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Abstract

The present paper aims to deal with a new iterative method to find a common
solution of a generalized equilibrium problem, a variational inequality problem and a
hierarchical fixed point problem for a sequence of nearly nonexpansive mappings. It
is proved that the proposed method converges strongly to a common solution of
above problems under some assumptions. The results here improve and extend
some recent corresponding results by many other authors.
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1 Introduction
Let H be a real Hilbert space whose inner product and norm are denoted by (-,-) and || - ||,
respectively, C be a nonempty, closed, and convex subset of H. It is well known that for

any x € H, there exists a unique point y, € C such that

% = yoll = inf{|lx - y| : y € C}.

Here, y, is denoted by Pcx, where P¢ is called the metric projection of H onto C.

Let us recall some kinds of nonlinear mappings as follows, which are needed in the next
sections. A mapping T : C — H is called L-Lipschitzian if there exists a constant L > 0
such that || Tx — Ty|| < L|lx - y||, Vx,y € C. In particular, if L € [0,1), then T is said to be a
contraction; if L = 1, then T is called a nonexpansive mapping. Let us fix a sequence {a,}
in [0, 00) with a,, — 0. If the inequality || 7"x — T"y|| < ||x — y|| + a,, holds for all x,y € C
and n > 1, then T is said to be nearly nonexpansive [1, 2] with respect to {a,}. Let {T,,} be
a sequence of mappings from C into H. Then the sequence {T}} is called a sequence of

nearly nonexpansive mappings [3, 4] with respect to a sequence {a,} if

T — Tyl < llx—yll + @n, VYx,yeC,Vn>1. (L1)
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It is obvious that the sequence of nearly nonexpansive mappings is a wider class of se-
quence of nonexpansive mappings. A mapping A : C — H is called a-inverse strongly

monotone if there exists a positive real number « > 0 such that
(Ax — Ay,x —y) > a||Ax — Ay||*>, Vx,yeC,

and a mapping F : C — H is called n-strongly monotone if there exists a constant > 0
such that

(Fx—Fy,x—y) > nllx—y|%>, Vx,yeC.
In particular, if = 0, then F is said to be monotone.

Let G: C x C — R be a bifunction and B be a nonlinear mapping. The generalized
equilibrium problem, denoted by GEP, is to find a point x € C such that

G(x,y) + (Bx,y—x) >0 (1.2)
for all y € C, and the solution of the problem (1.2) is denoted by GEP(G), i.e.,
GEP(G) = {x € C: G(x,y) + (Bx,y —x) > 0, Vy € C}.

If B = 0, then the GEP is reduced to equilibrium problem, denoted by EP, which is to
find a point x € C such that

G(x,y) =0

forall y € C. The set of solutions of EP is denoted by EP(G). In the case of G = 0, then GEP
is equivalent to find a x € C such that

(Bx,y—x) >0 (1.3)

for all y € C. The problem (1.3) is called variational inequality problem, denoted by
VI(C, B), and the solution of VI(C, B) is denoted by €, i.e.,

Q= {xeC:(Bx,y—x) >0, ‘v’yeC}.

The generalized equilibrium problem includes, as special cases, the optimization prob-
lem, the variational inequality problem, the fixed point problem, the nonlinear comple-
mentarity, the Nash equilibrium problem in noncooperative games, the vector optimiza-
tion problem, etc. Hence, the existence of solutions of generalized equilibrium problems
has been extensively studied by many authors in the literature (see, e.g., [5-9]).

Let S: C — H be a nonexpansive mapping. The following problem is called a hierarchi-

cal fixed point problem: Finding x* € Fix(7') such that

(x* —Sx*,x — x*) >0, «xeFix(T), (1.4)
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where Fix(T) is the set of fixed points of T, i.e., Fix(T) = {x € C: Tx = x}. The problem
(1.4) is equivalent to the following fixed point problem: Finding an x* € C that satisfies x* =
Prixr)Sx*. Since Fix(T') is closed and convex, the metric projection Prix(r) is well defined.

It is well known that the hierarchical fixed point problem (1.4) links with some monotone
variational inequalities and convex programming problems; see [10—15]. Therefore, there
exist various methods to solve the hierarchical fixed point problem; see Yao and Liou in
[16], Xu in [17], Marino and Xu in [18] and Bnouhachem and Noor in [19].

Now, we give some iteration schemes which are related with the problems (1.2), (1.3),
and (1.4). In 2011, Ceng et al. [25] investigated the following iterative method:

%ne1 = Pclanp Vay + (- ayuF)Tx, |, ¥n >0, (1.5)

where F is a L-Lipschitzian and n-strongly monotone operator with constants L,n > 0

andV is a y-Lipschitzian (possibly non-self-)mapping with constant y > 0 such that

O<puc< i—;’ and 0 < py <1-./1-pu(2n - nL?). They proved that under some approxi-
mate assumptions on the operators and parameters, the sequence {x,} generated by (1.5)

converges strongly to the unique solution of the variational inequality
((oV = uF)x*,x —x*) <0, VxeFix(T). (1.6)

Recently, in 2013, Sahu ez al. [26] introduced the following iterative process for the se-

quence of nearly nonexpansive mappings {7},} defined by (1.1):

Yn = (L= Bu)xn + BuSnxn,

1.7)
Xntl = PC[anfxn + Zzil(ai—l - ai)Tiyn]v Vn>1,

where f is a contraction and {S,} is a sequence of nonexpansive mappings from C into
itself. They proved that the sequence {x,} generated by (1.7) converges strongly to the

unique solution of the following variational inequality:
1 * * * = .
<—(1—f)x +(1—S)x,x—x>20, Vxemle(Tn).
t i=1

In the same year, Bnouhachem and Noor [19] introduced a new iterative scheme to find
a common solution of a variational inequality, a generalized equilibrium problem and a

hierarchical fixed point problem. Their scheme is as follows:

G(uny) + (Bx,y — uy) + i(y— Uy, Uy — %) >0, VyeC,
zn = Pc(uy — AnAuty),

Yn = Pc(BuSxn + (L= Bu)zn),

Xni1 = Pelfien + Y1 (@i —a))Viyy), Vm=1,

(1.8)

where V; = kil + (1 - k)T, 0 < k; <1, {T;}7% : C — C is a countable family of k;-

strict pseudo-contraction mappings, A and B are inverse strongly monotone mappings.
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They proved that the sequence {x,} generated by (1.8) converges strongly to a point

z € Pongep6)nrix(r)f () which is the unique solution of the following variational inequality:
(I-flz,x—2)=0, VxeQNGEP(G) NFix(T),

where Fix(T) = (7, Fix(T).
In 2014, Bnouhachem and Chen [20] introduced the following iterative method:

