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Owing to recent improvement of genotyping technology, large-scale genetic data can be utilized to identify disease susceptibility loci
and this successful finding has substantially improved our understanding of complex diseases. However, in spite of these successes,
most of the genetic effects for many complex diseases were found to be very small, which have been a big hurdle to build disease
prediction model. Recently, many statistical methods based on penalized regressions have been proposed to tackle the so-called
“large P and small N” problem. Penalized regressions including least absolute selection and shrinkage operator (LASSO) and ridge
regression limit the space of parameters, and this constraint enables the estimation of effects for very large number of SNPs. Various
extensions have been suggested, and, in this report, we compare their accuracy by applying them to several complex diseases. Our
results show that penalized regressions are usually robust and provide better accuracy than the existingmethods for at least diseases
under consideration.

1. Introduction

Accurate disease prediction is a central goal of clinical
genetics, and much effort has been made to utilize the large-
scale genetic data for a disease prediction model for complex
disease. However, except for the fully penetrant Mendelian
disorders, effect sizes of most disease susceptibility loci
identified by genome-wide association studies (GWAS) are
usually modest [1] and the presence of much larger number
of genetic variants than the sample size (or so-called “large P
and small N” problem) makes the construction of a disease
risk prediction model intractable. For instance, the variation
of predicted risk scores for each individual is proportionally
related to the number of causal variants, and the accuracy
of the predicted disease status decreases with the increase of

the number of causal variants when the relative proportion
of variance explained by causal variants is fixed [2, 3]. Also
large P and small N problem prevents the estimation of the
joint effect of all markers and thus prediction model building
has been based only on marginal effects of variants [4–
6]. Recently, various nonpenalized and penalized statistical
methods have been suggested to tackle these issues. However,
a comprehensive evaluation of existingmethods has not been
conducted yet.

The statistical methods for the disease risk prediction
at the early stage were based on gene scores [4–6]. Causal
variants often have additive effects on phenotypes, and a
simple linear (logistic) regression can be adopted to estimate
marginal effects of each variant under the assumption that
there is no gene × gene and gene × environment interactions.
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Then, the coded genotypes of large-scale genetic data are
multiplied with their marginal effect estimates and their sum
for each individual can be incorporated to build the disease
risk prediction model. Multiple studies showed that gene
score-based approach is practically useful for building disease
risk prediction [7]. This approach is computationally very
efficient, and further extensions based on best linear unbiased
predictor (BLUP) have been proposed in the literature [8–10].
However, for instance, if joint effects between multiple vari-
ants are substantial or there is large linkage disequilibrium
between variants, the estimated gene score can be biased and
the predicted disease risk becomes less accurate.

As an alternative to gene score-based approach, one may
consider statistical learning methods in disease risk predic-
tion. Statistical learning algorithms have been successful over
the past decades in various learning tasks including text
categorization, fraud detection, character and image recog-
nition, natural language processing, and marketing. Disease
risk prediction can be naturally posed as a classification
problem, and support vector machines (SVMs) [11] and
ensemble algorithms, in particular, random forests proposed
by Breiman [12], have been often shown to yield more accu-
rate predictions than other classification algorithms [13]. In
particular, SVMshave been an important tool in classification
because of their accuracy and flexibility inmodeling different
types of data. However, these methods have some drawbacks
in disease risk prediction. Effects of variants on phenotypes in
the prediction models from ensemble algorithms are difficult
to interpret and SVMs do not provide class conditional
probabilities [14]. Therefore, in this report, we focus on the
penalized methods in logistic regression.

Recently, various penalized methods have been proposed
to resolve the large P and small N problem. Examples include
convex penalizations such as ridge [15–17] and LASSO
[18] and nonconvex penalizations such as the smoothly
clipped absolute deviation (SCAD) [19] and bridge [20].
In general, penalized methods have often provided more
accurate predictions and easier interpretations than nonpe-
nalized methods, especially when the number of samples
is smaller than the number of variables. Some penalized
methods automatically select relevant variables by setting the
estimated coefficients of irrelevant variables as exactly zero.
Also penalized methods enhance the accuracy of predictions
by shrinking the coefficients of nonzero elements with data-
adaptive tuning parameters.

