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Metzler et al. introduced a fractional Fokker-Planck equation (FFPE) describing a subdiffusive behavior of a particle under the
combined influence of external nonlinear force field and a Boltzmann thermal heat bath. In this paper, we present an interval
Shannon wavelet numerical method for the FFPE. In this method, a new concept named “dynamic interval wavelet” is proposed
to solve the problem that the numerical solution of the fractional PDE is usually sensitive to boundary conditions. Comparing
with the traditional wavelet defined in the interval, the Newton interpolator is employed instead of the Lagrange interpolation
operator, so, the extrapolation points in the interval wavelet can be chosen dynamically to restrict the boundary effect without
increase of the calculation amount. In order to avoid unlimited increasing of the extrapolation points, both the error tolerance
and the condition number are taken as indicators for the dynamic choice of the extrapolation points. Then, combining with the
finite difference technology, a new numerical method for the time fractional partial differential equation is constructed. A simple
Fokker-Planck equation is taken as an example to illustrate the effectiveness by comparing with the Grunwald-Letnikov central
difference approximation (GL-CDA).

1. Introduction

Due to the fact that 1/𝑓 signal gains the increasing interests
in the field of biomedical signal processing and engineering
systems [1], the differential equations of fractional order
appear more and more frequently in various research areas
and engineering applications [2, 3]. As a matter of fact,
the applications of fractional differential equations and their
corresponding time series have been developed in various
fields of sciences and technologies [4, 5] in recent years,
ranging from computer science to physics [6, 7]. An effective
and easy-to-usemethod for solving such equations is needed.
However, knownmethods have certain disadvantages. Meth-
ods, described in detail in [3] for fractional differential
equations of rational order, do not work in the case of
arbitrary real order. On the other hand, there is an iteration
method described in [8], which allows solution of fractional
differential equations of arbitrary real order but it works
effectively only for relatively simple equations, in addition
to the series method. Up to now, most studies on the

numerical methods for the fractional PDEs concentrate on
the finite difference methods. Li [9] proposed an analytical
method taking the fractal time series as the solution to
a differential equation of fractional order or a response
of a fractional system or a fractional filter driven with
a white noise in the domain of stochastic processes and
gave the exact solution of impulse response to a class of
fractional oscillators [10]. According to this idea, Li and
his coresearchers solved many problems in science and
technology [11–14]. In addition, Wavelet numerical method
is another way to get the solution of the fractional PDEs. In
fact, the wavelet transform theory has been widely used in
numerical analysis such as PDEs-based image processing [15–
17], option pricing model [18], integrodifferential operators
[19–23], and other nonlinear PDEs [24–28]. The wavelet
functions possess many excellent numerical properties, such
as orthogonality, interpolation, smoothness, and compact
support, which are helpful in improving numerical accuracy
and efficiency. In recent decades, many wavelets which have
compact support, smoothness, and other properties have
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been constructed. Among these wavelets, Shannon wavelet
is paid little attention in applications as it does not possess
compact support property although it possesses orthogo-
nality, smooth continuity, and analytical expression. Cattani
studied the properties of the Shannon wavelet function,
which possesses many advantages such as orthogonality,
continuous and differentiable. It also has the advantage over
the Hermite DAF in that it is an interpolating function,
producing matrix equations that have the potential to be
relatively sparse. In addition, the second order approximation
of a C2-function, based on Shannon wavelet functions, is
given [29]. The approximation is compared with the wavelet
reconstruction formula and the error of approximation is
explicitly computed [30].

Aperceived disadvantage of the Shannon scaling function
is that it tends to zero quite slowly as |𝑥| → ∞. A direct
consequence of this is that when calculating the derivatives, a
large number of the nodal values will contribute significantly.
It is for this reason that Hoffman et al. [31] have suggested
using the Shannon-Gabor wavelet, which introduces the
Gaussian window function to improve the compact support
property of Shannon wavelet function in required preci-
sion range. However, the presence of the Gaussian window
destroys the orthogonal properties possessed by the Shannon
wavelet, effectively worsening the approximation to a Dirac
delta function.

Comparing with the common PDEs, the solutions of
the fractional PDEs are more sensitive to the boundary
condition. Using the wavelet transform defined in infinite
domain to solve the engineering problems in finite interval,
the wavelet transform coefficients at the boundary are usually
very large. It will bring server boundary effect which affects
the calculation accuracy and efficiency. Vasilyev and Paolucci
[32] construct an interval wavelet using external wavelets,
which can decrease the boundary effect to some extent.
Based on the same principle, a more general construction
method for the interval interpolation wavelet [33, 34] was
given in the framework of generalized variational principle
and has been widely used in many areas [35–37]. But the
choice of parameter 𝐿 (that is the amount of the external
collocation points) was not discussed in detail. It just points
out that the value of 𝐿 should be taken between 1 and 3
based on experience. In fact, the value of 𝐿 depends on the
smoothness and derivative of the approximated function at
boundary points. That is, if the approximated function is
the solution of the diffusion PDEs with respect to the time
parameter, the value of 𝐿 should be taken dynamically. In
addition, we should take into account that the impact of
the external collocation points to the condition number of
the system of the discretized algebraic equations. So, it is
necessary to construct a dynamic interval wavelet in solving
the PDEs with dynamic boundary conditions such as the
fractional PDEs.

