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We study some properties of umbral calculus related to the Appell sequence. From those properties, we derive new and interesting
identities of the Frobenius-Euler polynomials.

1. Introduction

Let C be the complex number field. For 𝜆 ∈ C with 𝜆 ̸= 1, the
Frobenius-Euler polynomials are defined by the generating
function to be

1 − 𝜆

𝑒𝑡 − 𝜆
𝑒
𝑥𝑡

= 𝑒
𝐻(𝑥|𝜆)𝑡

=

∞

∑

𝑛=0

𝐻
𝑛
(𝑥 | 𝜆)

𝑡
𝑛

𝑛!
, (1)

(see [1–5]) with the usual convention about replacing𝐻𝑛(𝑥 |

𝜆) by𝐻
𝑛
(𝑥 | 𝜆).

In the special case, 𝑥 = 0, 𝐻
𝑛
(0 | 𝜆) = 𝐻

𝑛
(𝜆) are called

the 𝑛th Frobenius-Euler numbers. By (1), we get

𝐻
𝑛
(𝑥 | 𝜆) =

𝑛

∑

𝑙=0

(
𝑛

𝑙
)𝐻
𝑛−𝑙

(𝜆) 𝑥
𝑙
= (𝐻 (𝜆) + 𝑥)

𝑛
, (2)

(see [6–9]) with the usual convention about replacing𝐻𝑛(𝜆)
by𝐻
𝑛
(𝜆).

Thus, from (1) and (2), we note that

(𝐻 (𝜆) + 1)
𝑛
− 𝜆𝐻
𝑛
(𝜆) = (1 − 𝜆) 𝛿

0,𝑛
, (3)

where 𝛿
𝑛,𝑘

is the kronecker symbol (see [1, 10, 11]).

For 𝑟 ∈ Z
+
, the Frobenius-Euler polynomials of order 𝑟

are defined by the generating function to be

(
1 − 𝜆

𝑒𝑡 − 𝜆
)

𝑟

𝑒
𝑥𝑡

= (
1 − 𝜆

𝑒𝑡 − 𝜆
) × ⋅ ⋅ ⋅ × (

1 − 𝜆

𝑒𝑡 − 𝜆
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒
𝑥𝑡

𝑟-times

=

∞

∑

𝑛=0

𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)

𝑡
𝑛

𝑛!
.

(4)

In the special case, 𝑥 = 0, 𝐻
(𝑟)

𝑛
(0 | 𝜆) = 𝐻

(𝑟)

𝑛
(𝜆) are called the

𝑛th Frobenius-Euler numbers of order 𝑟 (see [1, 10]).
From (4), we can derive the following equation:

𝐻
(𝑟)

𝑛
(𝑥 | 𝜆) =

𝑛

∑

𝑙=0

(
𝑛

𝑙
)𝐻
(𝑟)

𝑛−𝑙
(𝜆) 𝑥
𝑙
,

𝐻
(𝑟)

𝑛
(𝜆) = ∑

𝑙
1
+⋅⋅⋅+𝑙
𝑟
=𝑛

(
𝑛

𝑙
1
, . . . , 𝑙
𝑟

)𝐻
𝑙
1
(𝜆) ⋅ ⋅ ⋅ 𝐻

𝑙
𝑟
(𝜆) .

(5)

By (5), we see that𝐻(𝑟)
𝑛
(𝑥 | 𝜆) is amonic polynomial of degree

𝑛 with coefficients inQ(𝜆).
Let P be the algebra of polynomials in the single variable

𝑥 overC and letP∗ be the vector space of all linear functionals
on P. As is known, ⟨𝐿 | 𝑝(𝑥)⟩ denotes the action of the
linear functional 𝐿 on a polynomial 𝑝(𝑥) and we remind that
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the addition and scalar multiplication onP∗ are, respectively,
defined by

⟨𝐿 +𝑀 | 𝑝 (𝑥)⟩ = ⟨𝐿 | 𝑝 (𝑥)⟩ + ⟨𝑀 | 𝑝 (𝑥)⟩,

⟨𝑐𝐿 | 𝑝 (𝑥)⟩ = 𝑐⟨𝐿 | 𝑝 (𝑥)⟩,

(6)

where 𝑐 is a complex constant (see [3, 12]).
Let F denote the algebra of formal power series:

F = {𝑓 (𝑡) =

∞

∑

𝑘=0

𝑎
𝑘

𝑘!
𝑡
𝑘
| 𝑎
𝑘
∈ C} (7)