In this report, we compare the performances of various
nonpenalized and penalized methods in the prediction of
diseases on data from Korea Association Resource (KARE)
project that is a part of Korea Genome Epidemiology Study.
We select individuals with extreme phenotypes among the
participants in KARE project and consider the type 2 dia-
betes, obesity, hypertension, and three smoking-related phe-
notypes. The predictive performances of those nonpenalized
and penalizedmethods are compared by area under the curve
(AUC). Our results indicate that penalized methods tend to
yield more accurate predictions than nonpenalized methods
although their relative performances depend on particular
diseases.

2. Methods

2.1. KARE Cohort. The KARE project, with 10,038 partic-
ipants living in Ansung (rural) and Ansan (urban), was
initiated in 2007 for large-scale GWAS based on the Korean
population. Among the participants, 10,004 individuals were
genotyped for 500,568 SNPs with the Affymetrix Genome-
Wide Human SNP array 5.0. We discarded SNPs with 𝑝-
values for Hardy-Weinberg equilibrium (HWE) less than
10−6, with genotype call rates less than 95%, or minor allele
frequencies (MAF) less than 0.01, and 352,228 SNPs were left
for subsequent analysis. Individuals with low call rates (<95%,
𝑛 = 401), high heterozygosity (>30%, 𝑛 = 11), gender incon-
sistencies (𝑛 = 41), or serious concomitant illness (𝑛 = 101)

were excluded from analysis. We considered independent
samples and excluded related or identical individuals whose
computed average pairwise identical in state value was higher
than that estimated from first-degree relatives of Korean sib-
pair samples (>0.8, 𝑛 = 608). In total, 8,842 individuals were
analyzed. From randomly selected 20 duplicate samples, we
found that genotype concordance rates exceeded 99.7%, with
no single SNP excessively discordant. The population sub-
structure was handled with EIGENSTRAT approach [21] and
we chose 10 principal component scores. Missing genotypes
were imputed with Beagle [22].

2.1.1. Type 2 Diabetes (T2D). T2D mainly occurs in people
aged over 40, and it is diagnosed with level of glucose and
hemoglobin a1c (hba1c) in blood. In our studies, individuals
were selected as being affected with type 2 diabetes if their
hba1c are larger than 6.5, fasting plasma glucoses are larger
than or equal to 126, or 2-hour postprandial blood glucoses
are larger than or equal to 200. In total, there were 1182
affected individuals, and 2364 individuals not satisfying
the condition for type-2 diabetes and older than the other
unaffected individuals were considered as controls. As envi-
ronmental variables, we considered area (Ansan/Ansung),
sex, age, body mass index (BMI), systolic blood pressure
(SBP), diastolic blood pressure (DBP), triglyceride, and ten
PC scores.

2.1.2. Obesity. Obesity status was determined by BMI. Indi-
viduals were considered as cases if their BMIs are larger than
27, and there were 1022 affected individuals in KARE cohort.
We also selected 2325 individuals with BMIs less than 27 and
older than the other unaffected individuals as controls. We
considered area, sex, age, height, waist-hip ratio, SBP, DBP,
high density lipoprotein, triglyceride, and ten PC scores as
environmental variables.

2.1.3. Hypertension. Hypertension status was determined by
SBP and DBP. 1035 individuals with SBPs and DBPs larger
than 140 and 80, respectively, were considered as cases. 2290
individuals whose SBPs and DBPs were less than 120 and
80, respectively, were selected as controls. Environmental
variables considered were area, sex, age, BMI, and ten PC
scores.

2.1.4. Cigarettes Smoked per Day (CPD). For smoking-related
phenotypes, we considered only male samples for predicting
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smoking behaviors because the number of female smokers
was very small. CPD was defined to detect the nicotine
dependence of each individual. Individuals whose number of
cigarettes per day was larger than 20 were defined as being
addicted to nicotine, and 333 individuals were selected as
cases. Individuals were chosen as controls if the number of
cigarettes per day was less than 10, and 375males were chosen
as controls. Environmental variables were area, age, BMI,
waist-hip ratio, triglyceride, SBP, and ten PC scores.

2.1.5. Smoking Initiation (SI). Smoking status for each indi-
vidual has four categories: never smoked, former smoker,
occasional smoker, and habitual smoker. Males who never
smokedwere defined as controls, andmales who occasionally
or habitually smoke were defined as cases. There were 3357
cases and 807 controls, and the same clinical variables as in
CPD were environmental variables.

2.1.6. Smoking Cessation (SC). SC was defined with smoking
status as SI, but we used different categories for cases and
controls. Males who never smoked were defined as controls,
and males who occasionally or habitually smoke or smoked
before were defined as cases. The numbers of cases and
controls are 2064 and 1293, respectively, and environmental
variables were the same clinical variables as in CPD.