In this paper, a dynamic interval Shannon wavelet col-
location method for the fractional FPDs is proposed. In
this method, the relation between the parameter 𝐿 and the
wavelet approximation error was discussed based on the
interpolation error theory, and an adaptive choice procedure

on 𝐿 was constructed. Therefore, the so-called dynamic
interval Shannon wavelet is constructed. Next, based on the
Grünwald-Letnikov definition of the fractional order deriva-
tive, we construct a Shannon wavelet numerical method for
the fraction Fokker-Planck equation.

2. Fractional Fokker-Planck Equation

The fractional Fokker-Planck equation has been used in
many physical transport problemswhich take place under the
influence of an external force field [2, 38].

In the presence of an external force field 𝐹(𝑥) = −]󸀠(𝑥),
the evolution of a test particle is usually described in terms of
the Fokker-Planck equation (FPE)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=
0
𝐷1−𝛼
𝑡

[
𝜕

𝜕𝑥

]󸀠 (𝑥)

𝑚𝜂
𝛼

+ 𝐾
𝛼

𝜕2

𝜕𝑥2
] 𝑢 (𝑥, 𝑡) ,

𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇,

(1)

which defines the probability 𝑢(𝑥, 𝑡) of finding the particle at
a certain position 𝑥 at a given time 𝑡. 𝑚 denotes the mass of
the diffusing particle, 𝐾

𝛼
> 0 denotes the generalized diffu-

sion coefficient with dimension [𝐾
𝛼
] = cm2sec−𝛼, and 𝜂

𝛼
is

the generalized friction coefficient with dimension [𝜂
𝛼
] =

sec𝛼−2. The corresponding initial condition is

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, (2)

and the boundary conditions are

𝑢 (𝑎, 𝑡) = 𝑝
1
(𝑡) , 𝑢 (𝑏, 𝑡) = 𝑝

2
(𝑡) , 0 < 𝑡 ≤ 𝑇. (3)

Equation (1) uses the Riemann-Liouville fractional derivative
of order 1 − 𝛼, defined by

0
𝐷1−𝛼
𝑡

𝑢 (𝑥, 𝑡) =
1

Γ (𝛼)

𝜕

𝜕𝑡
∫
1

0

𝑢 (𝑥, 𝜂)

(𝑡 − 𝜂)
1−𝛼

𝑑𝜂,

0 ≤ 𝛼 < 1,

(4)

where Γ(𝛼) is the gamma function.
According to the properties of the Riemann-Liouville

fractional derivative, it is easy to know that, if (𝑥, 𝑡) ∈

𝐶2,1
𝑥,𝑡
([𝑎, 𝑏] × [0, 𝑇]), (1) can be rewritten as follows:

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡) −

𝑢 (𝑥, 0) 𝑡−𝛼

Γ (1 − 𝛼)
= [

𝜕

𝜕𝑥

]󸀠 (𝑥)

𝑚𝜂
𝛼

+ 𝐾
𝛼

𝜕2

𝜕𝑥2
] 𝑢 (𝑥, 𝑡) ,

𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇.

(5)

Metzler et al. [2] proposed three implicit approximations for
solving (5) as follows.
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(1)TheGrünwald-Letnikov expansion and the backward
Euler implicit approximation (GL-BDIA)
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∑
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,

(6)

where ℎ = (𝑏 − 𝑎)/𝑀, 𝜏 = 𝑇/𝑁, 𝑥
𝑖
= 𝑎 + 𝑖ℎ, and

𝑡
𝑛
= 𝑛𝜏. 𝑀 and 𝑁 are positive integers.The local truncation

error is 𝑂(𝜏 + ℎ).
(2) 𝐿
1
-approximation and the central difference implicit

approximation (𝐿
1
-CDIA)
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)
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.

(7)

The local truncation error is 𝑂(𝜏2−𝛼 + ℎ2).
(3) 𝐿
1
-approximation and the backward difference im-

plicit approximation (𝐿
1
-BDIA)
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The local truncation error is 𝑂(𝜏2−𝛼 + ℎ).
In fact, (6)–(2) are not perfect approximation as the

boundary effect is not taken into account. So, it will introduce
boundary effect in solving the PDEs with the Nuemann
boundary conditions. It is well known that the finite dif-
ference method is equivalent to the Faber-Schauder wavelet
collocation method, so the construction method of the
dynamic interval wavelet introduced in this paper can also
be used to deal with the boundary problem in the finite
difference method.

According to the Shannon sample theory, it can improve
the calculation precision that combining the Grünwald-
Letnikov expansion or 𝐿

1
-approximation of the fractional

derivative in (5) with the Shannon scaling function as the
weight function instead of the various difference operators as
follows:
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𝑖 = 1, 2, . . . , 2𝐽, consider 𝐽 is the positive integer.
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(9)

3. Construction of the Interval
Interpolation Wavelet

3.1. Shannon Wavelet and Shannon-Gabor Wavelet. The rep-
resentation of Shannon wavelet is based upon approximating
the Dirac delta function as a band-limited function and is
given by

𝜙 (𝑥) =
sin (𝜋𝑥)
𝜋𝑥

(10)

and the Shannon-Gabor scaling function is defined as [17]