(see [3, 12]).The formal power series define a linear functional
on P by setting

⟨𝑓 (𝑡) | 𝑥
𝑛
⟩ = 𝑎
𝑛
, ∀𝑛 ≥ 0. (8)

Indeed, by (7) and (8), we get

⟨𝑡
𝑘
| 𝑥
𝑛
⟩ = 𝑛!𝛿

𝑛,𝑘
(𝑛, 𝑘 ≥ 0) (9)

(see [3, 12]). This kind of algebra is called an umbral algebra.
The order 𝑂(𝑓(𝑡)) of a nonzero power series 𝑓(𝑡) is the

smallest integer 𝑘 for which the coefficient of 𝑡𝑘 does not
vanish. A series 𝑓(𝑡) for which 𝑂(𝑓(𝑡)) = 1 is said to be an
invertible series (see [2, 12]). For𝑓(𝑡), 𝑔(𝑡) ∈ F, and 𝑝(𝑥) ∈ P,
we have

⟨𝑓 (𝑡) 𝑔 (𝑡) | 𝑝 (𝑥)⟩ = ⟨𝑓 (𝑡) | 𝑔 (𝑡) 𝑝 (𝑥)⟩

= ⟨𝑔 (𝑡) | 𝑓 (𝑡) 𝑝 (𝑥)⟩

(10)

(see [12]). One should keep in mind that each 𝑓(𝑡) ∈ F plays
three roles in the umbral calculus: a formal power series, a
linear functional, and a linear operator. To illustrate this, let
𝑝(𝑥) ∈ P and 𝑓(𝑡) = 𝑒

𝑦𝑡
∈ F. As a linear functional, 𝑒𝑦𝑡

satisfies ⟨𝑒𝑦𝑡 | 𝑝(𝑥)⟩ = 𝑝(𝑦). As a linear operator, 𝑒𝑦𝑡 satisfies
𝑒
𝑦𝑡
𝑝(𝑥) = 𝑝(𝑥 + 𝑦) (see [12]). Let 𝑠

𝑛
(𝑥) denote a polynomial

in 𝑥 with degree 𝑛. Let us assume that 𝑓(𝑡) is a delta series
and 𝑔(𝑡) is an invertible series. Then there exists a unique
sequence 𝑠

𝑛
(𝑥) of polynomials such that ⟨𝑔(𝑡)𝑓(𝑡)𝑘 | 𝑠

𝑛
(𝑥)⟩ =

𝑛!𝛿
𝑛,𝑘

for all 𝑛, 𝑘 ≥ 0 (see [3, 12]). This sequence 𝑠
𝑛
(𝑥) is

called the Sheffer sequence for (𝑔(𝑡), 𝑓(𝑡)) which is denoted
by 𝑠
𝑛
(𝑥) ∼ (𝑔(𝑡), 𝑓(𝑡)). If 𝑠

𝑛
(𝑥) ∼ (1, 𝑓(𝑡)), then 𝑠

𝑛
(𝑥) is called

the associated sequence for 𝑓(𝑡). If 𝑠
𝑛
(𝑥) ∼ (𝑔(𝑡), 𝑡), then

𝑠
𝑛
(𝑥) is called the Appell sequence.
Let 𝑠
𝑛
(𝑥) ∼ (𝑔(𝑡), 𝑓(𝑡)). Then we see that

ℎ (𝑡) =

∞

∑

𝑘=0

⟨ℎ (𝑡) | 𝑠
𝑘
(𝑥)⟩

𝑘!
𝑔 (𝑡) 𝑓(𝑡)

𝑘
, ℎ (𝑡) ∈ F,

𝑝 (𝑥) =

∞

∑

𝑘=0

⟨𝑔 (𝑡) 𝑓(𝑡)
𝑘
| 𝑝 (𝑥)⟩

𝑘!
𝑠
𝑘
(𝑥) , 𝑝 (𝑥) ∈ P,

𝑓 (𝑡) 𝑠
𝑛
(𝑥) = 𝑛𝑠

𝑛−1
(𝑥) ,

⟨𝑓 (𝑡) | 𝑝 (𝛼𝑥)⟩ = ⟨𝑓 (𝛼𝑡 | 𝑝 (𝑥)⟩ ,

(11)

1

𝑔 (𝑓 (𝑡))
𝑒
𝑦𝑓(𝑡)

=

∞

∑

𝑘=0

𝑠
𝑘
(𝑦)

𝑘!
𝑡
𝑘
, ∀𝑦 ∈ C, (12)

where 𝑓(𝑡) is the compositional inverse of 𝑓(𝑡) (see [3]).
In this paper, we study some properties of umbral calculus
related to the Appell sequence. For those properties, we
derive new and interesting identities of the Frobenius-Euler
polynomials.

