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When confronted with multiple Nash equilibria, decision makers have to refine their choices. Among all known Nash equilibrium
refinements, the perfectness concept is probably the most famous one. It is known that weakly dominated strategies of two-player
games cannot be part of a perfect equilibrium. In general, this undominance property however does not extend to 𝑛-player games
(E. E. C. van Damme, 1983). In this paper we show that polymatrix games, which form a particular class of 𝑛-player games, verify
the undominance property. Consequently, we prove that every perfect equilibrium of a polymatrix game is undominated and that
every undominated equilibrium of a polymatrix game is perfect. This result is used to set a new characterization of perfect Nash
equilibria for polymatrix games.We also prove that the set of perfect Nash equilibria of a polymatrix game is a finite union of convex
polytopes. In addition, we introduce a linear programming formulation to identify perfect equilibria for polymatrix games. These
results are illustrated on two small game applications. Computational experiments on randomly generated polymatrix games with
different size and density are provided.

1. Introduction

Interest for game theoretic applications has been growing
in engineering, management and political sciences. A poly-
matrix game is a confrontation of 𝑛 players (𝑛 ≥ 2) in a
normal and noncooperative context. Polymatrix games form
a particular class of 𝑛-player games. A polymatrix game
𝐺[(𝐴
𝑖𝑗
)
𝑖 ̸=𝑗

] with 𝑛 players is such that player 𝑖’s payoff relative
to player 𝑗’s decisions is independent from the remaining
players’ choices. Considering 𝑁 = {1, . . . , 𝑛} as the set of
all players, each player 𝑖 ∈ 𝑁 controls a finite set of pure
strategies 𝑆

𝑖
= {𝑠
1

𝑖
, . . . , 𝑠

𝑚𝑖

𝑖
} with |𝑆

𝑖
| = 𝑚

𝑖
. We define 𝑚 =

∑
𝑖∈𝑁

𝑚
𝑖
.

1.1. Literature Review. The Nash equilibrium concept [1] has
often been presented as themost desirable solution for games.
Authors like Avis and Fukuda [2] and Audet et al. [3, 4]
presented computational methods to enumerate all Nash
extreme points for two-player games. Some other authors
like Daskalakis et al. [5] and Hazan and Krauthgamer [6]
have recently studied the Nash equilibrium computation
complexity problem, also for two-player games. Etessami
and Yannakakis [7] studied the complexity of computing

approximated Nash equilibria for three or more players finite
games. Some pioneering results on polymatrix games are to
be mentioned. The complementary pivoting method was used
by Yanovskaya [8] to compute polymatrix game equilibria.
Howson [9], Eaves [10], and Howson and Rosenthal [11]
also adopted the same approach. Quintas [12] showed that
the set of Nash equilibrium points in a polymatrix game
is a finite union of convex polytopes. Miller and Zucker
[13] showed how to reduce the polymatrix game equilibria
problem to a copositive-plus linear complementarity problem
(LCP) solvable with a single application of Lemke’s algorithm
[14]. Wilson [15] extended the Lemke and Howson algorithm
[16] for finding a Nash equilibrium of a two-player game to
𝑛-player games. Govindan and Wilson [17] used sequences
of polymatrix games to approximate and compute Nash
equilibrium for 𝑛-player games. We addressed the problem
of enumeration of all polymatrix game Nash extreme equi-
libria in Audet et al. [4]. Papadimitriou and Roughgarden
[18] showed that computing a correlated equilibrium of a
polymatrix game can be done in polynomial time.

1.2. Motivation. Decision makers, confronted to multiple
Nash equilibria, have to refine their choices using other
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2 GameTheory

rational concepts in addition to the concept of Nash equi-
librium. Game theorists introduced many refinement con-
cepts. Among all known Nash equilibrium refinements, the
perfectness concept is probably the most studied one. This
concept was first introduced by Selten [19] for finite strategic
form games. It is based on the idea that a reasonable equi-
librium should be stable against slight perturbations in the
equilibrium strategies. Hence, the perfect refinement defines
stability conditions with respect to slight imperfections of
rationality sometimes called “trembling-hand perfection.”
Selten [19] and Myerson [20] showed that there is at least
one perfect equilibrium for any strategic form game. Selten’s
proof of perfect equilibrium existence is indirect and relies
on the existence of Nash equilibrium in every perturbed
game. Topolyan [21] used a generalization of Kakutani’s
fixed point existence theorem to prove the existence of
perfect equilibria in finite normal form games and extensive
games with perfect recall. Her constructive proof generates
a correspondence whose fixed points are precisely the per-
fect equilibria of a given finite game. For bimatrix games,
Borm et al. [22] described a maximal Selten subset as a set
of interchangeable perfect equilibria. Each maximal Selten
subset is a subset of a maximal Nash subset and each extreme
point of a maximal Selten subset corresponds to an extreme
perfect equilibrium. Laslier and van der Straeten [23] used
the concept of “trembling-hand perfection” to analyze an
electoral competition problem under imperfect information.
Watanabe and Yamato [24] used the same concept to study a
choice of auction in seller cheating. Miltersen and Sørensen
[25] proposed a computational method to find quasiperfect
Nash equilibria for two-player games. While the perfectness
verification problem is known to be easy with two players
[26], to our knowledge, no results are reported on the perfect
refinement of Nash equilibria for polymatrix games.

In this paper, we intend to set an automatic procedure
to verify the perfectness of polymatrix games Nash equi-
libria. Section 2 recalls the definition of a polymatrix game
Nash Equilibrium. Section 3 sets a new characterization for
polymatrix games perfect equilibria and proposes a linear
programming approach to conclude the perfectness of aNash
equilibrium point. Section 4 states a geometric property on
the set of perfect equilibria. Section 5 presents computational
results obtained over sets of randomly generated polymatrix
games with different size and density.