𝐺 (𝑥) =
sin (𝜋𝑥)
𝜋𝑥

exp(− 𝑥2

2𝜎2
) , 𝜎 > 0, (11)

where 𝜎 is the window size.
Consider a one-dimensional function 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏]. A

discrete point sequence of the variable 𝑥 is defined as
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𝑥
𝑛
= 𝑎 +

𝑏 − 𝑎

2𝑗
⋅ 𝑛, 𝑗 ∈ Z, 𝑛 = 0, 1, 2, . . . , 2𝑗, (12)

and the corresponding discrete point sequence of the scaling
function 𝜙(𝑥) and 𝐺(𝑥) can be defined, respectively, as

𝜙
𝑗,𝑛
(𝑥) = 𝜙

𝑗
(𝑥 − 𝑥

𝑛
) =
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𝑛
)

(2𝑗𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥
𝑛
)

× exp(−
22
𝑗
−1(𝑥 − 𝑥

𝑛
)
2

𝑟2(𝑏 − 𝑎)2
) ,

(13)

where 𝑟 = 2𝑗𝜎/(𝑏 − 𝑎).

The first and second order derivatives of 𝜙
𝑗
(𝑥−𝑥

𝑛
) at the

discrete point 𝑥
𝑘
are

𝜙󸀠
𝑗
(𝑥
𝑘
− 𝑥
𝑛
) =
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𝑘
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−
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2
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2
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And the first and second order derivatives of 𝐺
𝑗
(𝑥−𝑥
𝑛
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the discrete point 𝑥
𝑘
are
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𝑗
(𝑥
𝑘
− 𝑥
𝑛
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𝑘
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−
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1
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+
1
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] , 𝑘 ̸= 𝑛.

(15)

In fact, there is no difference between the construction
method of the Interval Shannon wavelet and the inter-
val Shannon-Gabor wavelet. So, we just take one uniform
symbol 𝑤(𝑥) as the representation of the Shannon wavelet
and the Shannon-Gabor wavelet in the following.

3.2. Interval Interpolation Wavelet. According to the defini-
tion of the interval wavelet, the interval interpolation basis
functions can be expressed as:

𝑤
𝑗𝑘
(𝑥) =

{{{{{{{{
{{{{{{{{
{
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∑
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𝑎
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𝜙 (2𝑗𝑥 − 𝑛) , 𝑘 = 0, . . . , 𝐿

𝜙 (2𝑗𝑥 − 𝑘) , 𝑘 = 𝐿 + 1, . . . , 2𝑗 − 𝐿 − 1

𝜙 (2𝑗𝑥 − 𝑘) +
2
𝑗
+𝐿−1

∑
𝑛=2
𝑗
+1

𝑏
𝑛𝑘
𝜙 (2𝑗𝑥 − 𝑛) , 𝑘 = 2𝑗 − 𝐿, . . . , 2𝑗,

(16)

where,

𝑎nk =
−1

∏
𝑖=𝐿−1, 𝑖 ̸= 𝑘

𝑥
𝑗,𝑛
− 𝑥
𝑗,𝑖

𝑥
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− 𝑥
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𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
= 𝑘

𝑥max − 𝑥min
2𝑗

, 𝑘 ∈ Z,

(17)

where 𝐿 is the amount of the external collocation points, the
amount of discrete points in the definition domain is 2𝑗 +
1 (𝑗 ∈ Z), and [𝑥min, 𝑥max] is the definition domain of the
approximated function.

Equations (16) and (17) show that the interval wavelet
is derived from the domain extension. The supplementary
discrete points in the extended domain are called external
points.The value of the approximated function at the external
points can be obtained by Lagrange extrapolation method.
Using the interval wavelet to approximate a function, the
boundary effect can be left in the supplementary domain;
that is, the boundary effect is eliminated in the definition
domain.

According to (16) and (17), the interval wavelet approxi-
mant of the function 𝑓(𝑥) 𝑥 ∈ [𝑥min, 𝑥max] can be expressed
as
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𝑓
𝑗
(𝑥) = ∑𝑓

𝑗
(𝑥
𝑛
) 𝑤
𝑗
(2𝑗𝑥 − 𝑛) ,

𝑥
𝑛
= 𝑥min + 𝑛

𝑥max − 𝑥min
2𝑗

.
(18)

𝑓
𝑗
(𝑥
𝑛
) is the given value at the discrete point 𝑥

𝑛
. At the

external points, 𝑓
𝑗
(𝑥
𝑛
) can be obtained by extrapolation; that

is

𝑓
𝑗
(𝑥
𝑛
) =

{{{{{{
{{{{{{
{

𝐿−1

∑
𝑘=0

(𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0,𝑖 ̸= 𝑘

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

) , 𝑛 = −1, . . . , −𝐿

2
𝑗

∑
𝑘=2
𝑗
−𝐿+1

(𝑓
𝑗
(𝑥
𝑘
)

2
𝑗

∏

𝑖=2
𝑗
−𝐿+1,𝑘 ̸= 𝑖

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

) , 𝑛 = 2𝑗 + 1, . . . , 2𝑗 + 𝐿.