2. The Frobenius-Euler Polynomials and
Umbral Calculus

By (4) and (12), we see that

𝐻
(𝑟)

𝑛
(𝑥 | 𝜆) ∼ ((

𝑒
𝑡
− 𝜆

1 − 𝜆
)

𝑟

, 𝑡) . (13)

Thus, by (13), we get

⟨(
𝑒
𝑡
− 𝜆

1 − 𝜆
)

𝑟

𝑡
𝑘
| 𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)⟩ = 𝑛!𝛿

𝑛,𝑘
. (14)

Let

P
𝑛
(𝜆) = {𝑝 (𝑥) ∈ Q (𝜆) [𝑥] | deg𝑝 (𝑥) ≤ 𝑛} . (15)

Then it is an (𝑛 + 1)-dimensional vector space overQ(𝜆).
So we see that {𝐻(𝑟)

0
(𝑥 | 𝜆),𝐻

(𝑟)

1
(𝑥 | 𝜆), . . . , 𝐻

(𝑟)

𝑛
(𝑥 | 𝜆)} is

a basis for P
𝑛
(𝜆). For 𝑝(𝑥) ∈ P

𝑛
(𝜆), let

𝑝 (𝑥) =

𝑛

∑

𝑘=0

𝐶
𝑘
𝐻
(𝑟)

𝑘
(𝑥 | 𝜆) , (𝑛 ≥ 0) . (16)

Then, by (13), (14), and (16), we get

⟨(
𝑒
𝑡
− 𝜆

1 − 𝜆
)

𝑟

𝑡
𝑘
| 𝑝 (𝑥)⟩

=

𝑛

∑

𝑙=0

𝐶
𝑙
⟨(

𝑒
𝑡
− 𝜆

1 − 𝜆
)

𝑟

𝑡
𝑘
| 𝐻
(𝑟)

𝑙
(𝑥 | 𝜆)⟩

=

𝑛

∑

𝑙=0

𝐶
𝑙
𝑙!𝛿
𝑙,𝑘

= 𝑘!𝐶
𝑘
.

(17)

From (17), we have

𝐶
𝑘
=

1

𝑘!
⟨(

𝑒
𝑡
− 𝜆

1 − 𝜆
)

𝑟

𝑡
𝑘
| 𝑝 (𝑥)⟩

=
1

𝑘!
⟨(

𝑒
𝑡
− 𝜆

1 − 𝜆
)

𝑟

| 𝐷
𝑘
𝑝 (𝑥)⟩

=
1

𝑘!(1 − 𝜆)
𝑟

𝑟

∑

𝑗=0

(
𝑟

𝑗
) (−𝜆)

𝑟−𝑗
⟨𝑒
𝑗𝑡
| 𝐷
𝑘
𝑝 (𝑥)⟩

=
1

𝑘!(1 − 𝜆)
𝑟

𝑟

∑

𝑗=0

(
𝑟

𝑗
) (−𝜆)

𝑟−𝑗
⟨𝑡
0
| 𝑒
𝑗𝑡
𝐷
𝑘
𝑝 (𝑥)⟩

=
1

𝑘!(1 − 𝜆)
𝑟

𝑟

∑

𝑗=0

(
𝑟

𝑗
) (−𝜆)

𝑟−𝑗
⟨𝑡
0
| 𝐷
𝑘
𝑝 (𝑥 + 𝑗)⟩ .

(18)

Therefore, by (16) and (18), we obtain the following theorem.
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Theorem 1. For 𝑝(𝑥) ∈ P
𝑛
(𝜆), let

𝑝 (𝑥) =

𝑛

∑

𝑘=0

𝐶
𝑘
𝐻
(𝑟)

𝑘
(𝑥) . (19)

Then one has

𝐶
𝑘
=

1

𝑘!(1 − 𝜆)
𝑟

𝑟

∑

𝑗=0

(
𝑟

𝑗
) (−𝜆)

𝑟−𝑗
𝐷
𝑘
𝑝 (𝑗) , (20)

where𝐷𝑝(𝑥) = 𝑑𝑝(𝑥)/𝑑𝑥.

