (A)-(A). For r >  and x ∈ H , define
a mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C : G(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C

}

for all z ∈ H . Then the following hold:
() Tr is single valued,
() Tr is firmly nonexpansive i.e.

‖Trx – Try‖ ≤ 〈Trx – Try, x – y〉, ∀x, y ∈ H ,

() Fix(Tr) = EP(G),
() EP(G) is closed and convex.

Let T, T : C → H be two mappings. We denote B(C), the collection of all bounded
subsets of C. The deviation between T and T on B ∈ B(C), denoted by DB(T, T), is
defined by

DB(T, T) = sup
{‖Tx – Tx‖ : x ∈ B

}
.

The following lemmas will be used in the next section.

Lemma  [] Let C be a nonempty, closed, and bounded subset of a Banach space X and
{Tn} be a sequence of nearly nonexpansive self-mappings on C with a sequence {an} such
that DC(Tn, Tn+) < ∞. Then, for each x ∈ C, {Tnx} converges strongly to some point of C.
Moreover, if T is a mapping from C into itself defined by Tz = limn→∞ Tnz for all z ∈ C,
then T is nonexpansive and limn→∞ DC(Tn, T) = .

Lemma  [] Let V : C → H be a γ -Lipschitzian mapping with a constant γ ≥  and let
F : C → H be a L-Lipschitzian and η-strongly monotone operator with constants L,η > .
Then for  ≤ ργ < μη,

〈
(μF – ρV )x – (μF – ρV )y, x – y

〉 ≥ (μη – ργ )‖x – y‖, ∀x, y ∈ C.

That is, μF – ρV is strongly monotone with coefficient μη – ργ .

Lemma  [] Let C be a nonempty subset of a real Hilbert space H . Suppose that λ ∈ (, )
and μ > . Let F : C → H be a L-Lipschitzian and η-strongly monotone operator on C.
Define the mapping G : C → H by

Gx = x – λμFx, ∀x ∈ C.
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Then G is a contraction that provided μ < η

L . More precisely, for μ ∈ (, η

L ),

‖Gx – Gy‖ ≤ ( – λν)‖x – y‖, ∀x, y ∈ C,

where ν =  –
√

 – μ(η – μL).

Lemma  [] Let C be a nonempty, closed, and convex subset of a real Hilbert space H ,
and T be a nonexpansive self-mapping on C. If Fix(T) �= ∅, then I – T is demiclosed; that
is whenever {xn} is a sequence in C weakly converging to some x ∈ C and the sequence
{(I – T)xn} strongly converges to some y, it follows that (I – T)x = y. Here I is the identity
operator of H .

Lemma  [] Assume that {xn} is a sequence of nonnegative real numbers satisfying the
conditions

xn+ ≤ ( – αn)xn + αnβn, ∀n ≥ ,

where {αn} and {βn} are sequences of real numbers such that

(i) {αn} ⊂ [, ] and
∞∑

n=

αn = ∞,

(ii) lim sup
n→∞

βn ≤ .

Then limn→∞ xn = .

3 Main results
Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let A, B : C → H
be α, θ -inverse strongly monotone mappings, respectively. Let G : C ×C →R be a bifunc-
tion satisfying assumptions (A)-(A), S : C → H be a nonexpansive mapping and {Tn}
be a sequence of nearly nonexpansive mappings with the sequence {an} such that F :=
Fix(T) ∩ � ∩ GEP(G) �= ∅ where Tx = limn→∞ Tnx for all x ∈ C and Fix(T) =

⋂∞
n= Fix(Tn).

It is clear that the mapping T is nonexpansive. Let V : C → H be a γ -Lipschitzian map-
ping, F : C → H be a L-Lipschitzian and η-strongly monotone operator such that these
coefficients satisfy  < μ < η

L ,  ≤ ργ < ν , where ν =  –
√

 – μ(η – μL). For an arbi-
trarily initial value x, define the sequence {xn} in C generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G(un, y) + 〈Bxn, y – un〉 + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

zn = PC(un – λnAun),

yn = PC[βnSxn + ( – βn)zn],

xn+ = PC[αnρVxn + (I – αnμF)Tnyn], n ≥ ,

(.)

where {λn} ⊂ (, α), {rn} ⊂ (, θ ), {αn} and {βn} are sequences in [, ].
As can be seen, the convergence of the sequence {xn} generated by (.) depends on

the choice of the control sequences and mappings. We list the following hypotheses
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on them:

(C) lim
n→∞αn =  and

∞∑

n=

αn = ∞;

(C) lim
n→∞

an

αn
= , lim

n→∞
βn

αn
= , lim

n→∞
|αn – αn–|

αn
= , lim

n→∞
|λn – λn–|

αn
= ;

lim
n→∞

|βn – βn–|
αn

= , and lim
n→∞

|rn – rn–|
αn

= ;

(C) lim
n→∞DB(Tn, Tn+) =  and lim

n→∞
DB(Tn, Tn+)

αn
=  for each B ∈ B(C).

Now, we need the following lemmas to prove our main theorem.

Lemma  Assume that the conditions (C), (C) hold and p ∈F . Then the sequences {xn},
{yn}, {zn}, and {un} generated by (.) are bounded.

Proof It is easy to see that the mapping I – rnB is nonexpansive, so the mapping I – λnA
is also nonexpansive. From Lemma , we have un = Trn (xn – rnBxn). Let p ∈ F . So, we get
p = Trn (p – rnBp). Then we obtain

‖un – p‖ =
∥∥Trn (xn – rnBxn) – Trn (p – rnBp)

∥∥

≤ ∥∥(xn – rnBxn) – (p – rnBp)
∥∥

= ‖xn – p‖ – rn〈xn – p, Bxn – Bp〉 + r
n‖Bxn – Bp‖

≤ ‖xn – p‖ – rn(θ – rn)‖Bxn – Bp‖

≤ ‖xn – p‖. (.)