2. Polymatrix Games Nash Equilibria

Let us define 𝐴
𝑖.
= [𝐴
𝑖1
⋅ ⋅ ⋅ 𝐴
𝑖𝑗
⋅ ⋅ ⋅ 𝐴
𝑖𝑛
] as the payoff matrix

of player 𝑖 against all other players. A partial payoff 𝑎
𝑖𝑗
(𝑠
𝑘

𝑖
, 𝑠
𝑙

𝑗
)

is assigned to player 𝑖, if player 𝑖 plays his strategy 𝑠
𝑘

𝑖
and

player 𝑗 plays his strategy 𝑠
𝑙

𝑗
. Player 𝑖’s partial payoff matrix

relative to player 𝑗’s strategic decisions is a 𝑚
𝑖
× 𝑚
𝑗
matrix

𝐴
𝑖𝑗
= (𝑎
𝑘𝑙

𝑖𝑗
). The total payoff for player 𝑖 corresponding to any

pure strategic choice (𝑠𝑘
1
, . . . , 𝑠

𝑙

𝑛
) of the 𝑛 players is

𝐴
𝑖
(𝑠
𝑘

1
, . . . , 𝑠

𝑙

𝑛
) = ∑

𝑗 ̸=𝑖

𝑎
𝑖𝑗
(𝑠
𝑘

𝑖
, 𝑠
𝑙

𝑗
) . (1)

Each player 𝑖 selects a probability vector𝑋
𝑖
over his set of

pure strategies and tries tomaximize his own total payoff.The
mixed strategy vector𝑋

𝑖
is such that𝑋

𝑖
= (𝑥
1

𝑖
, . . . , 𝑥

𝑚𝑖

𝑖
), where

for all 𝑘 ∈ {1, . . . , 𝑚
𝑖
}, 𝑥𝑘
𝑖
is the relative probability with which

player 𝑖 plays his strategy 𝑠
𝑘

𝑖
∈ 𝑆
𝑖
. Player 𝑖’s mixed strategies

belong to the set:

𝑆
𝑖
= {𝑋
𝑖
: 𝑒
𝑇

𝑖
𝑋
𝑖
= 1,𝑋

𝑖
≥ 0} , (2)

where 𝑒𝑇
𝑖
is a row vector with all𝑚

𝑖
entries equal to 1. At the

end of the game, the total payoff of player 𝑖 can be expressed
as follows:

𝛼
𝑖 (
𝑋) = (𝑋

𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
= ∑

𝑗 ̸=𝑖

𝑚𝑖

∑

𝑘=1

𝑚𝑗

∑

𝑙=1

𝑎
𝑘𝑙

𝑖𝑗
𝑥
𝑘

𝑖
𝑥
𝑙

𝑗
. (3)

Like any 𝑛-player strategic form game, a polymatrix
game has at least one Nash equilibrium [1]. We can define
a Nash equilibrium to be a 𝑛-tuple 𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
)

of mixed strategies such that for any other 𝑛-tuple 𝑋 =

(𝑋
1
, . . . , 𝑋

𝑖−1
, 𝑋
𝑖
, 𝑋
𝑖+1

, . . . , 𝑋
𝑛
) the following inequality is

satisfied:

(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
, for 𝑖 ∈ 𝑁; (4)

that is, player 𝑖’s payoff relative to all other players is
simultaneously maximized.

We denote by NE the set of Nash equilibria. This set is
the union of a finite number of polytopes called maximal
Nash subsets [12].We define an extreme equilibrium to be any
vertex of themaximal Nash subsets. Hence, the set of extreme
equilibria is the set of vertices of the maximal Nash subsets.
A subset 𝑇 ⊂ NE is called a Nash subset if and only if every
pair of elements in 𝑇 is interchangeable; that is,

If (𝑋
1
, . . . , 𝑋

𝑖
, . . . , 𝑋

𝑛
) ∈ 𝑇,

(�̂�
1
, . . . , �̂�

𝑖
, . . . , �̂�

𝑛
) ∈ 𝑇,

then, (𝑋
1
, . . . , �̂�

𝑖
, . . . , 𝑋

𝑛
) ∈ 𝑇,

(�̂�
1
, . . . , 𝑋

𝑖
, . . . , �̂�

𝑛
) ∈ 𝑇, ∀𝑖 ∈ 𝑁.

(5)

A Nash subset 𝑇 is called maximal if it is not properly
contained in another Nash subset [22]. Enumeration of all
maximal Nash subsets can be achieved using an algorithm for
the enumeration of all maximal cliques of a graph [26].

3. Polymatrix Games Nash Perfect Equilibria

Let 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) be a Nash equilibrium of a polymatrix

game 𝐺[(𝐴
𝑖𝑗
)
𝑖 ̸=𝑗

] with 𝑛 players, and let

𝑀
𝑖
= 𝑀
𝑖
[𝐴
𝑖.
, (𝑋
1
, . . . , 𝑋

𝑖−1
, 𝑋
𝑖+1

, . . . , 𝑋
𝑛
)] = 𝑀

𝑖
[𝐴
𝑖.
, 𝑋
−𝑖
]

(6)
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be the set of pure best replies of player 𝑖 against 𝑋
−𝑖

=

(𝑋
1
, . . . , 𝑋

𝑖−1
, 𝑋
𝑖+1

, . . . , 𝑋
𝑛
):

𝑀
𝑖
=

{

{

{

arg max
ℎ∈{1,...,𝑚𝑖}

(𝑒
ℎ

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗

}

}

}

, (7)

where 𝑒
ℎ

𝑖
is a column vector with all entries equal to zero,

except the ℎ
𝑡ℎ entry which equals one. Let us also define

𝐶𝑀
𝑖
= conv (𝑀

𝑖
), where conv (𝑀

𝑖
) is the convex envelope

of𝑀
𝑖
.

3.1. Polymatrix Game Perfect Equilibrium Definition. Using
Selten’s definition of perfect equilibrium for a strategic form
game (see [20, Chapter 5]), we define a perfect equilibrium
for a polymatrix game as follows.

Definition 1. Let 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) be a Nash equilibrium

of a polymatrix game 𝐺[(𝐴
𝑖𝑗
)
𝑖 ̸=𝑗

] with 𝑛 players. The equi-
librium 𝑋 is perfect if there exists a sequence {𝑋

𝑟
}
𝑟∈N =

{(𝑋
𝑟

1
, . . . , 𝑋

𝑟

𝑛
)}
𝑟∈N

of completely mixed strategies 𝑛-tuples
converging to 𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
), such that, for all 𝑟 ∈ N and

𝑖 ∈ 𝑁,

𝑋
𝑖
∈ 𝐶𝑀

𝑖
[𝐴
𝑖.
, 𝑋
𝑟

−𝑖
] . (8)

In other words, a perfect Nash equilibrium 𝑋 is the limit
point of a sequence {𝑋

𝑟
}
𝑟∈N of completely mixed strategy

combinations such that, for every player 𝑖 ∈ 𝑁, 𝑋
𝑖
is a best

response against every𝑋𝑟
−𝑖
in every element in this sequence.

An equivalent definition which uses 𝜖-perfect equilibria can
also be stated (see [27, Chapter 2]).