(19)

So the interval wavelet approximant of 𝑓(𝑥) can be rewritten
as

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

(
𝐿−1

∑
𝑘=0

𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

)𝜔(2𝑗𝑥 − 𝑛)

+
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2𝑗𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑
𝑛=2
𝑗
+1

(
2
𝑗

∑
𝑘=2
𝑗
−𝐿

𝑓
𝑗
(𝑥
𝑘
)
2
𝑗

∏
𝑖=2
𝑗
−𝐿

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

)𝜔(2𝑗𝑥 − 𝑛) .

(20)

Let

𝐿𝑆
𝐿
(𝑥
𝑛
) =
𝐿−1

∑
𝑘=0

𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

,

𝐿𝐸
𝐿
(𝑥
𝑛
) =

2
𝑗

∑
𝑘=2
𝑗
−𝐿

𝑓
𝑗
(𝑥
𝑘
)
2
𝑗

∏
𝑖=2
𝑗
−𝐿

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

,

(21)

then

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

𝐿𝑆
𝐿
(𝑥
𝑛
) 𝜔 (2𝑗𝑥 − 𝑛)

+
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2𝑗𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑
𝑛=2
𝑗
+1

𝐿𝐸
𝐿
(𝑥
𝑛
) 𝜔 (2𝑗𝑥 − 𝑛) .

(22)

𝐿𝑆
𝐿
(𝑥
𝑛
) and 𝐿𝐸

𝐿
(𝑥
𝑛
) correspond to the left and the right

external points, respectively. They are obtained by Lagrange
extrapolation using the internal collocation points near
the boundary. So, the interval wavelet’s influence on the
boundary effect can be attributed to Lagrange extrapolation.
It should be pointed out that we did not care about the
reliability of the extrapolation. The only function of the
extrapolation is enlarging the definition domain of the given
function which can avoid the boundary effect occurred in
the domain. Therefore, we can discuss the choice of 𝐿 by

means of Lagrange inner-and extrapolation error polynomial
as follows:

𝑅
𝐿
(𝑥) =

𝑓(𝐿+1) (𝜉)

(𝐿 + 1)!

𝐿

∏
𝑖=0

(𝑥 − 𝑥
𝑖
) , for some 𝜉 between

𝑥, 𝑥
0
, . . . , 𝑥

𝐿
.

(23)

Equation (23) indicates that the approximation error is both
related to the smoothness and the gradient of the original
function near the boundary. Setting different 𝐿 can satisfy
the error tolerance.

3.3. Adaptive Interval Interpolation Wavelet. The interval
interpolation wavelet is often used to solve the diffusion
PDEs with Neumann boundary conditions. The smoothness
and gradient of the PDE’s solution usually vary with the
time parameter. If the parameter 𝐿 is a constant, we have
to take a bigger value in order to obtain results with higher
calculation precision. But the bigger 𝐿 usually introduces
the famous Gibbs phenomena into the numerical solution,
which usually results in the algorithm becoming invalid. In
addition, the bigger 𝐿 will bring much more calculation. To
keep higher numerical precision and save calculation, the best
way is to design a procedure that 𝐿 can vary with the curve’s
smoothness and gradient dynamically.

In this dynamic procedure, the error estimation equation
(23) can be taken as the criterion about 𝐿. But in most cases,
we cannot know the smoothness and the derivative’s order
of the original function. This can be solved by substituting
the difference coefficient for the derivative.This is coincident
with the Newton interpolation equation which is equiva-
lent with Lagrange interpolation equation. In addition, the
Lagrange interpolation algorithm has no inheritance which
is the key feature of Newton interpolation. So, the basis
function has to be calculated repeatedly as interpolation
points are added into the calculation, which increases the
computation complexity greatly. In contracst to the Lagrange
method, the advantage of Newton interpolation method is
that the Newton divided difference form is employed, which
can produce a mathematically equivalent result by using
recurrence relations, which reduces the number of compute
operation, especially the multiplication. So it is convenient
using the Newton interpolation method to construct the
dynamic procedure.
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3.3.1. Newton Interpolation. The expression of Newton inter-
polation can be written as

𝑁
𝑛
(𝑥) = 𝑓 (𝑥

0
) + (𝑥 − 𝑥

0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
) + ⋅ ⋅ ⋅

+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛−1
)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
) .

(24)

Substituting the Newton interpolation instead of the La-
grange interpolation into (22) can be rewritten as

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

(𝑁𝑆
𝐿
(𝑥
𝑛
)) 𝜔 (2𝑗𝑥 − 𝑛)

+
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑛
) 𝜔 (2𝑗𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑
𝑛=2
𝑗
+1

(𝑁𝐸
𝐿
(𝑥
𝑛
)) 𝜔 (2𝑗𝑥 − 𝑛) ,

(25)

where

𝑁𝑆
𝐿
(𝑥
𝑛
) = 𝑓 (𝑥

0
) + (𝑥

𝑛
− 𝑥
0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥
𝑛
− 𝑥
0
) (𝑥
𝑛
− 𝑥
1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
) + ⋅ ⋅ ⋅

+ (𝑥
𝑛
− 𝑥
0
) (𝑥
𝑛
− 𝑥
1
) ⋅ ⋅ ⋅ (𝑥

𝑛
− 𝑥
𝐿−1
)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝐿
) ,

𝑁𝑆
𝑅
(𝑥
𝑛
) = 𝑓 (𝑥

2
𝑗) + (𝑥

𝑛
− 𝑥
2
𝑗) 𝑓 (𝑥

2
𝑗 , 𝑥
2
𝑗
−1
)