From (.), we get

‖zn – p‖ =
∥∥PC(un – λnAun) – PC(p – λnAp)

∥∥

≤ ∥∥un – p – λn(Aun – Ap)
∥∥

≤ ‖un – p‖ – λn(α – λn)‖Aun – Ap‖

≤ ‖un – p‖

≤ ‖xn – p‖. (.)

It follows from (.) that

‖yn – p‖ =
∥∥PC

[
βnSxn + ( – βn)xn

]
– PCp

∥∥

≤ ∥∥βnSxn + ( – βn)zn – p
∥∥

≤ ( – βn)‖zn – p‖ + βn‖Sxn – p‖
≤ ( – βn)‖xn – p‖ + βn‖Sxn – Sp‖ + βn‖Sp – p‖
≤ ‖xn – p‖ + βn‖Sp – p‖. (.)



Karahan et al. Journal of Inequalities and Applications  (2015) 2015:53 Page 8 of 25

Since limn→∞ βn
αn

= , without loss of generality, we can assume that βn ≤ αn, for all n ≥ .
This gives us limn→∞ βn = .

Let tn = αnρVxn + (I – αnμF)Tnyn. Then we get

‖xn+ – p‖ = ‖PCtn – PCp‖
≤ ‖tn – p‖
=

∥∥αnρVxn + (I – αnμF)Tnyn – p
∥∥

≤ αn‖ρVxn – μFp‖ +
∥∥(I – αnμF)Tnyn – (I – αnμF)Tnp

∥∥

≤ αnργ ‖xn – p‖ + αn‖ρVp – μFp‖
+ ( – αnν)

(‖yn – p‖ + an
)
. (.)

From (.) and (.), we get

‖xn+ – p‖ ≤ αnργ ‖xn – p‖ + αn‖ρVp – μFp‖
+ ( – αnν)

(‖xn – p‖ + βn‖Sp – p‖ + an
)

≤ (
 – αn(ν – ργ )

)‖xn – p‖

+ αn

(
‖ρVp – μFp‖ + ‖Sp – p‖ +

an

αn

)

≤ (
 – αn(ν – ργ )

)‖xn – p‖

+ αn(ν – ργ )
[


(ν – ργ )

(
‖ρVp – μFp‖ + ‖Sp – p‖ +

an

αn

)]
. (.)

From condition (C), there exists a constant M >  such that

‖ρVp – μFp‖ + ‖Sp – p‖ +
an

αn
≤ M, ∀n ≥ .

Thus, from (.) we have

‖xn+ – p‖ ≤ (
 – αn(ν – ργ )

)‖xn – p‖ + αn(ν – ργ )
M

(ν – ργ )
.

By induction, we get

‖xn+ – p‖ ≤ max

{
‖x – p‖,

M

(ν – ργ )

}
.

Hence, we find that {xn} is bounded. So, the sequences {yn}, {zn}, and {un} are bounded. �

Lemma  Assume that (C)-(C) hold. Let p ∈ F and {xn} be the sequence generated by
(.). Then the follow hold:

(i) limn→∞ ‖xn+ – xn‖ = .
(ii) ww(xn) ⊂ Fix(T) where ww(xn) is the weak w-limit set of {xn}, i.e.,

ww(xn) = {x : xni ⇀ x}.
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Proof (i) Since the mappings PC and (I – λnA) are nonexpansive, we get

‖zn – zn–‖ =
∥∥PC(un – λnAun) – PC(un– – λn–Aun–)

∥∥

≤ ∥∥(un – λnAun) – (un– – λn–Aun–)
∥∥

=
∥∥un – un– – λn(Aun – Aun–) – (λn – λn–)Aun–

∥∥

≤ ∥∥un – un– – λn(Aun – Aun–)
∥∥ + |λn – λn–|‖Aun–‖

≤ ‖un – un–‖ + |λn – λn–|‖Aun–‖, (.)

and so

‖yn – yn–‖ =
∥∥PC

[
βnSxn + ( – βn)zn

]

– PC
[
βn–Sxn– – ( – βn–)zn–

]∥∥

≤ ∥∥βnSxn + ( – βn)zn – βn–Sxn– + ( – βn–)zn–
∥∥

≤ ∥∥βn(Sxn – Sxn–) + (βn – βn–)Sxn–

+ ( – βn)(zn – zn–) + (βn– – βn)zn–
∥∥

≤ βn‖xn – xn–‖ + ( – βn)‖zn – zn–‖
+ |βn – βn–|

(‖Sxn–‖ + ‖zn–‖
)

≤ βn‖xn – xn–‖ + ( – βn)
[‖un – un–‖

+ |λn – λn–|‖Aun–‖
]

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)
. (.)

On the other hand, since un = Trn (xn – rnBxn) and un– = Trn– (xn– – rn–Bxn–), we have

G(un, y) + 〈Bxn, y – un〉 +

rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C, (.)

and

G(un–, y) + 〈Bxn–, y – un–〉

+


rn–
〈y – un–, un– – xn–〉 ≥ , ∀y ∈ C. (.)

If we take y = un– and y = un in (.) and (.), respectively, then we get

G(un, un–) + 〈Bxn, un– – un〉 +

rn

〈un– – un, un – xn〉 ≥  (.)

and

G(un–, un) + 〈Bxn–, un – un–〉

+


rn–
〈un – un–, un– – xn–〉 ≥ . (.)
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It follows from (.), (.), and monotonicity of the function G that

〈Bxn– – Bxn, un – un–〉 +
〈
un – un–,

un– – xn–

rn–
–

un – xn

rn

〉
≥ .