Definition 2. Let𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) be aNash equilibrium of a

polymatrix game𝐺[(𝐴
𝑖𝑗
)
𝑖 ̸=𝑗

]with 𝑛 players. Given any strictly
positive number 𝜖

𝑟
, with 𝑟 ∈ N, the equilibrium 𝑋 is perfect

if there exists a sequence of 𝜖-perfect equilibria {𝑋
𝜖𝑟
}
𝑟∈N =

{(𝑋
𝜖𝑟

1
, . . . , 𝑋

𝜖𝑟
𝑛
)}
𝑟∈N

in completely mixed strategies converging
to𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
) as 𝜖
𝑟
goes to zero, such that, for all 𝑟 ∈ N

and 𝑖 ∈ 𝑁,

if 𝑠𝑘
𝑖
∉ 𝑀
𝑖
, then 𝑥

𝜖𝑟,𝑘

𝑖
< 𝜖
𝑟
. (9)

This second characterization describes a perfect Nash
equilibrium 𝑋 as the limit point of a sequence {𝑋

𝜖𝑟
}
𝑟∈N of

𝜖-perfect equilibria of the polymatrix game. Every strategy
in an 𝜖-perfect equilibrium is played with a strictly positive
probability. As shown by van Damme in his corollary 2.2.6 in
[27], the convergence of the sequences of 𝜖-perfect equilibria
to the perfect equilibrium𝑋 certifies that𝑋 is undominated.
In other words, in every perfect equilibrium, for any given
player 𝑖, any strategy 𝑠𝑘

𝑖
∉ 𝑀
𝑖
is assigned a zero probability.

3.2. New Definition for Polymatrix Game Perfect Equilibria.
In the following,we reformulate the conditions onpolymatrix
games perfect equilibria to show that every player’s mixed
strategic choice is a best response to any combination of

the other players pure strategic choices. In other words, we
show that every perfect equilibrium of a polymatrix game
is undominated and every undominated equilibrium of a
polymatrix game is perfect. While this result is known to
always be satisfied for bimatrix games, the second part of it
is not true in general for games with more than two players.
Nevertheless, it appears from the next development that the
particular structure of polymatrix games payoffs allows us to
extend the perfectness undominance property to polymatrix
games. To reach this result, we first show that 𝑋 is a Nash
equilibrium of a polymatrix game if and only if𝑋

𝑖
∈ 𝐶𝑀

𝑖
.

Proposition 3. The 𝑛-tuple 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is a Nash

equilibrium of the polymatrix game 𝐺[(𝐴
𝑖𝑗
)
𝑖 ̸=𝑗

] with 𝑛 players
if and only if𝑋

𝑖
∈ 𝐶𝑀

𝑖
for each player 𝑖 ∈ 𝑁.

Proof. In the first part of the proof, we show that if 𝑋 =

(𝑋
1
, . . . , 𝑋

𝑛
) is a Nash equilibrium, then 𝑋

𝑖
∈ 𝐶𝑀

𝑖
for each

player 𝑖 ∈ 𝑁. In the second part, we show that if 𝑋
𝑖
∈ 𝐶𝑀

𝑖

for each player 𝑖 ∈ 𝑁, then 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is a Nash

equilibrium.

Part I (𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is a Nash equilibrium). Since 𝑋 is a

Nash equilibrium, for each player 𝑖 and for each 𝑋
𝑖
∈ 𝑆
𝑖
, we

have

𝑋
𝑇

𝑖
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
≥ 𝑋
𝑇

𝑖
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
. (10)

Let 𝑋
𝑖
= ∑
𝑚𝑖

ℎ=1
𝛼
ℎ

𝑖
𝑒
ℎ

𝑖
, with 𝛼

ℎ

𝑖
≥ 0 and ∑

𝑚𝑖

ℎ=1
𝛼
ℎ

𝑖
= 1. Assume

that 𝑋
𝑖
∉ 𝐶𝑀

𝑖
. Then, there exist at least one ℎ = 𝑘 (𝑠𝑘

𝑖
∈ 𝑆
𝑖
),

such that 𝛼𝑘
𝑖
> 0 and 𝑠

𝑘

𝑖
∉ 𝑀
𝑖
. Thus, we can write𝑋

𝑖
= 𝛼
𝑘

𝑖
𝑒
𝑘

𝑖
+

∑
𝑚𝑖

ℎ=1,ℎ ̸=𝑘 𝛼
ℎ

𝑖
𝑒
ℎ

𝑖
. Moreover, there exists at least one strategy 𝑠𝑙

𝑖
∈

𝑆
𝑖
, such that 𝑠𝑙

𝑖
∈ 𝑀
𝑖
. Since 𝑠𝑘

𝑖
∉ 𝑀
𝑖
, we have

(𝑒
𝑙

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
> (𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
. (11)

Therefore, 𝛼𝑘
𝑖
(𝑒
𝑙

𝑖
)

𝑇

∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
> 𝛼
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
.

Hence,

𝛼
𝑘

𝑖
(𝑒
𝑙

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
+

𝑚𝑖

∑

ℎ=1,ℎ ̸=𝑘
𝛼
ℎ

𝑖
(𝑒
ℎ

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗

> 𝛼
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
+

𝑚𝑖

∑

ℎ=1,ℎ ̸=𝑘
𝛼
ℎ

𝑖
(𝑒
ℎ

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
,

(12)

which yields

(𝛼
𝑘

𝑖
(𝑒
𝑙

𝑖
)

𝑇

+

𝑚𝑖

∑

ℎ=1,ℎ ̸=𝑘
𝛼
ℎ

𝑖
(𝑒
ℎ

𝑖
)

𝑇

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=(𝑋𝑖)
𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗

> (𝛼
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

+

𝑚𝑖

∑

ℎ=1,ℎ ̸=𝑘
𝛼
ℎ

𝑖
(𝑒
ℎ

𝑖
)

𝑇

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=(�̂�𝑖)
𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
.

(13)
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Since 𝛼
𝑘

𝑖
+ ∑
𝑚𝑖

ℎ=1,ℎ ̸=𝑘 𝛼
ℎ

𝑖
= ∑
𝑚𝑖

ℎ=1
𝛼
ℎ

𝑖
= 1, 𝑋

𝑖
∈ 𝑆
𝑖
. Thus, the

mixed strategy vector𝑋
𝑖
∈ 𝑆
𝑖
is a strictly better response than

𝑋
𝑖
, which contradicts the fact that 𝑋 is a Nash equilibrium.

Therefore, if 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is a Nash equilibrium, then

𝑋
𝑖
∈ 𝐶𝑀

𝑖
for each player 𝑖 ∈ 𝑁.