+ (𝑥
𝑛
− 𝑥
2
𝑗) (𝑥
𝑛
− 𝑥
2
𝑗
−1
)

× 𝑓 (𝑥
2
𝑗 , 𝑥
2
𝑗
−1
, 𝑥
2
𝑗
−2
) + ⋅ ⋅ ⋅

+ (𝑥
𝑛
− 𝑥
2
𝑗) (𝑥
𝑛
− 𝑥
2
𝑗
−1
) ⋅ ⋅ ⋅ (𝑥

𝑛
− 𝑥
2
𝑗
−𝐿
)

× 𝑓 (𝑥
2
𝑗 , 𝑥
2
𝑗
−1
, . . . , 𝑥

2
𝑗
−𝐿
) .

(26)

3.3.2. Relation between the Newton Interpolation Error and the
Choice of 𝐿. It is well known that the Newton interpolation is
equivalent to the Lagrange interpolation. The corresponding
error estimation can be expressed as

𝑅
𝑛
(𝑥) = (𝑥 − 𝑥

0
) (𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
) 𝑓 (𝑥, 𝑥

0
, . . . , 𝑥

𝑛
) .
(27)

And the simplest criterion to terminate the dynamic choice
on 𝐿 is |𝑅

𝑛
(𝑥)| ≤ 𝑇

𝑎
(𝑇
𝑎
is the absolute error tolerance).

Obviously, it is difficult to define 𝑇
𝑎
which should meet with

the precision requirement of all approximated curves. In fact,
the difference coefficient 𝑓(𝑥, 𝑥

0
,. . . , 𝑥

𝑛
) can be used directly

as the criterion; that is
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑥0, . . . , 𝑥𝑛)

󵄨󵄨󵄨󵄨 < 𝜀. (28)

As mentioned above, once the curves with lower order
smoothness are approximated by higher order polynomial

expression, the errors will become bigger on the contrary.
In fact, even if the 𝐿 is infinite, the computational precision
cannot be satisfied except by increasing computational com-
plexity. To avoid this, we design the termination procedure of
dynamic choice about 𝐿 as follows:

If 𝑓(𝑥
0
, 𝑥
1
)< 𝑇
𝑎
, then 𝐿 = 1

else if 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
) < 𝑇

𝑎
or 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
) <

𝑓(𝑥
0
, 𝑥
1
), then 𝐿 = 2

else if 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) < 𝑇

𝑎
or 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) <

𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
), then 𝐿 = 3

. . .

3.3.3. 𝐿 and the Condition Number of the System of Algebraic
Equations. In the field of numerical analysis, the condition
number of a function with respect to an argument measures
how much the output value of the function can change for a
small change in the input argument. This is used to measure
how sensitive a function is to changes or errors in the input
and how much error in the output results from an error in
the input. It is no doubt that the choice of 𝐿 can change
the condition number of the system of algebraic equations
discretized by the wavelet interpolation operator or the finite
difference method. Therefore, the choice of 𝐿 should take
the condition number into account. In fact, if the condition
number cond(𝐴) = 10𝑘, then you may lose up to 𝑘 digits
of accuracy on top of what would be lost to the numerical
method due to loss of precision from arithmetic methods
[24]. According to the general rule of thumb, the choice
should follow the rule as follows:

Cond (𝐴
𝐿+1
)

Cond (𝐴
𝐿
)
< 10. (29)

3.3.4. Relation between 𝐿 and Computation Complexity. The
computational complexity of interpolation calculation is not
proportional to the increasing points. The former is mainly
up to the computation amount of (𝑥 − 𝑥

0
)(𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
)

and the derivative operations. Obviously, according to (5),
the increase in computational complexity is 𝑂(𝐿3) when the
number of extension points 𝐿 increases by 1. But the com-
putational complexity of adaptively increasing collocation
points is related to the different wavelet functions. For the
wavelet with compact support property such as Daubechies
wavelet and Shannon wavelet, the value of 𝐿 is impossible
to be infinite. For Haar wavelet which has no smoothness
property, 𝐿 can be taken as 0 at most since it need not to
be extended. For Faber-Schauder wavelet, 𝐿 can be taken as 1
at most. For Daubechies wavelet, 𝐿 can be taken as different
values according to the order of vanishing moments, but it
must be finite. For the wavelets without compact support
property, 𝐿 can take value dynamically, such as Shannon
wavelet. The computational complexity of increasing points
is mainly up to the wavelet function of itself.
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4. Numerical Results and Discussion

Fractional Fokker-Planck equation is a typical fractional
PDE, which is often used to describe a subdiffusive behavior
of a particle under the combined influence of external
nonlinear force field, and a Boltzmann thermal heat bath.
This section considers the accuracy and efficiency of the
proposed method for a fractional Fokker-Planck equation.
Comparisons are made with results obtained with Chen’s
finite difference approximations and the exact analytic solu-
tion.