The last inequality implies that

 ≤
〈
un – un–, rn(Bxn– – Bxn) +

rn

rn–
(un– – xn–) – (un – xn)

〉

=
〈
un– – un, un – un– +

(
 –

rn

rn–

)
un–

+ (xn– – rnBxn–) – (xn – rnBxn) – xn– +
rn

rn–
xn–

〉

=
〈
un– – un,

(
 –

rn

rn–

)
un– + (xn– – rnBxn–)

– (xn – rnBxn) – xn– +
rn

rn–
xn–

〉
– ‖un – un–‖

=
〈
un– – un,

(
 –

rn

rn–

)
(un– – xn–)

+ (xn– – rnBxn–) – (xn – rnBxn)
〉

– ‖un – un–‖

≤ ‖un– – un‖
{∣∣∣∣ –

rn

rn–

∣∣∣∣‖un– – xn–‖

+
∥∥(xn– – rnBxn–) – (xn – rnBxn)

∥∥
}

– ‖un – un–‖

≤ ‖un– – un‖
{∣∣∣∣ –

rn

rn–

∣∣∣∣‖un– – xn–‖

+ ‖xn– – xn‖
}

– ‖un – un–‖. (.)

From (.), we have

‖un– – un‖ ≤
∣∣∣∣ –

rn

rn–

∣∣∣∣‖un– – xn–‖ + ‖xn– – xn‖.

Without loss of generality, we can assume that there exists a real number μ such that
rn > μ >  for all positive integers n. Then we obtain

‖un– – un‖ ≤ ‖xn– – xn‖ +

μ

|rn– – rn|‖un– – xn–‖. (.)

From (.) and (.), we get

‖yn – yn–‖ ≤ βn‖xn – xn–‖

+ ( – βn)
[
‖xn– – xn‖ +


μ

|rn– – rn|‖un– – xn–‖
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+ |λn – λn–|‖Aun–‖
]

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)

= ‖xn – xn–‖ + ( – βn)
[


μ

|rn– – rn|‖un– – xn–‖

+ |λn – λn–|‖Aun–‖
]

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)
.

Then we have

‖xn+ – xn‖ = ‖PCtn – PCtn–‖
≤ ‖tn – tn–‖
=

∥∥αnρVxn + (I – αnμF)Tnyn

– αn–ρVxn– + (I – αn–μF)Tn–yn–
∥∥

≤ ∥∥αnρV (xn – xn–) + (αn – αn–)ρVxn–

+ (I – αnμF)Tnyn – (I – αnμF)Tnyn–

+ Tnyn– – Tn–yn–

+ αn–μFTn–yn– – αnμFTnyn–
∥∥

≤ αnργ ‖xn – xn–‖ + γ |αn – αn–|‖Vxn–‖
+ ( – αnν)‖Tnyn – Tnyn–‖ + ‖Tnyn– – Tn–yn–‖
+ μ‖αn–FTn–yn– – αnFTnyn–‖

≤ αnργ ‖xn – xn–‖ + γ |αn – αn–|‖Vxn–‖
+ ( – αnν)

[‖yn – yn–‖ + an
]

+ ‖Tnyn– – Tn–yn–‖
+ μ

∥∥αn–(FTn–yn– – FTnyn–) – (αn – αn–)FTnyn–
∥∥

≤ αnργ ‖xn – xn–‖ + γ |αn – αn–|‖Vxn–‖

+ ( – αnν)
{
‖xn – xn–‖

+ ( – βn)
[


μ

|rn– – rn|‖un– – xn–‖ + |λn – λn–|‖Aun–‖
]

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)}

+ ( – αnν)an + DB(Tn, Tn–)

+ μαn–LDB(Tn, Tn–) + |αn – αn–|‖FTnyn–‖
≤ (

 – αn(ν – ργ )
)‖xn – xn–‖

+ |αn – αn–|
(
γ ‖Vxn–‖ + ‖FTnyn–‖

)

+ ( + μαn–L)DB(Tn, Tn–) + an

+

μ

|rn– – rn|‖un– – xn–‖ + |λn – λn–|‖Aun–‖

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)
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≤ (
 – αn(ν – ργ )

)‖xn – xn–‖ + ( + μαn–L)DB(Tn, Tn–)

+ M

(
|αn – αn–| +


μ

|rn– – rn|

+ |λn – λn–| + |βn – βn–|
)

+ an, (.)

where

M = max
{

sup
n≥

(
γ ‖Vxn–‖ + ‖FTnyn–‖

)
, sup

n≥
‖un– – xn–‖,

sup
n≥

‖Aun–‖, sup
n≥

(‖Sxn–‖ + ‖zn–‖
)}

.

Hence, we write

‖xn+ – xn‖ ≤ (
 – αn(ν – ργ )

)‖xn – xn–‖ + αn(ν – ργ )δn, (.)

where

δn =


(ν – ργ )

[
( + μαn–L)

DB(Tn, Tn–)
αn

+
an

αn
+ M

( |αn – αn–|
αn

+

μ

|rn– – rn|
αn

+
|λn – λn–|

αn
+

|βn – βn–|
αn

)]
.

From conditions (C) and (C), we get

lim sup
n→∞

δn ≤ . (.)

So, it follows from (.), (.), and Lemma  that

lim
n→∞‖xn+ – xn‖ = . (.)