Part II (𝑋
𝑖
∈ 𝐶𝑀

𝑖
for each player 𝑖 ∈ 𝑁). Since 𝑋

𝑖
∈ 𝐶𝑀

𝑖

for each player 𝑖 ∈ 𝑁, 𝑋
𝑖
= ∑
𝑚𝑖

ℎ=1
𝛼
ℎ

𝑖
𝑒
ℎ

𝑖
, with 𝛼

ℎ

𝑖
> 0 only if

𝑠
ℎ

𝑖
∈ 𝑀
𝑖
, and ∑

𝑚𝑖

ℎ=1
𝛼
ℎ

𝑖
= 1. We now refer to ℎ by 𝑙 if 𝛼ℎ

𝑖
> 0.

Then, for each pair (𝑙, 𝑘) such that 𝑙 ̸= 𝑘 (𝑠𝑘
𝑖
∈ 𝑆
𝑖
), 𝑠𝑙
𝑖
∈ 𝑀
𝑖
and

𝛼
𝑙

𝑖
> 0, we have

(𝑒
𝑙

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
≥ (𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
. (14)

Thus,

𝛼
𝑙

𝑖
(𝑒
𝑙

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
≥ 𝛼
𝑙

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
. (15)

If we sum all the 𝑙 ∈ 𝑀
𝑖
, we obtain

𝑚𝑖

∑

ℎ=1,ℎ=𝑙
𝛼
𝑙

𝑖
(𝑒
𝑙

𝑖
)

𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(�̂�𝑖)
𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
≥

𝑚𝑖

∑

ℎ=1,ℎ=𝑙
𝛼
𝑙

𝑖
(𝑒
𝑘

𝑖
)

𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑋𝑖)
𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑗
.

(16)

Since ∑𝑚𝑖
ℎ=1,ℎ=𝑙 𝛼

𝑙

𝑖
= 1,𝑋

𝑖
∈ 𝑆
𝑖
. Hence, for each player 𝑖,𝑋

𝑖

is a better response than any mixed strategy vector 𝑋
𝑖
∈ 𝑆
𝑖
.

We deduce that if 𝑋
𝑖
∈ 𝐶𝑀

𝑖
for each player 𝑖 ∈ 𝑁, then 𝑋 is

a Nash equilibrium.
We conclude that a 𝑛-tuple 𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
) is a Nash

equilibriumof the polymatrix game𝐺[(𝐴
𝑖𝑗
)
𝑖 ̸=𝑗

]with 𝑛 players
if and only if𝑋

𝑖
∈ 𝐶𝑀

𝑖
, for each player 𝑖 ∈ 𝑁.

As shown in [4], a strategy 𝑠𝑘
𝑖
of a given player 𝑖 is weakly

dominated if, for every pure strategic combination of the
other players choices, there exists𝑋−𝑘

𝑖
, a convex combination

of the pure strategies of player 𝑖, such that the total payoff
for 𝑖, if he plays this weakly dominated strategy, is always
less or equal to his payoff if he plays the convex combination
of his pure strategies 𝑋−𝑘

𝑖
. In the following development, we

show that in every perfect equilibrium, for any given player
𝑖, any weakly dominated strategy 𝑠

𝑘

𝑖
that provides a total

payoff strictly less than the total payoff provided by one of the
dominant convex combinations𝑋−𝑘

𝑖
of his pure strategies, for

some pure strategic combination of the other players choices,
should be assigned a zero probability. To do so, let us define
𝑃
𝑖
= {1, . . . ,∏

𝑗 ̸=𝑖
𝑚
𝑗
} to be the set of indices of all pure strategy

reply combinations by all players 𝑗 ̸= 𝑖.

Proposition 4. Let 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) be a Nash equilibrium

of a polymatrix game. For any player 𝑖, let 𝑠𝑘
𝑖
∈ 𝑆
𝑖
be any weakly

dominated pure strategy. Also let𝑋−𝑘
𝑖

be a convex combination
of the pure strategies of player 𝑖 that weakly dominates 𝑠𝑘

𝑖
. If for

some combination 𝑔 ∈ 𝑃
𝑖
the dominant convex combination

𝑋
−𝑘

𝑖
is such that

(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑔

𝑗
< (𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑔

𝑗
, (17)

and if the probability 𝑥
𝑘

𝑖
assigned by player 𝑖 to 𝑠

𝑘

𝑖
is strictly

positive, then𝑋 is not perfect.

Proof. For any player 𝑖, if 𝑠
𝑘

𝑖
∈ 𝑆
𝑖
is weakly dominated,

there exists a convex combination 𝑋
−𝑘

𝑖
of all the other

pure strategies of player 𝑖, such that 𝑋−𝑘
𝑖

= ∑
𝑚𝑖

ℎ=1,ℎ ̸=𝑘 𝜔
ℎ

𝑖
𝑒
ℎ

𝑖
,

∑
𝑚𝑖

ℎ=𝑖,ℎ ̸=𝑘 𝜔
ℎ

𝑖
= 1, and the following inequality is satisfied:

(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑓

𝑗
≤ (𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑓

𝑗
, ∀𝑓 ∈ 𝑃

𝑖
. (18)

If for some combination 𝑔 ∈ 𝑃
𝑖
, we have

(𝑒
𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑔

𝑗
< (𝑋
−𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑔

𝑗
, then we can write

(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑓

𝑗
= (𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑓

𝑗
, ∀𝑓 ̸= 𝑔 ∈ 𝑃

𝑖
. (19)

By Definition 1, if 𝑋 is a perfect equilibrium, then 𝑋
𝑖
∈

𝐶𝑀
𝑖
[𝐴
𝑖.
, 𝑋
𝑟

−𝑖
]. Since, for each player 𝑗 ̸= 𝑖, 𝑋𝑟

𝑗
is completely

mixed, each pure strategy of 𝑗 in a combination 𝑓 or 𝑔 ∈ 𝑃
𝑖

is assigned a strictly positive probability 𝜔𝑓
𝑗
> 0 and 𝜔

𝑔

𝑗
> 0,

such that𝑋𝑟
𝑗
= ∑
𝑓∈𝑃𝑖 ,𝑓 ̸=𝑔 𝜔

𝑓

𝑗
𝑒
𝑓

𝑗
+ ∑
𝑔∈𝑃𝑖

𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
.