Fl(un’y) +(Dxy,y — uy) + (/7()/) - (/J(My,) + i()’— Upy Uy — %) >0, VyeC;
Zp = Pc(uy — MpAuy);

Y = BnSxn + (1 - Bz
Xne1 = Pela,pUsxy + Yuxn + (- V)l — OlnMF)(T(yn))], Vn >0,

where D, A : C — H are inverse strongly monotone mappings, F; : C x C — R is a bifunc-
tion, ¢ : C — R is a proper lower semicontinuous and convex function, S,7: C — C are
nonexpansive mappings, F : C — C is Lipschitzian and a strongly monotone mapping and
U : C — C is a Lipschitzian mapping. The authors proved the strong convergence of the
sequence generated by (1.9) to a common solution of a variational inequality, a generalized
mixed equilibrium problem, and a hierarchical fixed point problem.

In addition to all these papers, similar problems are considered in several papers; see,
e.g, [21-24].

In this paper, motivated by the above works and by the recent work going in this direc-
tion, we introduce an iterative projection method and prove a strong convergence theorem
based on this method for computing an approximate element of the common set of so-
lution of a generalized equilibrium problem, a variational inequality problem and a fixed
point problem for a sequence of nearly nonexpansive mappings defined by (1.1). The pro-
posed method improves and extends many known results; see, e.g., [4, 11, 25, 27, 28] and
the references therein.

2 Preliminaries
Let {x,} be a sequence in a Hilbert space H and x € H. Throughout this paper, x, — x
denotes the strong convergence of {x,} to x and x, — x denotes the weak convergence.
Let C be a nonempty subset of a real Hilbert space H. For solving an equilibrium problem
for a bifunction G: C x C — R, let us assume that G satisfies the following conditions:
(A1) G(x,x)=0,VxeC,
(A2) G is monotone, i.e. G(x,y) + G(y,x) <0, Vx,y € C,
(A3) Vx,y,z€ C,

lir(1)1 G(tz+ (1-t)x,y) < G(,9),
t—0*
(A4) Vx € C,y+— G(x,y) is convex and lower semicontinuous.

Lemmal [29] Let C be a nonempty, closed, and convex subset of H, and let G be a bifunc-
tion from C x C into R satisfying (Al)-(A4). Let r > 0 and x € H. Then there exists z € C
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such that

G(z,y) + %(y—z,z—x) >0 (2.1)

forallx e C.

Lemma 2 [30] Suppose that G: C x C — R satisfies (A1)-(A4). Forr > 0 and x € H, define
a mapping T, : H — C as follows:

1
T, (x) = {ze C:Gl(z,y) + ;(y—z,z—x) >0, VyeC}

forall z e H. Then the following hold:
(1) T, is single valued,
(2) T, is firmly nonexpansive i.e.

| Tox — Toyl|> < (Tox — T,y,x—y), Vx,y€H,

(3) Fix(T,) = EP(G),
(4) EP(G) is closed and convex.

Let T1, T, : C — H be two mappings. We denote 5(C), the collection of all bounded
subsets of C. The deviation between T; and T, on B € B(C), denoted by ©5(T1, Ts), is
defined by

Dp(T1, Tr) = sup{ | Tx — Tox|| : x € B}.
The following lemmas will be used in the next section.

Lemma 3 [3] Let C be a nonempty, closed, and bounded subset of a Banach space X and
{T,} be a sequence of nearly nonexpansive self-mappings on C with a sequence {a,} such
that D¢c(Ty, Tyy1) < 00. Then, for each x € C, {T,x} converges strongly to some point of C.
Moreover, if T is a mapping from C into itself defined by Tz = lim,_, o Tz for all z € C,
then T is nonexpansive and lim,_, o, ©c(T,, T) = 0.

Lemma 4 [25] Let V : C — H be a y-Lipschitzian mapping with a constant y > 0 and let
F : C — H be a L-Lipschitzian and n-strongly monotone operator with constants L,n > 0.

Then for 0 < py < un,
((WF = pV)x = (WF = pV)y,2—9) = (un — py)llx—ylI*>, Va,y€C.
That is, uF — pV is strongly monotone with coefficient un — py.

Lemma 5 [31] Let C be a nonempty subset of a real Hilbert space H. Suppose that . € (0,1)
and | > 0. Let F: C — H be a L-Lipschitzian and n-strongly monotone operator on C.
Define the mapping G : C — H by

Gx=x—-AuFx, VxeC.
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Then G is a contraction that provided p < i—’g More precisely, for . € (0, i—'g),
[Gx -Gyl =A-Av)llx-yl, VxyeC,
where v =1- /1 - u(2n — ul?).

Lemma 6 [32] Let C be a nonempty, closed, and convex subset of a real Hilbert space H,
and T be a nonexpansive self-mapping on C. IfFix(T) # 0, then I — T is demiclosed; that
is whenever {x,} is a sequence in C weakly converging to some x € C and the sequence
{( = T)x,} strongly converges to some y, it follows that (I — T)x = y. Here I is the identity
operator of H.

Lemma 7 [33] Assume that {x,} is a sequence of nonnegative real numbers satisfying the

conditions
Kppl = (1 - an)xn +aufy, VYn=>1,

where {a,} and {B,} are sequences of real numbers such that

) {en}C[0,1] and Y a,=oo,
n=1
(i) limsuppB, <0.

n—00

Then lim,,—, oo X, = 0.