It has been pointed out that the finite difference approx-
imation formats proposed in [2] are not perfect as they do
not take the boundary problems into account. In this section,
we take the Grünwald-Letnikov expansion and the central
difference implicit approximation (GL-CDIA) to solve the
example. That is,

𝜏−𝛼 [𝑢𝑛
𝑖
+
𝑛−1

∑
𝑘=1

𝑔
𝑘
𝑢𝑛−𝑘
𝑖

−
𝑛−1

∑
𝑘=0

𝑔
𝑘
𝑢0
𝑖
]

=
𝑓
𝑖+1
𝑢𝑛
𝑖+1

− 𝑓
𝑖−1
𝑢𝑛
𝑖−1

2ℎ
+ 𝐾
𝛼

𝑢𝑛
𝑖+1

− 2𝑢𝑛
𝑖
+ 𝑢𝑛
𝑖−1

ℎ2
,

𝑖 = 1, 2, . . . ,𝑀 − 1,

𝜏−𝛼 [𝑢𝑛
0
+
𝑛−1

∑
𝑘=1

𝑔
𝑘
𝑢𝑛−𝑘
0

−
𝑛−1

∑
𝑘=0

𝑔
𝑘
𝑢0
0
]

=
4𝑓
1
𝑢𝑛
1
− 3𝑓
0
𝑢𝑛
0
− 𝑓
2
𝑢𝑛
2

2ℎ
+ 𝐾
𝛼

𝑢𝑛
0
− 2𝑢𝑛
1
+ 𝑢𝑛
2

ℎ2
,

𝜏−𝛼 [𝑢𝑛
𝑀
+
𝑛−1

∑
𝑘=1

𝑔
𝑘
𝑢𝑛−𝑘
𝑀

−
𝑛−1

∑
𝑘=0

𝑔
𝑘
𝑢0
𝑀
]

=
𝑓
𝑀−2

𝑢𝑛
𝑀−2

− 4𝑓
𝑀−1

𝑢𝑛
𝑀−1

+ 3𝑓
𝑀
𝑢𝑛
𝑀

2ℎ

+ 𝐾
𝛼

𝑢𝑛
𝑀−2

− 2𝑢𝑛
𝑀−1

+ 𝑢𝑛
𝑀

ℎ2
,

𝑢0
𝑖
= 𝜑 (𝑥

𝑖
) , 1 ≤ 𝑖 ≤ 𝑀,

𝑢𝑛
0
= 𝑝
1
(𝑡
𝑛
) , 𝑢𝑛

𝑀
= 𝑝
2
(𝑡
𝑛
) , 𝑛 ≥ 1,

𝑔
𝑘
= (1 −

1 + 𝛼

𝑘
)𝑔
𝑘−1
, 𝑔
0
= 1

𝑓
𝑖
= 𝑓 (𝑥

𝑖
) =

]󸀠 (𝑥
𝑖
)

𝑚𝜂
𝛼

.

(30)

According to the wavelet collocation method, the fractional
Fokker-Planck equation can be approximately represented as

𝜏−𝛼 [𝑢
𝑗
(𝑥
𝑖
, 𝑡
𝑛
) +
𝑛−1

∑
𝑘=1

𝑔
𝑘
𝑢
𝑗
(𝑥
𝑖
, 𝑡
𝑛−𝑘
)

−
𝑛−1

∑
𝑘=0

𝑔
𝑘
𝑢
𝑗
(𝑥
𝑖
, 𝑡
0
)]

= 𝑓󸀠 (𝑥
𝑖
) 𝑢
𝑗
(𝑥
𝑖
, 𝑡
𝑛
)

+
2
𝑗

∑
𝑚=0

𝑢
𝑗
(𝑥
𝑚
, 𝑡
𝑛
)

× [𝑤󸀠 (𝑥
𝑖
− 𝑥
𝑚
) + 𝐾
𝛼
𝑤󸀠󸀠 (𝑥

𝑖
− 𝑥
𝑚
)] ,

(31)

where 𝑖 = 0, 1, 2, . . . 2𝑗. Let

𝑉𝑛
𝑗
= (𝑢
𝑗
(𝑥
0
, 𝑡
𝑛
) , 𝑢
𝑗
(𝑥
1
, 𝑡
𝑛
) , . . . , 𝑢

𝑗
(𝑥
2
𝑗 , 𝑡
𝑛
))
𝑇

,

𝐹 = diag (𝑓󸀠 (𝑥
0
) , 𝑓󸀠 (𝑥

1
) , . . . , 𝑓󸀠 (𝑥

2
𝑗)) ,

𝑊
1

=
[
[
[
[

[

𝑤󸀠 (𝑥
0
− 𝑥
0
) 𝑤󸀠 (𝑥

0
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤󸀠 (𝑥

0
− 𝑥
2
𝑗)

𝑤󸀠 (𝑥
1
− 𝑥
0
) 𝑤󸀠 (𝑥

1
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤󸀠 (𝑥

1
− 𝑥
2
𝑗)

...
... d

...
𝑤󸀠 (𝑥
2
𝑗 − 𝑥
0
) 𝑤󸀠 (𝑥

2
𝑗 − 𝑥
1
) ⋅ ⋅ ⋅ 𝑤󸀠 (𝑥

2
𝑗 − 𝑥
2
𝑗)

]
]
]
]

]

,

𝑊
2

=
[
[
[
[

[

𝑤󸀠󸀠 (𝑥
0
− 𝑥
0
) 𝑤󸀠󸀠 (𝑥

0
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤󸀠󸀠 (𝑥

0
− 𝑥
2
𝑗)

𝑤󸀠󸀠 (𝑥
1
− 𝑥
0
) 𝑤󸀠󸀠 (𝑥

1
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤󸀠󸀠 (𝑥

1
− 𝑥
2
𝑗)

...
... d

...
𝑤󸀠󸀠 (𝑥

2
𝑗 − 𝑥
0
) 𝑤󸀠󸀠 (𝑥

2
𝑗 − 𝑥
1
) ⋅ ⋅ ⋅ 𝑤󸀠󸀠 (𝑥

2
𝑗 − 𝑥
2
𝑗)

]
]
]
]

]

.