Thus, we have

𝜔
𝑔

𝑗
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑔

𝑗
< 𝜔
𝑔

𝑗
(𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑔

𝑗
, for some 𝑔 ∈ 𝑃

𝑖
,

(20)

and 𝜔
𝑓

𝑗
(𝑒
𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑓

𝑗
= 𝜔
𝑓

𝑗
(𝑋
−𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑓

𝑗
, ∀𝑓 ̸= 𝑔 ∈

𝑃
𝑖
, which is equivalent to

(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
< (𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
, for some 𝑔 ∈ 𝑃

𝑖
,

(21)

and (𝑒
𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
= (𝑋
−𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
, ∀𝑓 ̸= 𝑔 ∈

𝑃
𝑖
.
If the weakly dominated strategy 𝑠

𝑘

𝑖
is assigned a strictly

positive probability 𝜔𝑘
𝑖
, then

𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
(𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
) < 𝜔
𝑘

𝑖
(𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
(𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
) ,

for some 𝑔 ∈ 𝑃
𝑖
,

(22)

and 𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
(𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
) = 𝜔

𝑘

𝑖
(𝑋
−𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
(𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
),

∀𝑓 ̸= 𝑔 ∈ 𝑃
𝑖
.

Therefore, if we sum, respectively, on all 𝑔 and 𝑓 ∈ 𝑃
𝑖
, we

obtain

∑

𝑔∈𝑃𝑖

𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
(𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
) < ∑

𝑔∈𝑃𝑖

𝜔
𝑘

𝑖
(𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
(𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
) ,

(23)
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and ∑
𝑓∈𝑃𝑖 ,𝑓 ̸=𝑔 𝜔

𝑘

𝑖
(𝑒
𝑘

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
(𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
) = ∑

𝑓∈𝑃𝑖 ,𝑓 ̸=𝑔 𝜔
𝑘

𝑖
(𝑋
−𝑘

𝑖
)
𝑇

∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
(𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
), which is equivalent to

𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
∑

𝑔∈𝑃𝑖

(𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
) < 𝜔
𝑘

𝑖
(𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
∑

𝑔∈𝑃𝑖

(𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
) ,

𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗

∑

𝑓∈𝑃𝑖 ,𝑓 ̸=𝑔
(𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
)

= 𝜔
𝑘

𝑖
(𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗

∑

𝑓∈𝑃𝑖 ,𝑓 ̸=𝑔
(𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
) .

(24)

Since 𝑋𝑟
𝑗
= (∑
𝑓∈𝑃𝑖 ,𝑓 ̸=𝑔(𝜔

𝑓

𝑗
𝑒
𝑓

𝑗
) + ∑
𝑔∈𝑃𝑖

(𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
)), adding side by

side inequality (24) yields

𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑟

𝑗
< 𝜔
𝑘

𝑖
(𝑋
−𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑟

𝑗
. (25)

Also, we know that the mixed strategy vector 𝑋
𝑖
can be

expressed using the weakly dominated strategy 𝑠
𝑘

𝑖
and all

other pure strategies. Hence, we can write

𝑋
𝑖
= 𝜔
𝑘

𝑖
𝑒
𝑘

𝑖
+

𝑚𝑖

∑

ℎ=1,ℎ ̸=𝑘
𝜔
ℎ

𝑖
𝑒
ℎ

𝑖
, (26)

such that 𝜔𝑘
𝑖
+ ∑
𝑚𝑖

ℎ=1,ℎ ̸=𝑘
𝜔
ℎ

𝑖
= 1. Thus, if we add the term

𝑚𝑖

∑

ℎ=1,ℎ ̸=𝑘
𝜔
ℎ

𝑖
(𝑒
ℎ

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
( ∑

𝑓∈𝑃𝑖 ,𝑓 ̸=𝑔
(𝜔
𝑓

𝑗
𝑒
𝑓

𝑗
) + ∑

𝑔∈𝑃𝑖

(𝜔
𝑔

𝑗
𝑒
𝑔

𝑗
)) ,

(27)

to both sides of inequality (25), we obtain

(𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

+

𝑚𝑖

∑

ℎ=1,ℎ ̸=𝑘

𝜔
ℎ

𝑖
(𝑒
ℎ

𝑖
)

𝑇

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=�̂�𝑖

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑟

𝑗

< (𝜔
𝑘

𝑖
(𝑋
−𝑘

𝑖
)

𝑇

+

𝑚𝑖

∑

ℎ=1,ℎ ̸=𝑘

𝜔
ℎ

𝑖
(𝑒
ℎ

𝑖
)

𝑇

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋𝑖

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑟

𝑗
.

(28)

Thus,𝑋
𝑖
∉ 𝐶𝑀

𝑖
[𝐴
𝑖.
, 𝑋
𝑟

−𝑖
], which contradicts the fact that

𝑋 is perfect. Therefore, if 𝑋 is a perfect Nash equilibrium,
then for any given player 𝑖, any weakly dominated strategy
𝑠
𝑘

𝑖
that provides a total payoff strictly less than the total

payoff provided by a dominant convex combination 𝑋
−𝑘

𝑖
, for

some pure strategic combination of the other players choices,
should be assigned a zero probability.

We now show that every perfect equilibrium of a poly-
matrix game is undominated and every undominated equi-
librium of a polymatrix game is perfect. Theorem 5 sets an
alternate definition of perfect equilibrium for polymatrix
games.

Theorem 5. Let 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) be a Nash equilibrium of a

polymatrix game, and let 𝑒ℎ
𝑗
be any pure strategy reply vector by

any player 𝑗 ̸= 𝑖. The Nash equilibrium𝑋 is perfect if and only
if for each player 𝑖 and any vector 𝑋

𝑖
∈ 𝑆
𝑖
, the vector 𝑋

𝑖
∈ 𝑆
𝑖

satisfies

(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. (29)

Proof. In the first part of the proof, we show that if
𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
) is a perfect Nash equilibrium, then

(𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
for each player 𝑖 ∈

𝑁. In the second part, we show that if (𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥

(𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
for each player 𝑖 ∈ 𝑁, then𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
)

is a perfect Nash equilibrium.

Part I (the Nash equilibrium 𝑋 is perfect). Firstly, we write
𝑋
𝑖
= ∑
𝑚𝑖

𝑘=1
𝜔
𝑘

𝑖
𝑒
𝑘

𝑖
, with ∑

𝑚𝑖

𝑘=1
𝜔
𝑘

𝑖
= 1 and 𝜔

𝑘

𝑖
≥ 0. Since 𝑋 =

(𝑋
1
, . . . , 𝑋

𝑛
) is a perfect Nash equilibrium of a polymatrix

game, Proposition 4 implies that, for each player 𝑖 ∈ 𝑁,
𝑋
𝑖
is such that any pure strategy 𝑠

𝑘

𝑖
is assigned a nonzero

probability 𝜔
𝑘

𝑖
> 0 only if for any pure strategy reply vector

𝑒
ℎ

𝑗
, by any player 𝑗 ̸= 𝑖, we have

(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑒
𝑙

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, ∀𝑠

𝑙

𝑖
̸= 𝑠
𝑘

𝑖
∈ 𝑆
𝑖
, ∀𝑖 ∈ 𝑁.