FromTheorem 1, we note that

𝑝 (𝑥) =
1

(1 − 𝜆)
𝑟

⋅

𝑛

∑

𝑘=0

{

{

{

𝑟

∑

𝑗=0

1

𝑘!
(
𝑟

𝑗
) (−𝜆)

𝑟−𝑗
𝐷
𝑘
𝑝 (𝑗)

}

}

}

𝐻
(𝑟)

𝑘
(𝑥 | 𝜆) .

(21)

Let us consider the operator Δ̃
𝜆
with Δ̃

𝜆
𝑓(𝑥) = 𝑓(𝑥 + 1) −

𝜆𝑓(𝑥) and let 𝐽
𝜆
= (1/(1 − 𝜆))Δ̃

𝜆
. Then we have

𝐽
𝜆
(𝑓) (𝑥) =

1

1 − 𝜆
{𝑓 (𝑥 + 1) − 𝜆𝑓 (𝑥)} . (22)

Thus, by (22), we get

𝐽
𝜆
(𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)) =

1

1 − 𝜆
{𝐻
(𝑟)

𝑛
(𝑥 + 1 | 𝜆) − 𝜆𝐻

(𝑟)

𝑛
(𝑥 | 𝜆)} .

(23)

From (4), we can derive
∞

∑

𝑛=0

{𝐻
(𝑟)

𝑛
(𝑥 + 1 | 𝜆) − 𝜆𝐻

(𝑟)

𝑛
(𝑥 | 𝜆)}

𝑡
𝑛

𝑛!

= (
1 − 𝜆

𝑒𝑡 − 𝜆
)

𝑟

𝑒
(𝑥+1)𝑡

− 𝜆(
1 − 𝜆

𝑒𝑡 − 𝜆
)

𝑟

𝑒
𝑥𝑡

= (
1 − 𝜆

𝑒𝑡 − 𝜆
)

𝑟

𝑒
𝑥𝑡
(𝑒
𝑡
− 𝜆) = (1 − 𝜆) (

1 − 𝜆

𝑒𝑡 − 𝜆
)

𝑟−1

𝑒
𝑥𝑡

= (1 − 𝜆)

∞

∑

𝑛=0

𝐻
(𝑟−1)

𝑛
(𝑥 | 𝜆)

𝑡
𝑛

𝑛!
.

(24)

By (23) and (24), we get

𝐽
𝜆
(𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)) = 𝐻

(𝑟−1)

𝑛
(𝑥 | 𝜆) . (25)

From (25), we have

𝐽
𝑟

𝜆
(𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)) = 𝐽

𝑟−1

𝜆
(𝐻
(𝑟−1)

𝑛
(𝑥 | 𝜆))

= ⋅ ⋅ ⋅ = 𝐻
(0)

𝑛
(𝑥 | 𝜆) = 𝑥

𝑛
,

𝐽
𝑟

𝜆
(𝑥
𝑛
) = 𝐽
𝑟

𝜆
𝐻
(0)

𝑛
(𝑥 | 𝜆) = 𝐻

(−𝑟)

𝑛
(𝑥 | 𝜆) = 𝐽

2𝑟

𝜆
𝐻
(𝑟)

𝑛
(𝑥 | 𝜆) .

(26)

For 𝑠 ∈ Z
+
, from (25), we have

𝐽
𝑠

𝜆
(𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)) = 𝐻

(𝑟−𝑠)

𝑛
(𝑥 | 𝜆) . (27)

On the other hand, by (12), (13), and (25),

𝐽
𝑠

𝜆
(𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)) = (

𝑒
𝑡
− 𝜆

1 − 𝜆
)

𝑠

(𝐻
(𝑟)

𝑛
(𝑥 | 𝜆))

=
1

(1 − 𝜆)
𝑠
((1 − 𝜆) +

∞

∑

𝑘=1

𝑡
𝑘

𝑘!
)

𝑠

⋅ (𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)) .