(ii) First, we show that limn→∞ ‖un – xn‖ = . Since p ∈F , from (.) and (.), we obtain

‖xn+ – p‖ ≤ ‖tn – p‖

=
∥∥αnρVxn + (I – αnμF)Tnyn – p

∥∥

=
∥∥αnρVxn – αnμFp + (I – αnμF)Tnyn – (I – αnμF)Tnp

∥∥

≤ αn‖ρVxn – μFp‖ + ( – αnν)
(‖yn – p‖ + an

)

= αn‖ρVxn – μFp‖

+ ( – αnν)
(‖yn – p‖ + an‖yn – p‖ + a

n
)

= αn‖ρVxn – μFp‖ + ( – αnν)‖yn – p‖

+ ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + ( – αnν)
[
βn‖Sxn – p‖

+ ( – βn)‖zn – p‖] + ( – αnν)an‖yn – p‖ + ( – αnν)a
n
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= αn‖ρVxn – μFp‖ + ( – αnν)βn‖Sxn – p‖

+ ( – αnν)( – βn)‖zn – p‖

+ ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + ( – αnν)βn‖Sxn – p‖

+ ( – αnν)( – βn)
[‖xn – p‖ – rn(θ – rn)‖Bxn – Bp‖

– λn(α – λn)‖Aun – Ap‖]

+ ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖ + ‖xn – p‖

– ( – αnν)( – βn)
[
rn(θ – rn)‖Bxn – Bp‖

+ λn(α – λn)‖Aun – Ap‖]

+ ( – αnν)an‖yn – p‖ + ( – αnν)a
n. (.)

Then, from (.), we get

( – αnν)( – βn)
{

rn(θ – rn)‖Bxn – Bp‖ + λn(α – λn)‖Aun – Ap‖}

≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖ + ‖xn – p‖ – ‖xn+ – p‖

+ ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – p‖

+ ( – αnν)an‖yn – p‖ + ( – αnν)a
n.

It follows from (.) and from conditions (C) and (C) that limn→∞ ‖Bxn – Bp‖ =  and
limn→∞ ‖Aun – Ap‖ = .

Since Trn is firmly nonexpansive mapping, we have

‖un – p‖ =
∥∥Trn (xn – rnBxn) – Trn (p – rnBp)

∥∥

≤ 〈
un – p, (xn – rnBxn) – (p – rnBp)

〉

=


{‖un – p‖ +

∥∥(xn – rnBxn) – (p – rnBp)
∥∥

–
∥∥un – p –

[
(xn – rnBxn) – (p – rnBp)

]∥∥}.

Therefore, we get

‖un – p‖ ≤ ∥∥(xn – rnBxn) – (p – rnBp)
∥∥

–
∥∥un – xn – rn(Bxn – Bp)

∥∥

≤ ‖xn – p‖ –
∥∥un – xn – rn(Bxn – Bp)

∥∥

≤ ‖xn – p‖ – ‖un – xn‖

+ rn‖un – xn‖‖Bxn – Bp‖. (.)
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Then, from (.), (.), and (.), we obtain

‖xn+ – p‖ ≤ αn‖ρVxn – μFp‖ + ( – αnν)
[
βn‖Sxn – p‖

+ ( – βn)‖zn – p‖] + ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + ( – αnν)
[
βn‖Sxn – p‖

+ ( – βn)‖un – p‖] + ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + ( – αnν)
[
βn‖Sxn – p‖

+ ( – βn)
(‖xn – p‖ – ‖un – xn‖

+ rn‖un – xn‖‖Bxn – Bp‖)]

+ ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖ + ‖xn – p‖

– ( – αnν)( – βn)‖un – xn‖ + rn‖un – xn‖‖Bxn – Bp‖
+ ( – αnν)an‖yn – p‖ + ( – αnν)a

n.

The last inequality implies that

( – αnν)( – βn)‖un – xn‖

≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖

+ ‖xn – p‖ – ‖xn+ – p‖ + rn‖un – xn‖‖Bxn – Bp‖
+ ( – αnν)an‖yn – p‖ + ( – αnν)a

n

≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖

+
(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖

+ rn‖un – xn‖‖Bxn – Bp‖
+ ( – αnν)an‖yn – p‖ + ( – αnν)a

n.

Since limn→∞ ‖Bxn – Bp‖ =  and {‖yn – p‖} is a bounded sequence, by using (.) and
conditions (C), (C), we obtain

lim
n→∞‖un – xn‖ = . (.)

On the other hand, since a metric projection PC satisfies

〈u – v, PCu – PCv〉 ≥ ‖PCu – PCv‖,

we write

‖zn – p‖ =
∥∥PC(un – λnAun) – PC(p – λnAp)

∥∥

≤ 〈
zn – p, (un – λnAun) – (p – λnAp)

〉
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=


{‖zn – p‖ +

∥∥un – p(Aun – Ap)
∥∥

–
∥∥un – p – λn(Aun – Ap) – (zn – p)

∥∥}

≤ 

{‖zn – p‖ + ‖un – p‖

–
∥∥un – zn – λn(Aun – Ap)

∥∥}

≤ 

{‖zn – p‖ + ‖un – p‖

– ‖un – zn‖ + λn〈un – zn, Aun – Ap〉}

≤ 

{‖zn – p‖ + ‖un – p‖ – ‖un – zn‖

+ λn‖un – zn‖‖Aun – Ap‖}.

So, we get

‖zn – p‖ ≤ ‖un – p‖ – ‖un – zn‖

+ λn‖un – zn‖‖Aun – Ap‖
≤ ‖xn – p‖ – ‖un – zn‖

+ λn‖un – zn‖‖Aun – Ap‖. (.)

By using (.) and (.), we have

‖xn+ – p‖ ≤ αn‖ρVxn – μFp‖ + ( – αnν)
[
βn‖Sxn – p‖

+ ( – βn)‖zn – p‖] + ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + ( – αnν)
[
βn‖Sxn – p‖

+ ( – βn)
(‖xn – p‖ – ‖un – zn‖

+ λn‖un – zn‖‖Aun – Ap‖)]

+ ( – αnν)an‖yn – p‖ + ( – αnν)a
n

≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖ + ‖xn – p‖

– ( – αnν)βn‖un – zn‖ + λn‖un – zn‖‖Aun – Ap‖
+ ( – αnν)an‖yn – p‖ + ( – αnν)a

n.