(30)

Thus, we can write

𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ 𝜔
𝑘

𝑖
(𝑒
𝑙

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, ∀𝑠

𝑙

𝑖
̸= 𝑠
𝑘

𝑖
∈ 𝑆
𝑖
, ∀𝑖 ∈ 𝑁.

(31)

Therefore, we obtain
𝑚𝑖

∑

𝑘=1

𝜔
𝑘

𝑖
(𝑒
𝑘

𝑖
)

𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=�̂�
𝑇

𝑖

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥

𝑚𝑖

∑

𝑘=1

𝜔
𝑘

𝑖
(𝑒
𝑙

𝑖
)

𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
𝑇

𝑖

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
,

∀𝑠
𝑙

𝑖
̸= 𝑠
𝑘

𝑖
∈ 𝑆
𝑖
, ∀𝑖 ∈ 𝑁.

(32)

Since ∑𝑚𝑖
𝑘=1

𝜔
𝑘

𝑖
= 1, ∑𝑚𝑖

𝑘=1
𝜔
𝑘

𝑖
(𝑒
𝑙

𝑖
)
𝑇
= 𝑋
𝑇

𝑖
∈ 𝑆
𝑖
. Hence

(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, 𝑖 ∈ 𝑁. (33)

We deduce that if 𝑋 is a perfect Nash equilibrium, then
𝑋
𝑖
is a best response to any combination of the other players

pure strategic choices.

Part II ((𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
for each player

i ∈ N). Many authors show how to construct a sequence
of completely mixed strategies converging to a given Nash
equilibrium under some refinement conditions [20, 26]. In
the absence of any particular refinement condition, we can
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assume that it is easy to construct a sequence {𝑋
𝑟
}
𝑟∈N =

{(𝑋
𝑟

1
, . . . , 𝑋

𝑟

𝑛
)}
𝑟∈N

of completely mixed strategies 𝑛-tuples
converging to𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
).

Let 𝑋𝑟
𝑗
= ∑

𝑚𝑗

ℎ=1
𝜔
𝑟ℎ

𝑗
𝑒
ℎ

𝑗
. Then, each real parameter 𝜔𝑟ℎ

𝑗
is

strictly positive (𝜔𝑟ℎ
𝑗

> 0) and ∑

𝑚𝑗

ℎ=1
𝜔
ℎ

𝑗
= 1. Since (𝑋

𝑖
)
𝑇

∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
for all 𝑖 ∈ 𝑁, for each positive

real parameter 𝜔𝑟ℎ
𝑗
, we can write

𝜔
𝑟ℎ

𝑗
(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ 𝜔
𝑟ℎ

𝑗
(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, 𝑖 ∈ 𝑁. (34)

Thus, if we sum all the ℎ ∈ 𝑚
𝑗
, we obtain

𝑚𝑗

∑

ℎ=1

𝜔
𝑟ℎ

𝑗
(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥

𝑚𝑗

∑

ℎ=1

𝜔
𝑟ℎ

𝑗
(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, 𝑖 ∈ 𝑁. (35)

Hence,

(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝑚𝑗

∑

ℎ=1

𝜔
𝑟ℎ

𝑗
𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝑚𝑗

∑

ℎ=1

𝜔
𝑟ℎ

𝑗
𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, 𝑖 ∈ 𝑁. (36)

Therefore,

(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗

𝑚𝑗

∑

ℎ=1

𝜔
𝑟ℎ

𝑗
𝑒
ℎ

𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
𝑟

𝑗

≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗

𝑚𝑗

∑

ℎ=1

𝜔
𝑟ℎ

𝑗
𝑒
ℎ

𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑋
𝑟

𝑗

, 𝑖 ∈ 𝑁.

(37)

Since ∑𝑚𝑗
ℎ=1

𝜔
ℎ

𝑗
= 1, we obtain

(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑟

𝑗
≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑋
𝑟

𝑗
, 𝑖 ∈ 𝑁, (38)

which shows that 𝑋
𝑖
is a best response to every 𝑋

𝑟

𝑗
in the

sequence

𝑋
𝑖
∈ 𝐶𝑀

𝑖
[𝐴
𝑖.
, 𝑋
𝑟

−𝑖
] . (39)

Hence, 𝑋 satisfies the conditions of Definition 1; that is,
𝑋 is a perfect Nash equilibrium.

Wefinally conclude that theNash equilibrium �̂� is perfect
if and only if for any pure strategy reply vector 𝑒ℎ

𝑗
by any player

𝑗 ̸= 𝑖, for each player 𝑖 and any vector 𝑋
𝑖
∈ 𝑆
𝑖
, the vector

𝑋
𝑖
∈ 𝑆
𝑖
satisfies

(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. (40)

This shows that �̂� is a perfectNash equilibrium if andonly
if it is a best response to any combination of the other players
pure strategic choices.

While this perfectness undominance property is gener-
ally not right for 𝑛-player normal form games, Theorem 5
showed how the additive structure of polymatrix games
payoffs allows this property to be extended to this particular

class of 𝑛-player games. Hence, if there exists a vector of
mixed strategies𝑋 such that

(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
,

(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
̸= (𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
,

(41)

then the equilibrium 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is not perfect. An

immediate corollary can be stated.

Corollary 6. Let 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) be a Nash equilibrium of

a polymatrix game. For any player 𝑖, if there is a vector𝑋
𝑖
∈ 𝑆
𝑖

such that

(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, ∀ℎ ∈ 𝑃

𝑖
,

(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑔

𝑗
̸= (𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
𝑔

𝑗
, for some 𝑔 ∈ 𝑃

𝑖
,

(42)

then𝑋 is not perfect.

This characterization of equilibrium strategies can be
used to verify if a Nash equilibrium 𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
) is

perfect or not.