(28)

Thus, by (28), we get

𝐽
𝑠

𝜆
(𝐻
(𝑟)

𝑛
(𝑥 | 𝜆))

=

𝑠

∑

𝑚=0

(
𝑠

𝑚 )

(1 − 𝜆)
𝑚

∞

∑

𝑙=𝑚

( ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

1

𝑘
1
! ⋅ ⋅ ⋅ 𝑘
𝑚
!
) 𝑡
𝑙
(𝐻
(𝑟)

𝑛
(𝑥 | 𝜆))

=

𝑠

∑

𝑚=0

(
𝑠

𝑚 )

(1 − 𝜆)
𝑚

∞

∑

𝑙=𝑚

1

𝑙!
( ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)𝐷
𝑙
)

⋅𝐻
(𝑟)

𝑛
(𝑥 | 𝜆)

=

min{𝑠,𝑛}
∑

𝑚=0

(
𝑠

𝑚 )

(1 − 𝜆)
𝑚

𝑛

∑

𝑙=𝑚

(
𝑛

𝑙
) ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

=

min{𝑠,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

(
𝑠

𝑚 )

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

+

𝑛

∑

𝑙=min{𝑠,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{𝑠,𝑛}
∑

𝑚=0

(
𝑠

𝑚 )

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆) .

(29)

Therefore, by (27) and (29), we obtain the following theorem.



4 Abstract and Applied Analysis

Theorem 2. For any 𝑟, 𝑠 ≥ 0, one has

𝐻
(𝑟−𝑠)

𝑛
(𝑥 | 𝜆)

=

min{𝑠,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

(
𝑠

𝑚 )

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

⋅ 𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

+

𝑛

∑

𝑙=min{𝑠,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{𝑠,𝑛}
∑

𝑚=0

(
𝑠

𝑚 )

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆) .

(30)

Let us take 𝑠 = 𝑟−1 (𝑟 ≥ 1) inTheorem 2.Thenwe obtain
the following corollary.

Corollary 3. For 𝑛 ≥ 0, 𝑟 ≥ 1, one has

𝐻
𝑛
(𝑥 | 𝜆)

=

min{𝑟−1,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

( 𝑟−1
𝑚

)

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

⋅ 𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

+

𝑛

∑

𝑙=min{𝑟−1,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{𝑟−1,𝑛}
∑

𝑚=0

( 𝑟−1
𝑚

)

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆) .

(31)

Let us take 𝑠 = 𝑟 (𝑟 ≥ 1) in Theorem 2. Then we obtain
the following corollary.

Corollary 4. For 𝑛 ≥ 0, 𝑟 ≥ 1, one has

𝑥
𝑛
=

min{𝑟,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

(
𝑟

𝑚 )

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

⋅ 𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

+

𝑛

∑

𝑙=min{𝑟,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{𝑟,𝑛}
∑

𝑚=0

(
𝑟

𝑚 )

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆) .

(32)

Now, we define the analogue of Stirling numbers of the
second kind as follows:

𝑆
𝜆
(𝑛, 𝑘) =

1

𝑘!

𝑘

∑

𝑗=0

(
𝑘

𝑗
) (−𝜆)

𝑘−𝑗
𝑗
𝑛
, (𝑛, 𝑘 ≥ 0) . (33)

Note that 𝑆
1
(𝑛, 𝑘) = 𝑆(𝑛, 𝑘) is the Stirling number of the

second kind.
From the definition of Δ̃

𝜆
, we have

Δ̃
𝑛

𝜆
𝑓 (0) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
) (−𝜆)

𝑛−𝑘
𝑓 (𝑘) . (34)

By (33) and (34), we get

𝑆
𝜆
(𝑛, 𝑘) =

1

𝑘!
Δ̃
𝑘

𝜆
0
𝑛
, (𝑛, 𝑘 ≥ 0) . (35)

Let us take 𝑠 = 2𝑟. Then we have

𝐽
𝑟

𝜆
𝑥
𝑛

= 𝐻
(−𝑟)

𝑛
(𝑥 | 𝜆)

=

min{2𝑟,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

( 2𝑟
𝑚
)

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

⋅ 𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

+

𝑛

∑

𝑙=min{2𝑟,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{2𝑟,𝑛}
∑

𝑚=0

( 2𝑟
𝑚
)

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆) ,

𝐽
𝑟

𝜆
𝑥
𝑛
= (

1

1 − 𝜆
Δ̃
𝜆
)

𝑟

𝑥
𝑛

=
1

(1 − 𝜆)
𝑟

𝑟

∑

𝑗=0

(
𝑟

𝑗
) (−𝜆)

𝑟−𝑗
(𝑥 + 𝑗)

𝑛

.