3 Main results

Let C be a nonempty, closed, and convex subset of a real Hilbert space H.Let A,B: C — H
be o, 6-inverse strongly monotone mappings, respectively. Let G : C x C — R be a bifunc-
tion satisfying assumptions (Al)-(A4), S : C — H be a nonexpansive mapping and {7}
be a sequence of nearly nonexpansive mappings with the sequence {a,} such that F :=
Fix(T) N Q N GEP(G) # @ where Tx = lim,_, », Tyyx for all x € C and Fix(7T) = ("2, Fix(T},).
It is clear that the mapping T is nonexpansive. Let V : C — H be a y-Lipschitzian map-
ping, F : C — H be a L-Lipschitzian and 7-strongly monotone operator such that these
coefficients satisfy 0 < u < f—g, 0 <py <v,wherev=1- \/1—/1,(217——ML2) For an arbi-
trarily initial value x;, define the sequence {x,} in C generated by

Glttn,y) + (B Y = ) + 3 (Y = s Uy —%a) 2 0, Yy €C,
zn = Pc(uy, — MAuy),

Vn = Pc[BnSxn + (1= Bu)zal,

X1 = PelanpVa, + (I —ayuF)T,y,], n>1,

(3.1)

where {A,} C (0,2w), {r,} C (0,26), {«,} and {B,} are sequences in [0, 1].
As can be seen, the convergence of the sequence {x,} generated by (3.1) depends on
the choice of the control sequences and mappings. We list the following hypotheses
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on them:

[o¢]
(C1) Ilim a,=0 and Zan = 00;

n=1

— oy A — A
) fim ™0, tim P10, fim 12Tl gy PPl
n—>00 Oy, n—>00 Oy, n—>00 oy n—00 oy
lim |81 = Bu-1l -0, and lim |7 = 1l - 0;
n—00 oy n—00 oy,
Dp(T,, T,
(C3) lim ©p(T,, Tys1) =0 and lim M =0 foreach B e B(C).
n—00 n—>00 oy

Now, we need the following lemmas to prove our main theorem.

Lemma 8 Assume that the conditions (C1), (C2) hold and p € F. Then the sequences {x,},
{yu}, {zn}, and {u,} generated by (3.1) are bounded.

Proof 1t is easy to see that the mapping I — r,,B is nonexpansive, so the mapping [ — A,A
is also nonexpansive. From Lemma 2, we have u, = T, (x, — r,Bx,). Let p € F. So, we get
p =T,,(p —r,Bp). Then we obtain

ltn = pI? = | Ty, (s = ruBn) = T, (p = rBp)||*
< ||Gen = ruBx) = (0 = 1:Bp)||°
= 1% = pII? = 27 (% — p, Bt — Bp) + r2|| B, — Bpl|?
< 1%, = pII* = 7(26 - 1,)) | Bx,, — Bp?

< llxa —pI*. (3.2)
From (3.2), we get

2w = pI? = || Pe(tt — hnAtt) = Pe(p — 2nAp) |
< |t = p = AulAus, - Ap)|?
< ity = I = 2w = 1) | A, — Apl)?
< llu —pI*

< llxn - pII%. (3.3)
It follows from (3.3) that

19n =PIl = | Pc[BuSxn + (1 = Bu)xn] — Pep|
< | BuSxn + A= B)zn - p|
< (1= B)lzu —pll + BullSxs — P
< (1= B 1%n = pll + Bull Sxu — Spll + BullSp — pll

< llxn = pll + BullSp - pII. (3.4)



Karahan et al. Journal of Inequalities and Applications (2015) 2015:53 Page 8 of 25

Since lim,,_, oo g—z = 0, without loss of generality, we can assume that 8, < «,, forall n > 1.
This gives us lim, .« B, = 0.
Let ¢, = a,pVx, + (I — ayuF)T,,y,. Then we get

[%4:1 = pll = |[Pctn — Pepl|
< llt.-pl
= |letup Vaew + (I = auptF) Ty — p |
< allpVitn — wEp| + | (I = utF) Ty — (I = atutF) T |
< appy % = pll + anllo Ve — nEp||
+ (= aw)(llyn - pll + an). (3.5)

From (3.4) and (3.5), we get

%41 =PIl < cupy %, = pll + anll pVp — wEp|
+ (1= ) (1% — pll + BullSp = pll + an)
= (1 —a,(v - ,OV)) llcn - pl
Ay
+au| loVp - ukpl +11Sp—pll + o
< (1 =an(v-py))lx. —pl

n

1 ay
+an(v—py)[7<llpr—qull +1Sp - pll +—>}- (3.6)
(v-py) o
From condition (C2), there exists a constant M; > 0 such that

a
loVp — ukpll + 1Sp - pll + a—” <M, Vn>1

Thus, from (3.6) we have

M;

%041 =PIl < (1= 0tu(v = 1)) 1% = Pl + u(v — py) ———.
(v-py)

By induction, we get

M
lns1 — pll < maxq floy —pll, ———¢-
(v—py

Hence, we find that {x,} is bounded. So, the sequences {y,}, {z,}, and {u,} are bounded. [J

Lemma 9 Assume that (C1)-(C3) hold. Let p € F and {x,} be the sequence generated by
(3.1). Then the follow hold:

(1) limy o0 [[%ns1 — x4l = 0.

(i) wy(x,) C Fix(T) where w,,(x,) is the weak w-limit set of {x,}, i.e.,

Wy (%) = {x D% — X}
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Proof (i) Since the mappings Pc and (I — A,A) are nonexpansive, we get

20 = Znall = | Pe(ttn = AnAty) = Pe(ttyy = hporAttyy) |
< | (tn = AnAry) = (tn-1 = Apr Ay
= st — tno1 = AnAtty — Atty1) = (e = M)At |
< ttn = vt = Mn(Attyy = At 1) | + 12w = A || Aty |

< Ny — thyall + 1A = At || Atta |, (3.7)
and so

Iy = Yn-1ll = | Pc[BuSxn + (1= Bu)za]
= Pc[Bn-1Sxn-1 — (1= Bu-)zu1] |
< ||BuSxn + (1= Bu)zn — Bu1Sn-1 + (1 = Buot)Zu1 |
< || Bu(Sxn = Sx-1) + (Bn = Bu-1)S%n1
+ (L= Bu)(zn = Zn-1) + (Buct = Bu)zn-1 |
< Bullxn = xpall + A = Bu)llzn = zu1
+ 1B = Buaa | (151 [l + 1201
< Bull%n = 21 |l + A= B) [ Ntbn — thpa |
+ 1A = At | Asta 1]

+1Bn = Bua | (1811l + [l 21 l).- (3.8)

On the other hand, since u, = T}, (x,, — r,Bx,) and u,,_; = T}, | (X1 — 1,-1B%,,_1), we have

1
G(upy) + (Bxy,y —thy) + —(y — U, by — %) >0, VyeC, (3.9)
T,

n

and

G(un—l)y) + <an—1»y - un—l)