Proposition 7. The equilibrium𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is perfect if

and only if all optimal objective functions values of the following
linear programs are equal to zero, for all 𝑖 ∈ 𝑁:

maximize
(𝑋𝑖 ,𝜖𝑖)∈R

𝑚𝑖×R|𝑃𝑖 |
∑

ℎ∈𝑃𝑖

𝜖
ℎ

𝑖

subject to 𝑒
𝑡

𝑚𝑖
𝑋
𝑖
= 1,

(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗

≥ (𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
+ 𝜖
ℎ

𝑖
,

∀ℎ ∈ 𝑃
𝑖
, 𝑋
𝑖
, 𝜖
𝑖
≥ 0,

(43)

where 𝑒
𝑚𝑖

is a column vector with all entries equal to one.

Proof. Let (𝑋
∗

𝑖
, 𝜖
∗

𝑖
) be the optimal solution for a linear

program (43), for some 𝑖 ∈ 𝑁. If the optimal objective
function value is strictly positive, then at least one of the 𝜖ℎ

𝑖

variables is strictly positive.
In other words, there is at least one 𝜖ℎ

𝑖
> 0, with ℎ ∈ 𝑃

𝑖
,

such that

(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
+ 𝜖
ℎ

𝑖
. (44)

Therefore, we have (𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
> (𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
,

which means that

(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
̸= (𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, (45)
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while (𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
+ 𝜖
ℎ

𝑖
is satisfied.

Hence, the equilibrium𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is not perfect.

If all the optimal objective functions are equal to zero, for
all 𝑖 ∈ 𝑁, then all the entries of the 𝜖

∗

𝑖
vectors are equal to

zero.The 𝜖∗
𝑖
vectors correspond to themaximumslack vectors

between (𝑋
𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
and (𝑋

𝑖
)
𝑇
∑
𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. Therefore,

(𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
= (𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. (46)

Hence, if all the 𝜖∗
𝑖
vectors are equal to zero, the equilib-

rium (𝑋
1
, . . . , 𝑋

𝑛
) is perfect.

We note that the linear programs (43) are always feasible
for𝑋
𝑖
= 𝑋
𝑖
and 𝜖
𝑖
= 0.

Example 8. Consider a three-player polymatrix game (3×3×

3) taken from Audet et al. [4], where 𝐴
1.
, 𝐴
2.
, and 𝐴

3.
are

the payoff matrices of players I, II, and III, respectively. As
presented in Table 1, the 𝐸𝜒MIP algorithm enumerated seven
extremeNash equilibria for this gameusing exact arithmetics:

𝐴
1.
= (

10 10 −10 20 30 25

20 −10 −10 −10 0 20

30 −15 −10 −10 20 10

) ,

𝐴
2.
= (

−10 20 10 −20 30 10

30 0 35 10 −10 −10

30 35 30 20 10 −20

) ,

𝐴
3.
= (

−30 −10 10 10 20 −30

40 10 40 20 10 20

10 20 22 30 20 40

) .

(47)

This game has five maximal Nash subsets 𝑇
1
= {1, 7}, 𝑇

2
=

{2, 3}, 𝑇
3

= {4}, 𝑇
4

= {5}, and 𝑇
5

= {6}. For the second
extremeNash equilibrium, the linear program (43), for player
III, is expressed as follows:

maximize
𝑋3 ,𝜖3

𝜖
1

3
+ 𝜖
2

3
+ 𝜖
3

3
+ 𝜖
4

3
+ 𝜖
5

3
+ 𝜖
6

3
+ 𝜖
7

3
+ 𝜖
8

3
+ 𝜖
9

3

subject to 𝑥
31

+ 𝑥
32

+ 𝑥
33

= 1,

20𝑥
31

+ 60𝑥
32

+ 40𝑥
33

≥ 40 + 𝜖
1

3
,

10𝑥
31

+ 50𝑥
32

+ 30𝑥
33

≥ 30 + 𝜖
2

3
,

− 60𝑥
31

+ 60𝑥
32

+ 50𝑥
33

≥ 50 + 𝜖
3

3
,

30𝑥
32

+ 50𝑥
33

≥ 50 + 𝜖
4

3
,

10𝑥
31

+ 20𝑥
32

+ 40𝑥
33

≥ 40 + 𝜖
5

3
,

− 40𝑥
31

+ 30𝑥
32

+ 60𝑥
33

≥ 60 + 𝜖
6

3
,

20𝑥
31

+ 60𝑥
32

+ 52𝑥
33

≥ 52 + 𝜖
7

3
,

30𝑥
31

+ 50𝑥
32

+ 42𝑥
33

≥ 42 + 𝜖
8

3
,

− 20𝑥
31

+ 60𝑥
32

+ 62𝑥
33

≥ 62 + 𝜖
9

3
,

𝑋
3
, 𝜖
3
≥ 0.

(48)

As in Audet et al. [28], we have used exact arithmetics
to obtain exact solutions for these linear programs. For this
polymatrix game, all of the seven extreme Nash equilibria
enumerated are found to be perfect.

4. Geometry of The Set of Perfect Equilibria

The preceding game example suggests that the enumeration
of the extreme Nash equilibria of a polymatrix game leads to
a description of the set of Nash perfect equilibria. However, to
the best of our knowledge, there are no published results on
the geometric properties of the set of Nash perfect equilibria
for polymatrix games. By Proposition 9, we show that the set
of Nash equilibria of a polymatrix game is a finite union of
convex polytopes.

Proposition 9. Let 𝐺[(𝐴
𝑖𝑗
)
𝑖 ̸=𝑗

]
𝑛
be a polymatrix game with 𝑛

players. Any perfect Nash equilibrium 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is a

convex combination of extreme perfect Nash equilibria.

Proof. Given that 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is a Nash equilibrium,

then 𝑋 can be expressed as a convex combination of a
number of extreme Nash equilibria belonging to the same
Nash maximal subset 𝑇.

Let 𝑋
𝑠

= (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑖−1
, 𝑌
𝑠

𝑖
, 𝑋
𝑖+1

, . . . , 𝑋
𝑛
) be any

extreme Nash equilibrium representing any extreme point of
the Nash maximal subset 𝑇.

Then, we can write 𝑋 = ∑
𝑒𝑇

𝑠=1
𝜔
𝑠
𝑋
𝑠, where 𝑒

𝑇
is the

number of extreme Nash equilibria in 𝑇, 𝜔
𝑠

≥ 0, and
∑
𝑒𝑇

𝑠=1
𝜔
𝑠
= 1. Therefore,𝑋

𝑖
= ∑
𝑒𝑇

𝑠=1
𝜔
𝑠
𝑌
𝑠

𝑖
.