Therefore, we get

( – αnν)βn‖un – zn‖ ≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖

+ ‖xn – p‖ – ‖xn+ – p‖

+ λn‖un – zn‖‖Aun – Ap‖
+ ( – αnν)an‖yn – p‖ + ( – αnν)a

n

≤ αn‖ρVxn – μFp‖ + βn‖Sxn – p‖
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+
(‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖

+ λn‖un – zn‖‖Aun – Ap‖
+ ( – αnν)an‖yn – p‖ + ( – αnν)a

n.

Since limn→∞ ‖Aun – Ap‖ =  and {‖yn – p‖} is a bounded sequence, by using (.) and
conditions (C), (C), we obtain

lim
n→∞‖un – zn‖ = . (.)

Also, from (.) and (.), we have

lim
n→∞‖xn – zn‖ = . (.)

On the other hand, we get

‖xn – yn‖ ≤ ‖xn – un‖ + ‖un – zn‖ + ‖zn – yn‖
= ‖xn – un‖ + ‖un – zn‖ + βn(Sxn – zn).

Since limn→∞ βn = , again from (.) and (.), we obtain

lim
n→∞‖xn – yn‖ = . (.)

Now, we show that limn→∞ ‖xn – Txn‖ = . Before that we need to show that limn→∞ ‖xn –
Tnxn‖ = :

‖xn – Tnxn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Tnxn‖
≤ ‖xn – xn+‖ + ‖PCtn – PCTnxn‖
≤ ‖xn – xn+‖ +

∥∥αnρVxn + (I – αnμF)Tnyn – Tnxn
∥∥

≤ ‖xn – xn+‖ +
∥∥αn(ρVxn – μFTnyn) + Tnyn – Tnxn

∥∥

≤ ‖xn – xn+‖ + αn‖ρVxn – μFTnyn‖ + ‖yn – xn‖ + an.

Since an → , by using (.), (.), and condition (C), we obtain

lim
n→∞‖xn – Tnxn‖ = . (.)

Hence, from (.) and condition (C), we have

‖xn – Txn‖ ≤ ‖xn – Tnxn‖ + ‖Tnxn – Txn‖
≤ ‖xn – Tnxn‖ + DB(Tn, T) →  as n → ∞.

Since {xn} is bounded, there exists a weak convergent subsequence {xnk } of {xn}. Let xnk ⇀

w as k → ∞. From the Opial condition, we get xn ⇀ w. So, it follows from Lemma  that
w ∈ Fix(T). Therefore, ww(xn) ⊂ Fix(T). �
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Theorem  Assume that (C)-(C) hold. Then the sequence {xn} generated by (.) con-
verges strongly to x∗ ∈F , which is the unique solution of the variational inequality

〈
(ρV – μF)x∗, x – x∗〉 ≤ , ∀x ∈F . (.)

Proof Since the mapping T is defined by Tx = limn→∞ Tnx for all x ∈ C, by Lemma ,
T is a nonexpansive mapping, and Fix(T) �= ∅. Moreover, since the operator μF – ρV is
(μη – ργ )-strongly monotone by Lemma , we get the uniqueness of the solution of the
variational inequality (.). Let us denote this solution by x∗ ∈ Fix(T) = F .

Now, we divide our proof into three steps.
Step . From Lemma , since {xn} is bounded, there exists an element w such that xn ⇀ w.

First, we show that w ∈ F = Fix(T) ∩ � ∩ GEP(G). It follows from Lemma  that w ∈
Fix(T) =

⋂∞
n= Fix(Tn). Next we show that w ∈ �. Let NCv be the normal cone to C at

v ∈ C, i.e.,

NCv =
{

w ∈ H : 〈v – u, w〉 ≥ , ∀u ∈ C
}

.

Let

Hv =

⎧
⎨

⎩
Av + NCv, v ∈ C,

∅, v /∈ C.

Then H is maximal monotone mapping. Let (v, u) ∈ G(H). Since u – Av ∈ NCv and zn ∈ C,
we get

〈v – zn, u – Av〉 ≥ . (.)

On the other hand, from the definition of zn, we have

〈v – zn, zn – un – λnAun〉 ≥ 

and hence,
〈
v – zn,

zn – un

λn
+ Aun

〉
≥ .

Therefore, using (.), we get

〈v – zni , u〉 ≥ 〈v – zni , Av〉

≥ 〈v – zni , Av〉 –
〈
v – zni ,

zni – uni

λni

+ Auni

〉

=
〈
v – zni , Av – Auni –

zni – uni

λni

〉

= 〈v – zni , Av – Azni〉 + 〈v – zni , Azni – Auni〉 –
〈
v – zni ,

zni – uni

λni

〉

≥ 〈v – zni , Azni – Auni〉 –
〈
v – zni ,

zni – uni

λni

〉
. (.)
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By using (.), (.), and (.), we get uni ⇀ w and zni ⇀ w for i → ∞. Hence, from
(.) we have

〈v – w, u〉 ≥ .

Since H is maximal monotone, we have w ∈ H– and hence w ∈ �.
Finally, we show that w ∈ GEP(G). By using un = Trn (xn – rnBxn), we get

G(un, y) + 〈Bxn, y – un〉 +

rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C.

Also, from the monotonicity of G, we have

〈Bxn, y – un〉 +

rn

〈y – un, un – xn〉 ≥ G(y, un), ∀y ∈ C,

and

〈Bxnk , y – unk 〉 +
〈
y – unk ,

unk – xnk

rnk

〉
≥ G(y, unk ), ∀y ∈ C. (.)