1
’ O’ —Up-1,Up-1 — xn—l) >0, VJ/ eC. (310)
n-1

+
If we take y = u,,; and y = u,, in (3.9) and (3.10), respectively, then we get

1
Gty Up1) + (BXpy Up_1 — Uy) + — (U1 = Upy Uy — %) > 0 (3.11)
n

and
G(Mn—l; un) + (BXy-1, Uy — Un-1)

1

Tn-1

+ <un —Up-1,Up-1 — xn—l) = 0. (312)
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It follows from (3.11), (3.12), and monotonicity of the function G that

Up1—Xp-1  Up— xn> ~0

(Bxp_1 — By, thy — Uy_1) + <un —Up1,
rn-1 'y

The last inequality implies that

Tn1

T'n
=\ Up1 — Upy Uy — Uy + (1= }”— Up-1
n-1

T,
+ (xn—l - rann—l) - (xn - rann) —Xp-1t r_nxn—1>
n-1

T
0= <un — Uy_1,1n(Bxy1 — Bxy) + _n(un—l —%n-1) — (U _xn)>

14
= <un_1 — Uy, (1 - —")un_l + (%1 — 7uBxy_1)

In

'y 2
- (xn - rann) —Xp-1t r—xn1> - ”un —Up-1 ”
n-1

T,
= <Mn—1 — Uy, (1 - — )(un—l - xn—l)
n-1

2
+ (X1 — 1uBy_1) — (0, — rann)> — = 1l

T'n

2211 — X1l

< llup1 - un”H1 -

n-1

+ H (xn—l - rann—l) - (xn - rann) || } - ”Mn - Mn—1||2

T
< Ntpg —uully |1 - l2£y—1 — %1 |l
n-1
2
+ (%41 _xn”} = Ny — wpall” (3.13)

From (3.13), we have

le£-1 — unll < Netng = xnall + %01 — %l

"n
1-
,

n-1

Without loss of generality, we can assume that there exists a real number p such that

ry > i > 0 for all positive integers #. Then we obtain
1
lltn-g — vl < N1%0o1 — x|l + ; 171 = Fal et = %1 ] (3.14)
From (3.8) and (3.14), we get

”yn _yn—ln = ,3n||xn _xn—ln

1
+ (1_,3;4)|:”xn—1 — Xl + ;'rn—l — Tl 1 — Xt |l
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+[An = ?»n1||IAun1||:| + 181 = Bucal (15511l + 1201 1)
1
= oy — Xl + 1= ,Bn) ;lrn—l — Tulllthn1 — X ||
+[Ap = Apal ”Aun—1||:| + 180 = Bual (151 1| + Iz 1)
Then we have

%41 = %ull = |Pctn = Pty ll

< Ity = tull

= |t Van + (I = 0wt F) Ty
— 1 Vatn-1 + (I = oyt o) Ty Y |

< [lano V(@ = %01) + (0t — 0tu1) p Vi
+ (I = oyt F) Ty — (I = oyt F) Tyypa
+ TyYu-1 = Tne1yna
+ &yt W T o1yt — gl E Ty |

< 0Py 1% = Xnall + ¥ ety — na || Vatn- |
+ (L= Tyn = Tpynal + 1 Tuyna = Tuaynal
+ oy 1 FTy1Yn1 — 0 F Ty yna |l

< aupy %0 = X ll + v 1ty — a1 VE |l
+ (L= V) [ 10 = Y-t + @] + 1 Tuyn-1 = Tuordnal
+ | etns FTp1ynar = FTuyn-1) — (@ — @) FTyna |

< appy % = xnall + ylan — apa |l Vi |l

+(1- anv){ [l — %1
1
+(1- By ;'rn—l = Pullltty—1 = x|l + [Ay = Ay | | Asyg ||

+ 1B = Bua | (1S | + ”an”)}

+(L—ayv)a, + Dp(Ty, Ty1)

+ oty 1 LOB(T, Ty1) + |ty — oty a | |IF Ty |
< (1=an(v - p¥)) %0 = Xpal

+ oty = ot | (¥ | Vitnaa | + IF Ty )

+ (L + poty 1 L)Dp(Ty, Tya) + an

1
+ ;lrn—l - rn| ”un—l _xn—IH + |)"n - An—l“lAun—l”

+ |/3n - ﬂn—1|(||sxn—1” + ”Zn—l”)
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= (1 —a,(v - IOV)) s = %1 ll + (1 + ety 1 L)Dp(Ty, T1)

1
+M2(|C(,, _an—l| + _|rn—1 _rn|
n
+ Ay = A1l + 1Bn = lgn—1|) +ay, (3.15)
where

My = max|sup(y | Vi 1| + IFT,0-11),5up ity 1 =501,
n>1

n>1

sup || Auey 1|, sup([1Sx,-1 ]| + ||Zn—1||)}~

n>1 n>1

Hence, we write

”xn+l _xn” = (1 - Oln(v - on)) ”xn - xn—l” + O‘n(‘) - /0)/)8;4, (316)
where
1 Dp(T,, T\
Sy= — |:(1 + Man—lL)M
(v —-py) oy
ap <|an_an—1| 1frp=rul 1A= Apal |,Bn_ﬂn—l|):|
+—+ M, +— + + .
n oy 12 oy oy oy

From conditions (C2) and (C3), we get

limsupé, <O0. (3.17)

Hn— 00

So, it follows from (3.16), (3.17), and Lemma 7 that
lim ||%,41 — %] = 0. (3.18)
(ii) First, we show that lim,, . ||#,, — %, || = 0. Since p € F, from (3.2) and (3.3), we obtain

e = pI% < N6 - pII?
= ||oe,,,0Vx,, + (I — oyt F) Ty —p”2
= otnp Vitn = tutiFp + I = tupt )T, ~ (I = ctut )T,
< aull oV, — wEpll? + (L= cuv)(Ilyn - pll + @)’
= oyl p Vi, — uEp|?
+ =) (llyn = pI? + 2a4lly, - pll +a2)
= oyl p Vitw — uEp|1* + (1 = ) lyu — pII°
+2(1 = oy V)anllyn - pll + A - ayv)a,
< aull o Vaty — wEp|)? + (1= auv)[ BullSx — P11