(36)
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By (36), we get

1

(1 − 𝜆)
𝑟

𝑟

∑

𝑗=0

(
𝑟

𝑗
) (−𝜆)

𝑟−𝑗
(𝑥 + 𝑗)

𝑛

=
1

(1 − 𝜆)
𝑟
Δ̃
𝑟

𝜆
𝑥
𝑛

=

min{2𝑟,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

( 2𝑟
𝑚
)

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

⋅ 𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

+

𝑛

∑

𝑙=min{2𝑟,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{2𝑟,𝑛}
∑

𝑚=0

( 2𝑟
𝑚
)

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}}

}}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆) .

(37)

Let us take 𝑥 = 0 in (37). Then we obtain the following
theorem.

Theorem 5. We have
𝑟!

(1 − 𝜆)
𝑟
𝑆
𝜆
(𝑛, 𝑟)

=
𝑟!

(1 − 𝜆)
𝑟

Δ̃
𝑟

𝜆
0
𝑛

𝑟!

=

min{2𝑟,𝑛}
∑

𝑙=0

{{{{{

{{{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

( 2𝑟
𝑚
)

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}}}

}}}}}

}

⋅ 𝐻
(𝑟)

𝑛−𝑙
(𝜆)

+

𝑛

∑

𝑙=min{2𝑟,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{2𝑟,𝑛}
∑

𝑚=0

( 2𝑟
𝑚
)

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝜆)

=

min{𝑟,𝑛}
∑

𝑚=0

(
𝑟

𝑚 )

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑛

𝑘
𝑗
≥1

(
𝑛

𝑘
1
, . . . , 𝑘

𝑚

) .

(38)

Let us consider 𝑠 = 2𝑟 − 1 in the identity of Theorem 2.
Then we have

𝐽
𝑟−1

𝜆
𝑥
𝑛

= 𝐻
−(𝑟−1)

𝑛
(𝑥 | 𝜆)

=

min{2𝑟−1,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

( 2𝑟−1
𝑚

)

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

⋅ 𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

+

𝑛

∑

𝑙=min{2𝑟−1,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{2𝑟−1,𝑛}
∑

𝑚=0

( 2𝑟−1
𝑚

)

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝑥 | 𝜆)

=
1

(1 − 𝜆)
𝑟−1

𝑟−1

∑

𝑗=0

(
𝑟 − 1

𝑗
) (−𝜆)

𝑟−1−𝑗
(𝑥 + 𝑗)

𝑛

=
1

(1 − 𝜆)
𝑟−1

Δ̃
𝑟−1

𝜆
𝑥
𝑛
.

(39)

Let us take 𝑥 = 0 in (39). Then we obtain the following
theorem.

Theorem 6. For 𝑛 ≥ 0 and 𝑟 ≥ 1, one has

(𝑟 − 1)!

(1 − 𝜆)
𝑟−1

𝑆
𝜆
(𝑛, 𝑟 − 1)

=
(𝑟 − 1)!

(1 − 𝜆)
𝑟−1

Δ̃
𝑟−1

𝜆
0
𝑛

(𝑟 − 1)!

=

min{2𝑟−1,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

( 2𝑟−1
𝑚

)

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

⋅ 𝐻
(𝑟)

𝑛−𝑙
(𝜆)

+

𝑛

∑

𝑙=min{2𝑟−1,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{2𝑟−1,𝑛}
∑

𝑚=0

( 2𝑟−1
𝑚

)

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
(𝑟)

𝑛−𝑙
(𝜆) .

(40)



6 Abstract and Applied Analysis

Remark 7. Note that
(𝑟 − 1)!

(1 − 𝜆)
𝑟−1

𝑆
𝜆
(𝑛, 𝑟 − 1)

=

min{𝑟,𝑛}
∑

𝑙=0

{{{

{{{

{

(
𝑛

𝑙
)

𝑙

∑

𝑚=0

(
𝑟

𝑚 )

(1 − 𝜆)
𝑚

∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

⋅ 𝐻
𝑛−𝑙

(𝜆)

+

𝑛

∑

𝑙=min{𝑟,𝑛}+1

{{{

{{{

{

(
𝑛

𝑙
)

min{𝑟,𝑛}
∑

𝑚=0

(
𝑟

𝑚 )

(1 − 𝜆)
𝑚

⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑚
=𝑙

𝑘
𝑗
≥1

(
𝑙

𝑘
1
, . . . , 𝑘

𝑚

)

}}}

}}}

}

𝐻
𝑛−𝑙

(𝜆) .

(41)
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