Let y ∈ C and yt = ty + ( – t)w, for t ∈ (, ]. Then yt ∈ C. From (.), we get

〈Byt , yt – unk 〉 ≥ 〈Byt , yt – unk 〉 – 〈Bxnk , yt – unk 〉

–
〈
yt – unk ,

unk – xnk

rnk

〉
+ G(yt , unk )

= 〈Byt – Bxnk , yt – unk 〉 + 〈Bunk – Bxnk , yt – unk 〉

–
〈
yt – unk ,

unk – xnk

rnk

〉
+ G(yt , unk ). (.)

Since B is Lipschitz continuous, using (.) we obtain limk→∞ ‖Bunk –Bxnk ‖ = . It follows
from (.), unk ⇀ w and the monotonicity of B that

〈Byt , yt – w〉 ≥ G(yt , w). (.)

Therefore, from assumptions (A)-(A) and (.), we have

 = G(yt , yt) ≤ tG(yt , y) + ( – t)G(yt , w)

≤ tG(yt , y) + ( – t)〈Byt , yt – w〉
≤ tG(yt , y) + ( – t)t〈Byt , y – w〉.

The last inequality implies that

G(yt , y) + ( – t)〈Byt , y – w〉 ≥ .

If we take the limit t → +, we get

G(w, y) + 〈Bw, y – w〉 ≥ , ∀y ∈ C.

Hence, we have w ∈ GEP(G). Thus, we obtain w ∈F = Fix(T) ∩ � ∩ GEP(G).
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Step . We show that lim supn→∞〈(ρV – μF)x∗, xn – x∗〉 ≤ , where x∗ is the unique
solution of variational inequality (.). Since the sequence {xn} is bounded, it has a weak
convergent subsequence {xnk } such that

lim sup
n→∞

〈
(ρV – μF)x∗, xn – x∗〉 = lim sup

k→∞

〈
(ρV – μF)x∗, xnk – x∗〉.

Let xnk ⇀ w, as k → ∞. It follows from Step  that w ∈F . Hence

lim sup
n→∞

〈
(ρV – μF)x∗, xn – x∗〉 =

〈
(ρV – μF)x∗, w – x∗〉 ≤ .

Step . Finally, we show that the sequence {xn} generated by (.) converges strongly to the
point x∗. By using the iteration (.), we have

∥∥xn+ – x∗∥∥ =
〈
PCtn – x∗, xn+ – x∗〉

=
〈
PCtn – tn, xn+ – x∗〉 +

〈
tn – x∗, xn+ – x∗〉. (.)

Since the metric projection PC satisfies the inequality

〈x – PCx, y – PCx〉 ≤ , ∀x ∈ H , y ∈ C,

from (.), we get

∥∥xn+ – x∗∥∥ ≤ 〈
tn – x∗, xn+ – x∗〉

=
〈
αnρVxn + (I – αnμF)Tnyn – x∗, xn+ – x∗〉

=
〈
αn

(
ρVxn – μFx∗) + (I – αnμF)Tnyn

– (I – αnμF)Tnx∗, xn+ – x∗〉

= αnρ
〈
Vxn – Vx∗, xn+ – x∗〉 + αn

〈
ρVx∗ – μFx∗, xn+ – x∗〉

+
〈
(I – αnμF)Tnyn – (I – αnμF)Tnx∗, xn+ – x∗〉.

Hence, from Lemma , we obtain

∥∥xn+ – x∗∥∥ ≤ αnργ
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + αn

〈
ρVx∗ – μFx∗, xn+ – x∗〉

+ ( – αnν)
(∥∥yn – x∗∥∥ + an

)∥∥xn+ – x∗∥∥

≤ αnργ
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + αn

〈
ρVx∗ – μFx∗, xn+ – x∗〉

+ ( – αnν)
(
βn

∥∥xn – x∗∥∥ + βn
∥∥Sx∗ – x∗∥∥

+ ( – βn)
∥∥zn – x∗∥∥ + an

)∥∥xn+ – x∗∥∥

≤ αnργ
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + αn

〈
ρVx∗ – μFx∗, xn+ – x∗〉

+ ( – αnν)
(
βn

∥∥xn – x∗∥∥ + βn
∥∥Sx∗ – x∗∥∥

+ ( – βn)
∥∥xn – x∗∥∥ + an

)∥∥xn+ – x∗∥∥

≤ (
 – αn(ν – ργ )

)∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
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+ αn
〈
ρVx∗ – μFx∗, xn+ – x∗〉

+ ( – αnν)βn
∥∥Sx∗ – x∗∥∥∥∥xn+ – x∗∥∥

+ ( – αnν)an
∥∥xn+ – x∗∥∥

≤ ( – αn(ν – ργ ))


(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)

+ αn
〈
ρVx∗ – μFx∗, xn+ – x∗〉

+ ( – αnν)βn
∥∥Sx∗ – x∗∥∥∥∥xn+ – x∗∥∥

+ ( – αnν)an
∥∥xn+ – x∗∥∥.

The last inequality implies that

∥∥xn+ – x∗∥∥ ≤ ( – αn(ν – ργ ))
( + αn(ν – ργ ))

∥∥xn – x∗∥∥

+
αn

( + αn(ν – ργ ))
〈
ρVx∗ – μFx∗, xn+ – x∗〉

+
βn

( + αn(–ργ ))
∥∥Sx∗ – x∗∥∥∥∥xn+ – x∗∥∥

+
an

( + αn(ν – ργ ))
∥∥xn+ – x∗∥∥

≤ (
 – αn(ν – ργ )

)∥∥xn – x∗∥∥ + αn(ν – ργ )θn,

θn =


( + αn(ν – ργ ))(ν – ργ )

[〈
ρVx∗ – μFx∗, xn+ – x∗〉 +

βn

αn
M +

an

αn

∥∥xn+ – x∗∥∥
]

,

and

sup
n≥

{∥∥Sx∗ – x∗∥∥∥∥xn+ – x∗∥∥} ≤ M.