+(L=Ba)llzn —plI*] + 20 = cwv)anllyn - pll + 1 - ayv)a,
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= oyl pVaty — wEp|* + (1 = av) Bl S — pI?
+ (1= )1 - B)lzn - pll
+2(1 = ayv)anllyn —pll + (1 - ayv)a
< ayll oV — wEp))* + (1 = auv) B Sx — p11?
+ (1= ) (L= B[ xn — pII> = (260 — 1)) | Bx,, — Bp||®
= hn(20t = 2) | Auy — Ap|1?]
+2(1 = o V)an|lyn - pll + A - apv)a,
< &l p Vi — uEp|)* + BullSxw — pII” + 1% — plI?
— (L= au)(1 = B)[74(260 — r,)||Bx,, — Bp|*
+ An(200 = 1) Ay — Apl|*]

+2(1-aW)a,ly, —pll + 1 - ot,,v)af,. (3.19)

Then, from (3.19), we get

(1 - ayv)(A = Bu){ru(26 — )| Bxy — Bpl|* + Au(20 — 1) || Anty, — Apl|*}
< allpVaty — wEp|* + Bull S — pII* + 1% — pII* = 1na1 — pII>
+2(1 = aV)aullyn - pll + A - ayv)a,
<l pView — wEp|* + BullSxn = pII* + (1% — oIl + %1 — pII) %1 — I

+2(L—ay)aylly. —pll + 1 - anv)aﬁ.

It follows from (3.18) and from conditions (C1) and (C2) that lim,,_, , || Bx;,, — Bp|| = 0 and
limy,—, o [[Aut,, — Ap|| = 0.

Since T, is firmly nonexpansive mapping, we have
2
Izt —P||2 = ” T;, (% = ruBxy) = T, (p — ruBp) ”
= (un —-b (xn - rann) - (10 - 7’an))

1
= ol —pI + |G = ruBx) - (0 — rBp)||*

V== [t B~ (o= B}
Therefore, we get

gy = pII* < || Gon = ruBt) — (p — ruBp) |
- Hun_xn_rn(an_Bp)Hz
S “xn _pHZ - ”un — Xy — rn(an —BP)”2

2 2
=< “xn —P|| - ”un _xn”

+ 21y ||y — %4 ||| B — Bp||. (3.20)
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Then, from (3.3), (3.19), and (3.20), we obtain

%1 = PII* < @ull pView — wEp|* + (1= ct0) [ Bull S — pII?
+ (L= B)llzn — pI?] + 21— auv)anllyn — pll + 1 - apv)a,
< aull o Vatn — wEp|)? + (1= auv)[ BullSx — p1I?
+ (1= Bty = pI*] + 20 = awv)anllyn — pll + (1 - ayv)a,
< | p Vit — uEp|)* + (1= 0, 0) [ Bull Sxn — pII>
+ (1= B) (196 = pII* = [l — 21
+ 27| ttw — %4 | B — Bpl) ]
+2(1 = ayv)anllyn —pll + (1 - ayv)a
< ol p Vi — WEp|* + Bull S — pII” + 1% — pII?
— (1= u)(A = B) = %ull* + 27| 4y — 54| | B — Bp|

2

ne

+2(1 = apv)anllyn — pll + 1 - ayv)a
The last inequality implies that

(1= ay)(A = B)llttn — %)

< aullpVay — wEp|1* + Bull S — p|I?
+ 1% =PI = %1 — P + 274l 14 — 24| B — Bp||
+2(1 = ayv)ayllyn —pll + (1 - a,)a;,

<l pVay — wEp|* + BullSxu — plI®
+ (lln = Il + %01 = 1) 1001 — 2l
+ 21y ||ty — %4l | Bx,, — Bp|
+2(1 = aV)aullyn —pll + A - ayv)as.

Since lim,—, « ||Bx,, — Bp|| = 0 and {||y, — p||} is a bounded sequence, by using (3.18) and
conditions (C1), (C2), we obtain

lim ||u, —x,| =0. (3.21)
n—00

On the other hand, since a metric projection Pc satisfies
(u—v,Pcu—Pcv) > ||Pcu — Pevlf?,

we write

”Zn —P||2 = HPC(un _)"nAMn) _PC(p_)‘nAp)HZ

= (Zn -,y — MpAuy) — (p - )WAP»
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1
= 5z =pI” + |1 — plAu, — Ap)

- ”un —p = A(Au, — Ap) — (2, - p) ”2}

< 2 {llew—pIP + ity P

— |t = 20 = 2on(Att - AP)|*}
< > llew—pIP + it~ P

~ Nt = Zull® + 20 (4 — 20, Aty — Ap) }
< 2z = I + Uty =PI — ity — 20

2
+ 20|ty = zulll|Aut, — Apll}.

So, we get

2 2 2
lzw = pII” < oty = pII° = oty = 2zl
+ 20|ty — 24|l || Auy — Ap|
2 2
< xn =PI~ =ty — 24l

+ 20 llttn — zall | Aty — Apll. (3.22)
By using (3.19) and (3.22), we have

%1 =PI < anll pVitw = wEpll* + (1 = auv)[ Bull Sx — pII?
+ (1= Bllzn — ] +2(1 = ayv)anlly, — pll + 1 - apv)a;

< aulloViey — nEpll” + (1 = au)[ Bl Sxy — pI?

+ (L= Ba) (%0 = pI* = Nt — za?

+ 20|ty — Zu| | Aty — Apll) ]

+2(1 = V) aullyn - pll + 1 - ayv)a,
< aulloViey — nEplI* + Bull S — pII* + %4 — pII?

— (1= au)Bullttn — zull* + 24|18 — 24|l | Aus,, — Ap|

+2(1—aW)aully. —pll + 1 - oz,,v)ufl.
Therefore, we get

(1= V) Bullthn — zall* < all p Vity — WEp|* + BullSxy — pII?
+ 1% = pII* = %01 — pII?

+ 20 allttn — za || | Auy — Ap|

2
n

+2(1 = auv)anllyn —pll + (L - ayv)a

< dullo Vi, — nEplI* + BullSxn — plI*
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+ (”xn =Pl + 1%un _p”)”xnﬂ — x|
+ 20ty — 2|l | Ausy — Ap|

+2(1 = V) ayllyy - pll + (1 - ayv)as.