(32)

Then the systemof (31) can be expressed as thematrix format:

(𝑊
1
+ 𝐾
𝛼
𝑊
2
+ 𝐹 − 𝜏−𝛼𝐼)𝑉𝑛

𝑗

=
𝑛−1

∑
𝑘=1

𝑔
𝑘
𝑉𝑛−𝑘
𝑗

−
𝑛−1

∑
𝑘=0

𝑔
𝑘
𝑉0
𝑗
.

(33)

Next, we will discuss the precision of themethod proposed in
this paper with numerical experience. Consider the Fokker-
Planck equation as follows:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=
0
D1−𝛼
𝑡

[
𝜕

𝜕𝑥
(−1) +

𝜕2

𝜕𝑥2
] 𝑢 (𝑥, 𝑡) ,

0 ≤ 𝑥 ≤ 1, 𝑡 > 0,

(34)

with the initial condition

𝑢 (𝑥, 0) = 𝑥 (1 − 𝑥) , 0 ≤ 𝑥 ≤ 1 (35)

and the boundary conditions

𝑢 (0, 𝑡) = −
3𝑡𝛼

Γ (1 + 𝛼)
−

2𝑡2𝛼

Γ (1 + 2𝛼)
, 𝑡 > 0,

𝑢 (1, 𝑡) = −
𝑡𝛼

Γ (1 + 𝛼)
−

2𝑡2𝛼

Γ (1 + 2𝛼)
, 𝑡 > 0.

(36)
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Figure 1: Wavelet collocation method with constant 𝐿 (𝛼 = 0.8).
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Figure 2: Wavelet collocation method with constant 𝐿 (𝛼 = 0.6).

The exact analytic solution is

𝑢 (𝑥, 𝑡) = 𝑥 (1 − 𝑥) + (2𝑥 − 3)
𝑡𝛼

Γ (1 + 𝛼)
−

2𝑡2𝛼

Γ (1 + 2𝛼)
. (37)

All the comparisons in this section are made qualitatively
by comparing the calculation precision in the same time step
and spacemesh grid size.The firstmeasure of error 𝑒

1
is given

by

𝑒
1
=
󵄩󵄩󵄩󵄩󵄩𝑉
𝑛

𝑗
− 𝑉𝑛exact

󵄩󵄩󵄩󵄩󵄩∞
, (38)

which provides ameasure of the accuracy of the solution near
the boundary. The second measure of error 𝑒

2
is given by

𝑒
2
= √

1

2𝑗 + 1

2
𝑗

∑
𝑖=0

(𝑢 (𝑥
𝑖
) − 𝑢exact (𝑥𝑖))

2

, (39)

which provides a general measure of the accuracy of the
solution over the main body of the distribution and was often
used to investigate the accuracy of the FEM.

The comparisons between the static interval Shannon-
Gabor wavelets with 𝐿 = 1 and 𝐿 = 2 are showen
in Figure 1. The boundary effect of the interval wavelet
with 𝐿 = 2 (Figure 1(a)) is almost eliminated compared
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Figure 3: Numerical errors comparison among the dynamic, static interval wavelet method and the finite difference method (𝑗 = 6, 𝛼 = 0.6).

Table 1: Condition number of the Fokker-Planck equation.

𝑗 𝛼

𝜏 = 0.0001 𝜏 = 0.00001

Interval FDM Interval wavelet Interval FDM Interval wavelet
𝐿 = 1 𝐿 = 2 𝐿 = 1 𝐿 = 2

4
0.8 1.9730 2.5810 2.9399 1.1364 1.2461 1.2738
0.6 11.3319 11.8703 20.8760 2.6645 3.5347 4.3019
0.4 198.8737 91.0582 365.5470 43.4632 31.2993 80.5876

5
0.8 6.2479 7.8009 11.6382 1.5798 2.0236 2.2010
0.6 83.0421 52.1757 160.0987 10.9216 12.0887 20.8948
0.4 1912.4 476.7221 3632.5 380.6050 152.3718 727.8708

6
0.8 39.1651 31.2950 76.7074 39.1651 5.2458 6.9255
0.6 764.3693 255.2801 1476.4 79.4793 51.7012 155.2663
0.4 19847.0000 2574.7 37997 3769.1 790.3041 7238.0

7
0.8 340.7877 145.7761 663.4654 19.8525 19.3224 38.9722
0.6 7757.6000 1333.9 14931 730.3466 249.7668 1416.8
0.4 214660.0000 14202 415100 39724 4266.4 76386

to 𝐿 = 1 (Figure 1(b)). FFPE is a 2-order PDEs with respect
to 𝑥, so 𝐿 ≥ 2 is the necessary condition for the interval
wavelet satisfying the requirement of FFPE. We also noticed
that the condition number of FFPE from the Table 1 that
the condition number of 𝐿 = 2 increases more rapid

than 𝐿 = 1 with the increase of 𝑗 and the decrease of 𝛼. It
has been mentioned in Section 2 that the larger condition
number can decrease the calculation precision greatly. This
also can be illustrated in Figure 2. The condition number in
Figure 2(a) is greatly larger than in Figure 2(b), although the
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Table 2: Influence of 𝛼 on the numerical precision (𝑡 = 0.0001, 𝑇 = 0.1).