2.2. Disease Risk Prediction Model Building

2.2.1. Notations. Let 𝑦
𝑖

be a dichotomous phenotype for indi-
vidual 𝑖, and affected and unaffected individuals are coded as 1
and 0, respectively. The sample size is denoted as 𝑛 = 𝑛

𝑎

+ 𝑛
𝑢

,
where 𝑛

𝑎

and 𝑛
𝑢

denote the numbers of cases and controls,
respectively.We assume that there are 𝑝

1

genetic variants and
𝑝
2

environmental variants including an intercept. Therefore
the total number of variables is𝑝 = 𝑝

1

+𝑝
2

. x
𝑖

denotes a vector
with 𝑝 covariates for individual 𝑖, and the coded genotypes
of the 𝑘th variant and the 𝑙th environmental variable were
denoted by 𝑥

1𝑖𝑘

and 𝑥
2𝑖𝑙

, respectively. The coefficient vector
of 𝑝 covariates is denoted by 𝛽.

2.2.2. Cross Validation. To see the effect of sample size,
we selected 𝑛 individuals where 𝑛

𝑎

cases and 𝑛
𝑢

controls
with extreme phenotypes were chosen, and the relative
ratios of 𝑛

𝑎

to 𝑛
𝑢

are assumed to be equal to their ratios
between all available cases and controls in KARE cohorts.
We evaluated the accuracies of the disease risk prediction
models for different choices of 𝑛. Accuracies of the disease
prediction models were assessed via 10-fold cross validation,
and AUCs were calculated with 10 replicates. All individuals
were randomly divided into 10 different subgroups with the
same number of cases and controls. Each subgroup was used
as test set once across ten replicates and therefore there is no
overlap between test set in different replicates.

2.2.3. Feature Selection and Risk Prediction. Numbers of
available genetic markers seem to be related to the prediction
accuracy, and different numbers of genetic variants were
selected to build the disease risk predictionmodel.We choose
the top 𝑝

1

genetic variants by the order of 𝐹-ratio from

train set. If we let 𝑥(𝑙)
1.𝑘

be the average expression level of the
𝑘th variant for individuals with phenotype 𝑙 and denote the
overall mean expression level of the 𝑘th variant by 𝑥

1.𝑘

, the
𝐹-ratio of the 𝑘th variant [23, 24] is defined as

𝐹
𝑘

=

∑
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1
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)

2

∑
𝑛
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1

𝑙=0
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= 𝑙) (𝑥
1𝑖𝑘

− 𝑥
(𝑙)

1.𝑘

)

2

. (1)

Then we build the disease risk prediction model with those
selected top 𝑝

1

genetic variants and 𝑝
2

environmental vari-
ables on train set and apply the prediction model to test set.

2.3. Nonpenalized Methods

2.3.1. Genetic Risk Scores (GRS). The marginal effects of
covariates are tested with 𝐹-ratio [23, 24]. Then, the coded
genotypes of significant variants at𝛼 = 0.05 level are summed
to calculate GRS, and GRS and environmental variables were
incorporated into the logistic regressions as covariates to
build the final disease risk model on train set. The disease
risk scores are calculated for individuals on test set and its
accuracy of disease risk prediction model is evaluated.

2.3.2. MultiBLUP. Polygenic effects explained by available
SNPs can be modeled by the linear mixed model whose
variance covariance matrix is parameterized with the genetic
relationshipmatrix [25–27], and BLUP can be used to predict
the disease risk by genetic effects. However, those approaches
assume that effects of all SNPs are homogeneous in spite
of their heterogeneity. For instance, it has been shown that
MAFs of SNPs may reveal some information about genetic
architecture [28] and random effects need to be defined for
SNPs with different spectra of MAFs separately. MultiBLUP
[10] categorizes each SNP into different classes with distinct
effect sizes or linkage disequilibrium block and applies a
linear mixed model with multiple random effects to improve
the accuracy of the prediction model [10].