Since lim,_« [|Au, — Apll = 0 and {||y, — p||} is a bounded sequence, by using (3.18) and
conditions (C1), (C2), we obtain

lim ||z, — 2| = O. (3.23)
n— o0

Also, from (3.21) and (3.23), we have
lim ||x, —z,| = 0. (3.24)
n—0o0

On the other hand, we get

16 = Yull < %0 — tnll + Nty =z |l + 120 = Yl

= |lwn — unll + |ty =zl + ﬁn(an —2,).
Since lim,,_, », B, = 0, again from (3.21) and (3.23), we obtain
lim ||x, —y,| =0. (3.25)
n—0o0

Now, we show that lim,,_, o, ||x,, — Tx,|| = 0. Before that we need to show that lim,,_, o ||, —
Tyux,|l =0:
%0 = Tuxnll < %0 = Xnarll + [1%ne1 — Tl
< 1% = %1 | + [|1Pctn — Pc Tl
< 1196 = Fer | + [ 00 Vatn + (I = 0ttt F) Ty = Tt
< 1% = Xt ll + | n(0 Vaen = WETwyn) + Ty — Tten|

< o = X1 ll + aull o Ve = WETyyull + |¥n — %l + a@y.
Since a,, — 0, by using (3.18), (3.25), and condition (C1), we obtain
lim ||x, = Ty, | = 0. (3.26)
n—0oQ
Hence, from (3.26) and condition (C3), we have

e = Tl < 10 — Tunll + | T — T4 ||
< %y = Tyl + ®p(T,, T) —> 0 asn— oo.
Since {x,} is bounded, there exists a weak convergent subsequence {x,, } of {x,}. Let x,,, —

w as k — oo. From the Opial condition, we get x,, — w. So, it follows from Lemma 6 that
w € Fix(T). Therefore, w,,(x,) C Fix(T). O
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Theorem 1 Assume that (C1)-(C3) hold. Then the sequence {x,} generated by (3.1) con-
verges strongly to x* € F, which is the unique solution of the variational inequality

((,oV — uF)x*,x —x*) <0, VxelF. (3.27)

Proof Since the mapping T is defined by Tx = lim,_, o, Ty« for all x € C, by Lemma 3,
T is a nonexpansive mapping, and Fix(7) # . Moreover, since the operator uF — pV is
(un — py)-strongly monotone by Lemma 4, we get the uniqueness of the solution of the
variational inequality (3.27). Let us denote this solution by x* € Fix(T) = F.

Now, we divide our proof into three steps.

Step 1. From Lemma 8, since {x, } isbounded, there exists an element w such that x,, — w.
First, we show that w € F = Fix(T) N 2 N GEP(G). It follows from Lemma 9 that w €
Fix(T) = (2, Fix(T,). Next we show that w € Q. Let Ncv be the normal cone to C at
ve(,i.e.,

Nev={weH:(v—uw) >0, VueC}.
Let

Av+ Ncv, veC(C,
@, veC.

V=

Then H is maximal monotone mapping. Let (v,u) € G(H). Since u —Av € N¢cvand z, € C,
we get

(v—2z,,u—Av) > 0. (3.28)
On the other hand, from the definition of z,,, we have
(V—2zn,2, — Uy — MAu,) >0

and hence,

<V—z,,, Z"; o +Au,,> >0.

n

Therefore, using (3.28), we get

(V=2zy,u) = (v—2,,AV)

Zp, — Uy,
> (v—2z,,Av) —<v—zni, : : +Au,,l.>

Zy, — U,
= <v—z,,i,Av—Au,,i - l>
nj

Zy,

— Uy,
= (v-z,,Av-Az,,) + (v -z,,Az,, — Au,,) — <"—Zn,-, - m>
n

i

Zy: — Uy,
: ). 3.29
A > ( )

i

= (V_an-xAzn,' _Aun,-) - <V_an-;

Page 17 of 25
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By using (3.21), (3.23), and (3.24), we get u,, — w and z,, — w for i — oco. Hence, from
(3.29) we have

(v—w,u) > 0.

Since H is maximal monotone, we have w € H~10 and hence w € Q.
Finally, we show that w € GEP(G). By using u, = T}, (x, — r,Bx,), we get

1
G(unry) + <an’y_ Uy) + —<J’— Upy Uy —%p) > 0, V_)/ eC.
T

n
Also, from the monotonicity of G, we have

1
(mej/— Up) + —(J/— Upy Uy — Xp) > G()/, un)r Vye C,
4

n

and
unk _xnk
(BXpyry = Uy} +\Y = Uy - > Gy, uy), VYyeC. (3.30)
g
Letye Candy, =ty + (1 - t)w, for £ € (0,1]. Then y, € C. From (3.30), we get
(BYt Y — Uny.) = By Y — Uny.) — (B Yo — Uiy )

Uy, —X,

k ng

_<yt_unk; r >+ G()/n unk)
03

= (Byr — Bxp, ¥r — ) + (Bt — By, e — )

Uy, — Xy
- <yt — Uy %> + G Uny)- (3.31)
3

Since Bis Lipschitz continuous, using (3.21) we obtain limy_, || Bu,,, —Bx, || = 0. It follows
from (3.31), u,, — w and the monotonicity of B that

By, y: —w) = Gy, w). (3.32)
Therefore, from assumptions (A1)-(A4) and (3.32), we have

0 = Gy <tGnYy) + 1= )G(ys, W)
<tG(yny) + (L - t){Bys,y: —w)

<tGny) + (1 =By, y —w).
The last inequality implies that
GOwy) + (1= t)(By,y —w) = 0.
If we take the limit £ — 0", we get
Gw,y) + (Bw,y—w) >0, VyeC.

Hence, we have w € GEP(G). Thus, we obtain w € F = Fix(T) N 2 N GEP(G).
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Step 2. We show that limsup,_, . ((pV — uF)x*,x, — x*) < 0, where x* is the unique
solution of variational inequality (3.27). Since the sequence {x,} is bounded, it has a weak
convergent subsequence {x,, } such that

lim sup((pV — uF)x*, x, —x*) =lim sup((pV — WE)X™, %y —x*).

n—00 k— o0

Let x,, — w, as k — 00. It follows from Step 1 that w € F. Hence

lim sup((p\/ — uF)x*, %, — x*) = ((pV — uE)x*,w— x*) <0.

n—00

Step 3. Finally, we show that the sequence {x,} generated by (3.1) converges strongly to the
point x*. By using the iteration (3.1), we have

||xn+1 —x* “2 = (PCtn _x*vxn+1 _x*>

= (Pct,, — by Xps1 — x*) + (t,, — X X1 — x*). (3.33)
Since the metric projection P¢ satisfies the inequality
(x—Pcx,y—Pcx) <0, VxeH,yeC,
from (3.33), we get

o2 < " -
= (np Vatn + I = 0yt F) Ty — &%, %001 — %)
= (on (0 Vatn — WFx™) + (I = otubF) Ty,
— (I = oy F) Tyx*, 1 — &¥)
= 0 p(Vitw = V& %001 — &%) + ot p V™ — WFx", 2001 — &7)