𝑗 𝛼
𝑒
1

𝑒
2

Interval FDM Interval WCM
(𝐿 = 2)

Dynamic
interval WCM Interval FDM Interval WCM

(𝐿 = 2)
Dynamic

interval WCM

4
0.8 5.5367 × 10−6 8.1588 × 10−5 5.5920 × 10−6 4.1037 × 10−6 5.8298 × 10−5 4.1514 × 10−6

0.6 5.7907 × 10−6 4.1158 × 10−4 7.1813 × 10−6 4.2424 × 10−6 2.9468 × 10−4 5.5971 × 10−6

0.4 3.5309 × 10−6 9.1673 × 10−4 3.7967 × 10−5 2.6232 × 10−6 6.3692 × 10−4 2.1348 × 10−5

5
0.8 5.5551 × 10−6 8.2118 × 10−5 5.8424 × 10−6 4.1718 × 10−6 5.9148 × 10−5 4.4649 × 10−6

0.6 5.7760 × 10−6 4.0932 × 10−4 8.9707 × 10−6 4.2907 × 10−6 2.9753 × 10−4 7.5330 × 10−6

0.4 6.5910 × 10264 0.3971 0.0585 inf 0.1195 0.0491

6
0.8 5.5563 × 10−6 8.1965 × 10−5 1.3154 × 10−5 4.2041 × 10−6 5.9517 × 10−5 8.6913 × 10−6

0.6 3.7124 × 10265 0.0554 0.0096 inf 0.0105 0.0076
0.4 inf 1.2637 × 103 0.0588 inf 375.3305 0.0499

7
0.8 3.4932 × 10243 0.0031 0.0019 inf 3.8313 × 10−4 1.2937 × 10−4

0.6 inf 216.5596 23.7361 inf 40.0263 9.3964
0.4 inf 1.4462 × 106 327.6987 inf 4.2662 × 105 21.7694

Table 3: Dynamic 𝐿 and the iteration times at the same 𝐿 value (𝑗 =
6, 𝑇 = 0.1, and 𝜏 = 0.0001).

𝐿 3 1 2 3 2
Iteration times 11 14 4 3 968

approximation of 𝐿 = 2 is better than 𝐿 = 1. The former
has failed to solve FFPE obviously. In fact, this explained the
reason why we construct the dynamic interval wavelet.

The numerical errors comparisons among the dynamic,
static interval wavelet method and the interval finite differ-
ence method are showen in Figure 3. The result also can be
illustrated in Table 2.

The robustness of the dynamic interval wavelet colloca-
tion method (DIWCM) is the best compared to the interval
FDM and the static interval WCM, as it avoids both of the
larger condition number and the error of the approximation
simultaneity. The varied process of 𝐿 is showen in Table 3. It
shows that the value of 𝐿 is fixed at 𝐿 = 2 after a short time
of vibration. This reflects the properties of the FFPE to some
extent.

In addition, it also has to be noticed that we can get the
higher precision solution with the interval finite difference
method (FDM) as the amount of the collocation points
decreases (Figure 4). It is well known that increasing the
collocation points can impove the approximation although it
can increase the condition number in FFPE. In fact, it profits
from the smoothness of the solution, which would not work
in solving the nonlinear problems.

All above numerical experiments are done with the
Shannon-Gabor wavelet. It is well known that the presence

of the Gaussian window destroys the orthogonal properties
possessed by the Shannon wavelet, effectively worsening the
approximation efficiency to a Dirac delta function. Compar-
ing with the Shannon wavelet collocation method (Figure 5),
the Shannon-Gabor wavelet numerical method has higher
precision and more complicated calculation amount. But it
is showen in Figure 5 that dynamic interpolation wavelet
construction scheme can be applied to both of the Shannon-
Gabor wavelet and the Shannon wavelet. As a matter of
fact, the dynamic scheme is designed for the interpolation
wavelet, which has no connection with certain concrete
wavelet function.

5. Conclusions

In solving the fractional Fokker-Planck equations, there
are two factors related to the choice of 𝐿. The first factor
is the condition number, which relates to the parameters
𝛼, 𝑗 and the time step 𝜏. The larger 𝐿 can decrease the
calculation precision greatly. Another factor is the approx-
imation of the function and its derivatives, especially near
the boundary. Using the interval wavelet with constant 𝐿 to
solve the fraction Fokker-Planck equations cannot eliminate
the boundary effect completely as the condition number is
sensitive to the parameter 𝛼. With regard to the accuracy
and time complexity of the solution in comparison with
those obtained with other algorithms, the dynamic interval
wavelet on 𝐿 constructed in this paper is more reasonable.
The numerical experiments illustrate that it is necessary to
construct the dynamic interval wavelet collocation method
for the fractional PDEs.
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