2.4. Penalized Methods. Various penalized methods have
been recently proposed, and we consider five penalized
methods in our comparison: ridge [29], LASSO [30], elastic-
net [31], SCAD [32], and truncated ridge (TR) [33–35].
The 𝑝 dimensional coefficient vector 𝛽 = (𝛽

1

, . . . , 𝛽
𝑝

)
𝑡

can be estimated by minimizing the penalized negative log-
likelihood:

1

𝑛

𝑛

∑

𝑖=1

{−𝑦
𝑖

x𝑡
𝑖

𝛽 + log (1 + exp (x𝑡
𝑖

𝛽))} +

𝑝

∑

𝑗=1

𝐽
𝜆

(






𝛽
𝑗






) , (2)

where 𝐽
𝜆

is a penalty function and 𝜆 is a vector of tuning
parameter that can be determined by a search on an appro-
priate grid. Each penalized regression requires the estimation
of 𝜆, and 100 grid points of 𝜆 were considered from “glmnet”
function in 𝑅 for all the methods.

2.4.1. Ridge. In linear regression, estimates from least square
method are quite unstable under severe multicollinearity
because of their large variances. Ridge penalty

𝐽
𝜆

(𝑡) = 𝜆𝑡
2 (3)
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was originally developed to stabilize the sample performance
of least square estimates by shrinking their absolute values
toward zero [29]. Ridge penalty controls the amount of
shrinkage effect by choosing the tuning parameter 𝜆, and
the resulting ridge estimates tend to have a smaller variance
than least square estimates. In particular, ridge regression
can be conducted even when 𝑝 is much larger than 𝑛,
where the least square method does not have a model
identifiability. However, ridge estimates have a drawback in
the interpretation of the finalmodel because all the covariates
are included in the final model regardless of the choice of 𝜆.
Hence, ridge regression must be conducted together with an
extra selection process such as stepwise subset selection or
truncation methods.

2.4.2. LASSO. LASSO was proposed by Tibshirani [30] to
achieve both shrinkage and covariate selection via the penalty

𝐽
𝜆

(𝑡) = 𝜆𝑡. (4)

LASSO selects relevant covariates and estimates their coef-
ficients simultaneously by controlling the tuning parameter
𝜆 [30]. LASSO often shows a quite stable performance,
especially when the sample size is small [32, 36], and achieves
higher prediction accuracy than other penalized methods.
LASSO has been applied to various statistical models such
as Gaussian graphical models [37] because there are fast and
efficient algorithms that are easily implementable [37–40].
However, several defects of LASSO have been reported in the
literature [36, 41–43]. For example, LASSO tends to overfit,
that is, selecting more covariates than expected [39], and is
known to have a confliction between correct selection and
optimal prediction [38]. To remedy such defects, modified
versions of LASSO [36] were proposed and extended to the
large P and small N problem [44].

2.4.3. Elastic-Net. Elastic-net penalty proposed by Zou and
Hastie [31] is a convex combination of LASSO and ridge
penalty is

𝐽
𝜆

(𝑡) = 𝜆 (𝑎𝑡 + (1 − 𝑎) 𝑡
2

) . (5)

Here we considered 20 equally spaced grid points from
zero to one for 𝑎. Elastic-net has more desirable properties
than LASSO and ridge. For instance, ridge tends to keep all
the covariates in the final model and hence is undesirable
when there are many noncausal variants. In contrast, LASSO
cannot select larger number of covariates than the sample
size and tends to select a single covariate among highly
correlated covariates. However, by choosing appropriate 𝜆
and 𝑎, elastic-net enables us to have balanced estimates,
producing a slightly more complex model than LASSO but
far simpler model than ridge. Also it achieves a grouping
effect [30] on highly correlated covariates. However, elastic-
net shares the disadvantage of LASSO; that is, it often overfits,
which can be resolved by applying a data adaptive weight
vector [45].

2.4.4. SCAD. The SCAD penalty introduced by Fan and Li
[32] is

𝜕𝐽
𝜆

(𝑡)

𝜕𝑡

= min{𝜆, (
𝑎𝜆 − 𝑡)

+

𝑎 − 1

} for some 𝑎 > 2, (6)

and 𝑎 = 50 is used for our own optimization algorithm.
SCADhas several desirable properties over LASSO [32]. First,
SCAD produces the same unbiased estimates as usual nonpe-
nalized estimates of the covariates selected by SCAD. Hence
SCAD can be considered as a stable version of best subset
selection [46], achieving a unique benefit of the unbiased
coefficient estimate [32]. Second, SCAD is known to have
the oracle property [32]; that is, the set of selected covariates
are asymptotically equal to the set of true causal variants.
However, in spite of theoretical optimality of SCAD [47], its
estimates can be poor unless the sample size is large and the
effects of signal covariates are strong. In addition, similarity
between numerically estimated values and theoretical ones
cannot be measured because of the nonconvexity of SCAD
penalty, and the computational cost for SCAD is often much
more expensive than LASSO.