+ (U = it E) Ty — (I = i F) Tpx™, i1 — %),
Hence, from Lemma 5, we obtain

e = 52 < 0tnpy [0 = 2* | [omst = 2% | + ulp Vi = s e = 5°)

¢ A=a) ([ =] + @) [t =]

< 0 = 2 [t = 5| + a0 Vi — i FR®, gy — )
4 (L ) (B — % + B S5 —5*
+ (L= Bo)|2n =" | + @) |02 =27

< o [ = 2 [t = 5| + a0 Vi = i Fr®, s — )
4 (L ) (B — % + B Sx* = 5°]
+ (L= Bo) [0 =" + @) [0 = 7]

< (1= = p) [~ [ 11~
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+ ozy,<p V" — WEx™, %1 —x*)
+ (1 -a,v)B, ”Sx* —x* H ”x,,+1 —x* ”
+ (1 - anv)an Hxn+1 -x* ||

A=n® =0 (a4 s ")

<
- 2

+ an<pVx* — WEX*, %01 —x*)
+ (1 -a,v)B, ||Sx* —x* || ||xn+1 —x* ||

+ (1 -ayv)a, Hx,,+1 —x* H

The last inequality implies that

< Q- —py),
||xn+1—x ||2§m” " — ||2
20, i . )
’ m(p\/x = WEXT, Xy — )
28
* x| e =+
2a,

- _ *
et —pyy 1 =

=< (1 - an(‘) - p)’)) ”xn -x* ”2 + an(v - py)em
a

2 B \
9 — V*_ F*, _ * —M _n _ * s
" <1+an<v—py>)(v—py)[<p KB =) M x'}

and

sup{ |55 = e =} = Mo

Since 5—” — 0and ¢ — 0, we get
n 7]

limsup6, <0.
n—0o0

So, it follows from Lemma 7 that the sequence {x,,} generated by (3.1) converges strongly

to x* € F which is the unique solution of variational inequality (3.27). a
Putting A = 0 in Theorem 1, we have the following corollary.

Corollary 1 Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let B: C — H be 0-inverse strongly monotone mapping, G : C x C — R be a bifunc-
tion satisfying assumptions (Al)-(A4), S : C — H be a nonexpansive mapping and {T,}
be a sequence of nearly nonexpansive mappings with the sequence {a,} such that F :=
Fix(T) N QN GEP(G) # @ where Tx = lim,_, o Tyx for all x € C and Fix(T) = (-, Fix(T},).

Let V : C — H be a y-Lipschitzian mapping, F : C — H be a L-Lipschitzian and n-
strongly monotone operator such that these coefficients satisfy 0 < p < j—g, 0 < py < v, where
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v =1-/1-u(2n — uL?). For an arbitrarily initial value x, € C, consider the sequence {x,)}
in C generated by

Gty ) + (Bxy = ) + 1y = thy thy — %) 20, Vy€C,
Yn = PclBuSxn + (1 - Boual, (3.34)
Xn+l = Pc[Oln,van + (I_anMF)Tnyn]: n=> 1,

where {r,} C (0,20), {a,} and {B,} are sequences in [0,1] satisfying the conditions (C1)-

An=Apn-1l
on

(C3) except the condition lim,,_, = 0. Then the sequence {x,} generated by (3.34)

converges strongly to x* € F, where x* is the unique solution of variational inequality (3.27).

In Theorem 1, if we take A = 0 and 8, = 0 for all » > 1, then we have the following
corollary.

Corollary 2 Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let B: C — H be 0-inverse strongly monotone mapping, G : C x C — R be a bifunction
satisfying assumptions (Al)-(A4), {T,} be a sequence of nearly nonexpansive mappings with
the sequence {a,} such that F := Fix(T) N 2 N GEP(G) # ¥ where Tx = lim,_,» Tx for all
x € C and Fix(T) = (-, Fix(T,). Let V : C — H be a y-Lipschitzian mapping, F : C — H
be a L-Lipschitzian and n-strongly monotone operator such that these coefficients satisfy
O<u< i—;’, 0<py<v, wherev=1- m For an arbitrarily initial value
x1 € C, consider the sequence {x,} in C generated by

Gy, y) + (B, ¥ — thy) + =y — thy, thy — %) >0, VyeC,
(nsy) + (Bxn,y — thn) + 1= (¥ ) 'y (3.35)
Xni1 = PclanpVa, + (I —ayuF)Tyu,], n>1,

where {r,} C (0,20), {«,} is a sequence in [0,1] satisfying the conditions (C1)-(C3) except
the conditions lim,,_, o, % =0, lim,_, M%i"*ll =0 and lim,,_, o, 'ﬁ%‘z”‘” = 0. Then the se-
quence {x,} generated by (3.35) converges strongly to x* € (., Fix(T,) N & N GEP(G),
where x* is the unique solution of variational inequality (3.27).

Putting A = 0 and B = 0, we have the following corollary, which gives us an iterative
scheme to find a common solution of an equilibrium problem and a hierarchical fixed
point problem.

Corollary 3 Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
G : C x C — R be a bifunction satisfying assumptions (Al)-(A4), S: C — H be a non-
expansive mapping and {T,} be a sequence of nearly nonexpansive mappings with the
sequence {a,} such that F := Fix(T) N Q N GEP(G) # ¥ where Tx = lim,_, o Tyx for all
x € C and Fix(T) = (-, Fix(T,). Let V : C — H be a y-Lipschitzian mapping, F : C — H
be a L-Lipschitzian and n-strongly monotone operator such that these coefficients satisfy

O<u< j—;’, 0 < py <v,wherev =1-/1-u(2n - uL?). For an arbitrarily initial value x,,
define the sequence {x,} in C generated by

Gty y) + 5= (y =ty ty — %) = 0, Vy€C,
Yn = PC[ﬂnsxn + (1 - ﬂn)un]: (336)
Xn+l = PC[Oln/OVxn + (1_ an/'LF)Tnyn]: n>1,
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where {r,} C (0,00), {ot,} and {B,,} are sequences in [0,1] satisfying the conditions (C1)-(C3)

e A=A
except the condition lim,,_, o, "‘a—”l‘
n

= 0. Then the sequence {x,} generated by (3.36) con-
verges strongly to x* € ()2, Fix(T,) N EP(G), where x* is the unique solution of variational

inequality (3.27).