Since βn
αn

→  and an
αn

→ , we get

lim sup
n→∞

θn ≤ .

So, it follows from Lemma  that the sequence {xn} generated by (.) converges strongly
to x∗ ∈F which is the unique solution of variational inequality (.). �

Putting A =  in Theorem , we have the following corollary.

Corollary  Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let B : C → H be θ -inverse strongly monotone mapping, G : C × C → R be a bifunc-
tion satisfying assumptions (A)-(A), S : C → H be a nonexpansive mapping and {Tn}
be a sequence of nearly nonexpansive mappings with the sequence {an} such that F :=
Fix(T) ∩ � ∩ GEP(G) �= ∅ where Tx = limn→∞ Tnx for all x ∈ C and Fix(T) =

⋂∞
n= Fix(Tn).

Let V : C → H be a γ -Lipschitzian mapping, F : C → H be a L-Lipschitzian and η-
strongly monotone operator such that these coefficients satisfy  < μ < η

L ,  ≤ ργ < ν , where
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ν =  –
√

 – μ(η – μL). For an arbitrarily initial value x ∈ C, consider the sequence {xn}
in C generated by

⎧
⎪⎪⎨

⎪⎪⎩

G(un, y) + 〈Bxn, y – un〉 + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

yn = PC[βnSxn + ( – βn)un],

xn+ = PC[αnρVxn + (I – αnμF)Tnyn], n ≥ ,

(.)

where {rn} ⊂ (, θ ), {αn} and {βn} are sequences in [, ] satisfying the conditions (C)-
(C) except the condition limn→∞ |λn–λn–|

αn
= . Then the sequence {xn} generated by (.)

converges strongly to x∗ ∈F , where x∗ is the unique solution of variational inequality (.).

In Theorem , if we take A =  and βn =  for all n ≥ , then we have the following
corollary.

Corollary  Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let B : C → H be θ -inverse strongly monotone mapping, G : C × C → R be a bifunction
satisfying assumptions (A)-(A), {Tn} be a sequence of nearly nonexpansive mappings with
the sequence {an} such that F := Fix(T) ∩ � ∩ GEP(G) �= ∅ where Tx = limn→∞ Tnx for all
x ∈ C and Fix(T) =

⋂∞
n= Fix(Tn). Let V : C → H be a γ -Lipschitzian mapping, F : C → H

be a L-Lipschitzian and η-strongly monotone operator such that these coefficients satisfy
 < μ < η

L ,  ≤ ργ < ν , where ν =  –
√

 – μ(η – μL). For an arbitrarily initial value
x ∈ C, consider the sequence {xn} in C generated by

⎧
⎨

⎩
G(un, y) + 〈Bxn, y – un〉 + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = PC[αnρVxn + (I – αnμF)Tnun], n ≥ ,
(.)

where {rn} ⊂ (, θ ), {αn} is a sequence in [, ] satisfying the conditions (C)-(C) except
the conditions limn→∞ βn

αn
= , limn→∞ |λn–λn–|

αn
=  and limn→∞ |βn–βn–|

αn
= . Then the se-

quence {xn} generated by (.) converges strongly to x∗ ∈ ⋂∞
n= Fix(Tn) ∩ � ∩ GEP(G),

where x∗ is the unique solution of variational inequality (.).

Putting A =  and B = , we have the following corollary, which gives us an iterative
scheme to find a common solution of an equilibrium problem and a hierarchical fixed
point problem.

Corollary  Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
G : C × C → R be a bifunction satisfying assumptions (A)-(A), S : C → H be a non-
expansive mapping and {Tn} be a sequence of nearly nonexpansive mappings with the
sequence {an} such that F := Fix(T) ∩ � ∩ GEP(G) �= ∅ where Tx = limn→∞ Tnx for all
x ∈ C and Fix(T) =

⋂∞
n= Fix(Tn). Let V : C → H be a γ -Lipschitzian mapping, F : C → H

be a L-Lipschitzian and η-strongly monotone operator such that these coefficients satisfy
 < μ < η

L ,  ≤ ργ < ν , where ν =  –
√

 – μ(η – μL). For an arbitrarily initial value x,
define the sequence {xn} in C generated by

⎧
⎪⎪⎨

⎪⎪⎩

G(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,

yn = PC[βnSxn + ( – βn)un],

xn+ = PC[αnρVxn + (I – αnμF)Tnyn], n ≥ ,

(.)
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where {rn} ⊂ (,∞), {αn} and {βn} are sequences in [, ] satisfying the conditions (C)-(C)
except the condition limn→∞ |λn–λn–|

αn
= . Then the sequence {xn} generated by (.) con-

verges strongly to x∗ ∈ ⋂∞
n= Fix(Tn) ∩ EP(G), where x∗ is the unique solution of variational

inequality (.).