2.4.5. TR. As we mentioned above, ridge cannot be directly
used in identifying important covariates. However, TR [35]
can produce sparse estimates and inherits the same shrinkage
effect as ridge that results in high prediction accuracy in the
presence of multicollinearity [48]. To obtain TR estimates,
we first obtain usual ridge estimates with tuning parameter
𝜆 and then truncate them with truncating level 𝑎. Hence TR
declares the ridge coefficients whose absolute values smaller
than 𝑎 as zero and keeps the other large coefficients intact. An
appropriate choice of truncating level enables us to identify
a correct model while the final estimates still keep the same
shrinkage property as ridge [33–35], and 20 grid points
equally spaced in logarithmic scale from 0.01 to 0.001 were
considered for 𝑎.

3. Results

To see the differences of penalized methods, we calculated
AUCs of those methods on test set and the number of
nonzero coefficients as a function of sample size. Figure 1
shows that relative performance of each method substan-
tially depends on phenotypes, and least AUCs are often
observed for SI, followed by SC. Their least AUCs may be
explained by the relative importance of genetic components
for each phenotype. We calculated the relative proportion of
variances, ℎ2, explained by genotyped variants with GCTA
program [27, 49]. ℎ2 for binary traits was estimated with
all available samples by using default options, and Table 1
shows estimates for ℎ2. In particular, the proportion between
cases and controls for each phenotype is different from
true prevalence, and the ascertainment bias often happens.
However the performance of each method may be related
to unadjusted estimates of ℎ2 and ascertainment bias was
not taken into account. According to Table 1, the genotyped
variants explain around 25% of phenotypic variances for
hypertension and CPD. However the standard error of ℎ2
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Figure 1: Continued.
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Figure 1: AUCs from test set. AUCs for T2D, obesity, hypertension, CPD10, SC, and SI from test set were calculated for different 𝑛 and 𝑝
1

.
TR indicates the truncated ridge.

Table 1: Relative proportion of variance explained by genotyped SNPs.

T2D Obesity Hypertension CPD SI SC
ℎ
2 0.147276 0.14922 0.296246 0.243554 0.052088 1.00𝐸 − 06

𝜎(ℎ
2

) 0.097091 0.10029 0.100675 0.424123 0.080256 0.102595

for CPD10 is large, and genetic components for all smoking-
related phenotypes seem relatively less informative.

Figure 1 shows that AUCs of two nonpenalized methods,
GRS andMultiBLUP, on test set were generally outperformed
by the penalized methods across various levels of 𝑛 and 𝑝

1

.
Both approaches do not consider the joint effects among
multiple causal SNPs. GRS assumes that effect sizes for
causal SNPs are homogeneous and MultiBLUP assumes that
sums of each SNP affect the normal distribution. However,
penalizedmethods estimate individual effects of each SNP by
shrinking each coefficient. This may explain the superiority
of penalized methods over nonpenalized methods, but if
those assumptions for nonpenalized methods are satisfied,
theymay performbetter than penalizedmethods approaches.
Interestingly MultiBLUP performs better than GRS except
OB if 𝑛 is larger, and AUC improvement of MultiBLUP for
larger 𝑛 is more substantial than GRS.Therefore, MultiBLUP
seems to be more reasonable choice than GRS. Comparing
overall performances of penalized methods, it can be seen
that ridge and TR are the best, LASSO and elastic-net are the
second, and SCAD is the last even though the performance
of each method depends on specific diseases and the levels
of 𝑛 and 𝑝

1

. Regardless of 𝑛 and 𝑝
1

, ridge was the best
performer even for small 𝑛 for all phenotypes except SI. For
SI, it seems that the performance of ridge depends on 𝑛

rather than 𝑝
1

. TR virtually has almost the same prediction
accuracy, and Figure 2 shows that its model complexity is
similar with ridge for CPD, obesity, hypertension, and T2D.
This observation is also strengthened by the fact that the
optimal value of truncation parameter, 𝑎, is around 0.001, and
thus the effect of truncation parameter on model complexity
is almost negligible for these data sets. However, Figure 1
shows that differences between ridge and TR are substantial
for SC and SI. AUCs of TRdependon𝑝

1

and, in particular, are
large even when 𝑛 is small, which indicates that AUCs of TR

depend less on 𝑛 than ridge. Robustness of TR can be partially
explained by smallermodel complexity than ridge in Figure 2.
For instance, TR usually selects quite small number of SNPs
(at most 15.3 SNPs for 𝑛 ≤ 800 and 46.6 SNPs for 𝑝

1

≤ 800)
but achieves higher prediction accuracy than ridge when 𝑛 is
less than 800. However, when 𝑝

1

= 𝑛 = 1600, TR selects the
same number of SNPs as ridge.Thus, we can conclude that the
effect of truncation parameter diminishes for large 𝑛, which
explains higher prediction accuracy when 𝑛 is small.