Corollary 4 Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
A,B: C — H be «, O-inverse strongly monotone mappings, respectively. G: C x C - R
be a bifunction satisfying assumptions (Al)-(A4), S: C — H be a nonexpansive mapping
and {T,} be a sequence of nonexpansive mappings such that F := Fix(T) N Q NGEP(G) # ¢
where Tx = lim,,_, o Tyx for all x € C and Fix(T) = (-, Fix(T,,). Let V: C — H be a y-
Lipschitzian mapping, F : C — H be a L-Lipschitzian and n-strongly monotone operator
such that these coefficients satisfy 0 < u < j—;’, 0<py<v,wherev=1-/1-u2n—ul?).
For an arbitrarily initial value x; € C, consider the sequence {x,} in C generated by (3.1)
where {A,} C (0,2a), {r,} C (0,20), {o,} and {B,} are sequences in [0,1] satisfying the con-
ditions (C1)-(C3) of Theorem 1 except the condition lim,_, Z—: = 0. Then the sequence
{x,,} converges strongly to x* € F, where x* is the unique solution of variational inequality
(3.27).

Remark 1 Our results can be reduced to some corresponding results in the following
ways:
(1) In our iterative process (3.35), if we take G(x,y) =0 forallx,y € C,B=0,and r, =1

for all n > 1, then we derive the iterative process
Kysl = Pc[a,,pVx,, + (I—a,,/LF)T,,x,,], n>1,

which is studied by Sahu et al. [4]. Therefore, Theorem 1 generalizes the main result
of Sahu et al. [4, Theorem 3.1]. So, our results extend the corresponding results of
Ceng et al. [25] and of many other authors.

(2) If we take S as a nonexpansive self-mapping on C and T, = T for all n > 1 such that
T is a nonexpansive mapping in (3.1), then it is clear that our iterative process
generalizes the iterative process of Wang and Xu [28]. Hence, Theorem 1
generalizes the main result of Wang and Xu [28, Theorem 3.1]. So, our results
extend and improve the corresponding results of [11, 27].

(3) The problem of finding the solution of variational inequality (3.27) is equivalent to
finding the solutions of hierarchical fixed point problem

((I—S)x*,x* —x) <0, VxelF,
where S =1-(pV — uF).

Example 1 Let H =R and C = [0,1]. Let G: C x C — R, G(x,9) = 9> + xy — 2x%, S = I,
A:C—>H,Ax=2x,B:C— H,Bx=3x-1, Vx=4x + 2, Fx = 5x, and

1-x, ifxe]0,1),
T,x=
day, ifx=1,
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for all x € C. It is clear that G(x,y) is a bifunction satisfying the assumptions (A1)-(A4),

. . . 1 . . .1 .
§ is nonexpansive mapping, A is z-inverse strongly monotone mapping, B is ¢-inverse

strongly monotone mapping, V is y -Lipschitzian mapping with y = 4, F is L-Lipschitzian

and 7n-strongly monotone operator with L = n =5 and {7} is a sequence of nearly non-
1

2n2-1°

{B,} in [0,1] bya,,:%andﬁnz nZIT for all # > 1 and take u = p = %, v=1r, =

expansive mappings with respect to the sequence a, = Define sequences {«,} and

n+3’
and A, = nl? It is easy to see that all conditions of Theorem 1 are satisfied. First, we find
the sequence {u,} which satisfies the following generalized equilibrium problem for all
yeC:

1
G(um_y) + (BXy, Y — tn) + — (Y — U, Uy — %) = 0.

n

For all n > 1, we get

1
Gty y) + (Bxp,y — thy) + — (Y — U, Uy — %) = 0

T'n

1
= Yy -2+ Bx, - Dy —un) + — 0 — )ty —x,) >0
1,

n

= yzrn + Y(Unt + 3%y + Uy — Ty — Xp) — 2uflrn = 3x,u,ty, + Uty — ufl + Uy, > 0.

Put K(y) = y2ry + y(unr + 32,7 + thy — 1y — %) — 2021y — 3%,y Ty + Uyl — U2 + uyx,. Then
K is a quadratic function of y with coefficients a = r,,, b = u,ry, + 3x,r, + u,, — ry, — x,,, and
¢ = =2u’ry — 3x,Uply + Unly — U2 + Uyx,. Next, we compute the discriminant A of K as

follows:

A = b* - dac
= (UyP + 3%yl + Uy — Ty — %)
—4r, (—2uirn — 3K Uy + Unly — U2 + Up)

= (Uy — Ty — Xy + 3Pty + 37%)>.

We know that K(y) > 0 for all y € C = [0,1]. If it has most one solution in [0,1], s0 A <0
rp+x(1=3ry)

and hence u,, = s
n

= %, By using this equation, the sequence {x,} generated by
the iterative scheme (3.1) becomes

Y+ upy = 2u% + (3%, — 1)(y — w) + (1 + 3)(y — u)(uy —x,) > 0, VyeC,

2
2,
1 2 (3.37)

1
In = agn + (L= 25)2m

Xn+l = %(4‘9@1 + 2) + (1 - %)(1 __yn): Vn > 1,

Zp = Uy —

for all # > 1, and it converges strongly to x* = 0.5 which is the unique common fixed
point of the sequence {T},} and the unique solution of the variational inequality (1.6) over
Mooy Fix(T,,). Some of the values of the iterative scheme (3.37) for the different initial
values x; = 0.1, x; = 0.4, and x; = 0.7 are as in Table 1.
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Table 1 Some of the values of the iterative scheme (3.37)

x1 =1.000000E-01 X1 =4.000000E-01 X1 =7.000000E-01
X2 4.800000E-01 7.200000E-01 9.600000E-01
X3 6.520000E-01 6.280000E-01 6.040000E-01
X4 5.392000E-01 5.488000E-01 5.584000E-01
Xs 5.534400E-01 5.481600E-01 5.428800E-01
X6 5.257984E-01 5.291776E-01 5.325568E-01
X7 5.319411E-01 5.295757E-01 5.272102E-01
X8 5.191295E-01 5.208866E-01 5.226438E-01
X9 5.226747E-01 5.213129E-01 5.199510E-01
X10 5.151936E-01 5.162830E-01 5.173725E-01
X100 5.015339E-01 5.015208E-01 5.015075E-01
X1000 5.001506E-01 5.001503E-01 5.001503E-01
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