Corollary  Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
A, B : C → H be α, θ -inverse strongly monotone mappings, respectively. G : C × C → R

be a bifunction satisfying assumptions (A)-(A), S : C → H be a nonexpansive mapping
and {Tn} be a sequence of nonexpansive mappings such that F := Fix(T) ∩�∩GEP(G) �= ∅
where Tx = limn→∞ Tnx for all x ∈ C and Fix(T) =

⋂∞
n= Fix(Tn). Let V : C → H be a γ -

Lipschitzian mapping, F : C → H be a L-Lipschitzian and η-strongly monotone operator
such that these coefficients satisfy  < μ < η

L ,  ≤ ργ < ν , where ν =  –
√

 – μ(η – μL).
For an arbitrarily initial value x ∈ C, consider the sequence {xn} in C generated by (.)
where {λn} ⊂ (, α), {rn} ⊂ (, θ ), {αn} and {βn} are sequences in [, ] satisfying the con-
ditions (C)-(C) of Theorem  except the condition limn→∞ an

αn
= . Then the sequence

{xn} converges strongly to x∗ ∈ F , where x∗ is the unique solution of variational inequality
(.).

Remark  Our results can be reduced to some corresponding results in the following
ways:

() In our iterative process (.), if we take G(x, y) =  for all x, y ∈ C, B = , and rn = 
for all n ≥ , then we derive the iterative process

xn+ = PC
[
αnρVxn + (I – αnμF)Tnxn

]
, n ≥ ,

which is studied by Sahu et al. []. Therefore, Theorem  generalizes the main result
of Sahu et al. [, Theorem .]. So, our results extend the corresponding results of
Ceng et al. [] and of many other authors.

() If we take S as a nonexpansive self-mapping on C and Tn = T for all n ≥  such that
T is a nonexpansive mapping in (.), then it is clear that our iterative process
generalizes the iterative process of Wang and Xu []. Hence, Theorem 
generalizes the main result of Wang and Xu [, Theorem .]. So, our results
extend and improve the corresponding results of [, ].

() The problem of finding the solution of variational inequality (.) is equivalent to
finding the solutions of hierarchical fixed point problem

〈
(I – S)x∗, x∗ – x

〉 ≤ , ∀x ∈F ,

where S = I – (ρV – μF).

Example  Let H = R and C = [, ]. Let G : C × C → R, G(x, y) = y + xy – x, S = I ,
A : C → H , Ax = x, B : C → H , Bx = x – , Vx = x + , Fx = x, and

Tnx =

⎧
⎨

⎩
 – x, if x ∈ [, ),

an, if x = ,
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for all x ∈ C. It is clear that G(x, y) is a bifunction satisfying the assumptions (A)-(A),
S is nonexpansive mapping, A is 

 -inverse strongly monotone mapping, B is 
 -inverse

strongly monotone mapping, V is γ -Lipschitzian mapping with γ = , F is L-Lipschitzian
and η-strongly monotone operator with L = η =  and {Tn} is a sequence of nearly non-
expansive mappings with respect to the sequence an = 

n– . Define sequences {αn} and
{βn} in [, ] by αn = 

n and βn = 
n+ for all n ≥  and take μ = ρ = 

 , ν = , rn = 
n+ ,

and λn = 
n+ . It is easy to see that all conditions of Theorem  are satisfied. First, we find

the sequence {un} which satisfies the following generalized equilibrium problem for all
y ∈ C:

G(un, y) + 〈Bxn, y – un〉 +

rn

〈y – un, un – xn〉 ≥ .

For all n ≥ , we get

G(un, y) + 〈Bxn, y – un〉 +

rn

〈y – un, un – xn〉 ≥ 

⇒ y + uny – u
n + (xn – )(y – un) +


rn

(y – un)(un – xn) ≥ 

⇒ yrn + y(unr + xnrn + un – rn – xn) – u
nrn – xnunrn + unrn – u

n + unxn ≥ .

Put K(y) = yrn + y(unr + xnrn + un – rn – xn) – u
nrn – xnunrn + unrn – u

n + unxn. Then
K is a quadratic function of y with coefficients a = rn, b = unrn + xnrn + un – rn – xn, and
c = –u

nrn – xnunrn + unrn – u
n + unxn. Next, we compute the discriminant � of K as

follows:

� = b – ac

= (unr + xnrn + un – rn – xn)

– rn
(
–u

nrn – xnunrn + unrn – u
n + unxn

)

= (un – rn – xn + rnun + rnxn).

We know that K(y) ≥  for all y ∈ C = [, ]. If it has most one solution in [, ], so � ≤ 
and hence un = rn+xn(–rn)

+rn
= +nxn

n+ . By using this equation, the sequence {xn} generated by
the iterative scheme (.) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y + uny – u
n + (xn – )(y – un) + (n + )(y – un)(un – xn) ≥ , ∀y ∈ C,

zn = un – 
n+ un,

yn = 
n+ xn + ( – 

n+ )zn,

xn+ = 
n (xn + ) + ( – 

n )( – yn), ∀n ≥ ,

(.)

for all n ≥ , and it converges strongly to x∗ = . which is the unique common fixed
point of the sequence {Tn} and the unique solution of the variational inequality (.) over
⋂∞

n= Fix(Tn). Some of the values of the iterative scheme (.) for the different initial
values x = ., x = ., and x = . are as in Table .
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Table 1 Some of the values of the iterative scheme (3.37)

x1 = 1.000000E–01 x1 = 4.000000E–01 x1 = 7.000000E–01

x2 4.800000E–01 7.200000E–01 9.600000E–01
x3 6.520000E–01 6.280000E–01 6.040000E–01
x4 5.392000E–01 5.488000E–01 5.584000E–01
x5 5.534400E–01 5.481600E–01 5.428800E–01
x6 5.257984E–01 5.291776E–01 5.325568E–01
x7 5.319411E–01 5.295757E–01 5.272102E–01
x8 5.191295E–01 5.208866E–01 5.226438E–01
x9 5.226747E–01 5.213129E–01 5.199510E–01
x10 5.151936E–01 5.162830E–01 5.173725E–01
...

...
...

...
x100 5.015339E–01 5.015208E–01 5.015075E–01
...

...
...

...
x1000 5.001506E–01 5.001503E–01 5.001503E–01
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