LASSO and elastic-net show relatively large dependency
on 𝑛 and 𝑝

1

in prediction accuracy andmodel complexity for
whole phenotypes except SI, and their AUCs are proportion-
ally related to 𝑛 but inversely related to 𝑝

1

. Although their
prediction accuracies are lower than those of ridge and TR
for small 𝑛, they perform as well as ridge with small numbers
of SNPs for large 𝑛. For instance, LASSO includes about 100
SNPs for 𝑛 = 1600 and 𝑝

1

= 200 and about 500 SNPs
for 𝑛 = 1600 and 𝑝

1

= 1600, which indicates that we can
construct prediction models without using the whole SNPs.
Elastic-net tends to behave quite similarly as LASSO and it
selects slightly larger number of SNPs for whole phenotypes
except SI.

In terms of model complexity, there are substantial
differences among penalized methods. Figure 2 show that
SCAD selects the smallest number of covariates, while other
methods such as LASSO and elastic-net usually include
much more covariates. Ridge always includes all covariates,
and model complexity for TR depends on data. However,
even though SCAD generates the simplest model, SCAD is
less preferable if it achieves the least performance among
penalized regressions. For 𝑛 = 1600, SCAD performs as well
as other methods while still keeping small number of SNPs.
For instance, for obesity, AUCs of SCAD are virtually the best
and select extremely sparse models that have only 7.3 and 3.4
SNPs for 𝑝

1

= 200 and 𝑝
1

= 1600, respectively. Therefore, we
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Figure 2: Number of nonzero 𝑝
1

in the disease risk prediction model. Numbers of nonzero coefficients of SNPs in disease risk prediction
model were provided for different 𝑛 and 𝑝

1

. TR indicates the truncated ridge.

can conclude that SCAD is appropriate as long as relatively
large number of individuals is available.

4. Discussion

In this study we have considered five penalized and two non-
penalized statistical methods with six case-control datasets
that are computationally feasible at the genome-wide scale.
Each method was utilized to build the disease risk prediction
model with different sample sizes and numbers of variants,
and the accuracy of disease risk prediction models was
evaluated with cross validation. Cross validation tends to
overestimate the prediction accuracy, and results should be
interpreted with care. A more reliable but time-consuming
way is to compare the methods on random partitions of data.
However cross validation does not have a strong preference
towards a specific method and it may give us a rough idea on
prediction accuracies of methods. According to our results,
dense methods such as ridge and TR are usually more
accurate than sparse methods such as LASSO and SCAD.
For a large sample size, prediction accuracies from penalized
methods are expected to be similar to that from ridge [23, 35,
50].

However, in spite of our comprehensive evaluations,
various factors such as filtering conditions for SNPs or indi-
viduals, test statistic for prescreening, and ways of obtaining
tuning parameters can affect the accuracy of the final risk
prediction model, and depending on their choices, accuracy
of disease risk predictionmodel can be substantially different.
In this context, the 1-standard deviation rule [14] for tuning
parameters was adopted to reduce overfitting problem. How-
ever, it did not provide any significant improvement in the
results, which may indicate that there may be many causal
genetic variants with small effects in the analyzed data sets.
This consistently explains the reason why dense methods
outperformed sparse methods such as LASSO and SCAD in
our analysis. Moreover, while the results from SCAD were
quite unstable for 𝑎 = 10, the choice of 𝑎 = 50 led to the
better prediction accuracy. These findings suggest that most
of SNPs have a small causal effect on diseases considered in
this report. In this sense, sparse methods such as SCAD may

not be preferred for infinitesimalmodel [51] unless the sample
size is sufficiently large.

In this report we have compared various penalized regres-
sion methods. However, we have not considered more recent
methods such as bootstrapping methods [33, 52, 53]. Most
of them usually suffer from intensive computational burden
induced by tuning extra parameters such as bootstrap size,
and thus they are not computationally feasible at genome-
wide scale. Alternatively, in the follow-up studies, we pursue
the direction of refining the penalized methods considered
in this report because there is still a significant room for
improvement.
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