Given that𝑋 is a perfect equilibrium, then for any vector
𝑋
𝑖
∈ 𝑆
𝑖
, the vector𝑋

𝑖
∈ 𝑆
𝑖
is such that

(𝑋
𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
, (49)

where 𝑒ℎ
𝑗
∈ 𝑃
𝑖
is a vector of pure strategy reply by any player

𝑗 ̸= 𝑖.
Thus, for any vector𝑋

𝑖
∈ 𝑆
𝑖
, we have

𝑒𝑇

∑

𝑠=1

𝜔
𝑠
(𝑌
𝑠

𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. (50)

Now let us suppose that 𝑋 can be expressed as a
combination of extreme perfect and extreme nonperfect
Nash equilibria of the Nash maximal subset 𝑇. In partic-
ular, let 𝑋

𝑞
= (𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑖−1
, 𝑌
𝑞

𝑖
, 𝑋
𝑖+1

, . . . , 𝑋
𝑛
) be an

extreme nonperfect Nash equilibrium of 𝑇. Also, let 𝑋𝑝 =

(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑖−1
, 𝑌
𝑝

𝑖
, 𝑋
𝑖+1

, . . . , 𝑋
𝑛
) be an extreme perfect

Nash equilibrium of 𝑇. Then, we can write

𝑋 = ∑

𝑝

𝜔
𝑝
𝑋
𝑝
+∑

𝑞

𝜔
𝑞
𝑋
𝑞
, (51)

with at least one 𝜔
𝑝
> 0 and at least one 𝜔

𝑞
> 0.

Thus, for every 𝑘 ̸= 𝑖,𝑋
𝑘
= ∑
𝑝
𝜔
𝑝
𝑋
𝑝

𝑘
+∑
𝑞
𝜔
𝑞
𝑋
𝑞

𝑘
. Since all

extreme Nash equilibria of 𝑇 are interchangeable and have in
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Table 1: Extreme Nash equilibria for Example 8.

Eq. 𝛼
1

𝛼
2

𝛼
3

𝑋
1

𝑋
2

𝑋
3

1 50 40 60 (0, 0, 1) (1, 0, 0) (0, 1, 0)

2 40 30 50 (0, 1, 0) (1, 0, 0) (0, 0, 1)

3 40 160/7 360/7 (0, 2/7, 5/7) (1, 0, 0) (0, 0, 1)

4 30 818/55 2592/55 (309/550, 118/275, 1/110) (8/11, 0, 3/11) (0, 1/11, 10/11)

5 25 12 49 (3/5, 2/5, 0) (1/2, 0, 1/2) (0, 0, 1)

6 20 40 60 (1, 0, 0) (0, 0, 1) (0, 1, 0)

7 30 40 60 (0, 0, 1) (1/2, 0, 1/2) (0, 1, 0)

common 𝑋
𝑘
for every 𝑘 ̸= 𝑖, we can write 𝑋

𝑘
= ∑
𝑝
𝜔
𝑝
𝑋
𝑘
+

∑
𝑞
𝜔
𝑞
𝑋
𝑘
. Hence,𝑋

𝑘
= 𝑋
𝑘
, for every 𝑘 ̸= 𝑖. Therefore,

(𝑋
𝑘
)

𝑇

∑

𝑗 ̸=𝑘

𝐴
𝑘𝑗
𝑒
ℎ

𝑗
= (𝑋
𝑘
)
𝑇
∑

𝑗 ̸=𝑘

𝐴
𝑘𝑗
𝑒
ℎ

𝑗
, ∀𝑘 ̸= 𝑖. (52)

On one hand, condition (52) is satisfied for𝑋𝑞 except for
𝑌
𝑞

𝑖
(𝑘 = 𝑖), since 𝑋

𝑞 is not perfect. Therefore, there exists a
vector𝑋𝑞

𝑖
∈ 𝑆
𝑖
such that

(𝑌
𝑞

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
< (𝑋
𝑞

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. (53)

Hence, with 𝜔
𝑞
> 0 we have

𝜔
𝑞
(𝑌
𝑞

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
< 𝜔
𝑞
(𝑋
𝑞

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. (54)

On the other hand, since 𝑋𝑝 is perfect, condition (52) is
satisfied for 𝑋𝑝 including 𝑌

𝑝

𝑖
(𝑘 = 𝑖). Then, for any vector

𝑋
𝑝

𝑖
∈ 𝑆
𝑖
, we have

(𝑌
𝑝

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ (𝑋
𝑝

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. (55)

Therefore, with 𝜔
𝑝
> 0 we have

𝜔
𝑝
(𝑌
𝑝

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
≥ 𝜔
𝑝
(𝑋
𝑝

𝑖
)

𝑇

∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
. (56)

Inequalities (54) and (56) imply

(∑

𝑞

𝜔
𝑞
(𝑌
𝑞

𝑖
)

𝑇

+∑

𝑝

𝜔
𝑝
(𝑌
𝑝

𝑖
)

𝑇

)∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗

< (∑

𝑞

𝜔
𝑞
(𝑋
𝑞

𝑖
)

𝑇

+∑

𝑝

𝜔
𝑝
(𝑌
𝑝

𝑖
)

𝑇

)∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
.

(57)

Since𝑋
𝑖
= ∑
𝑒𝑇

𝑠=1
𝜔
𝑠
𝑌
𝑠

𝑖
= ∑
𝑞
𝜔
𝑞
𝑌
𝑞

𝑖
+ ∑
𝑝
𝜔
𝑝
𝑌
𝑝

𝑖
, we have

𝑒𝑇

∑

𝑠=1

𝜔
𝑠
(𝑌
𝑠

𝑖
)
𝑇
∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗

< (∑

𝑞

𝜔
𝑞
(𝑋
𝑞

𝑖
)

𝑇

+∑

𝑝

𝜔
𝑝
(𝑌
𝑝

𝑖
)

𝑇

) ∑

𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑒
ℎ

𝑗
.

(58)

It is now made clear that Condition (58) contradicts
Condition (50). Therefore, if 𝑋

𝑞 is a nonperfect extreme
Nash equilibrium, then 𝜔

𝑞
= 0. Hence, any perfect Nash

equilibrium 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) is a convex combination of

extreme perfect Nash equilibria.

A set of perfect Nash equilibria belonging to the same
Nash subset is called a Selten subset. If a Selten subset is not
properly contained in another Selten subset, then it is called
amaximal Selten subset.

Corollary 10. Anymaximal Selten subset is a convex polytope.

Proof. Following Proposition 9, any perfect equilibrium is a
convex combination of a number of extreme Nash equilibria
belonging to the same maximal Nash subset. Therefore, any
maximal Selten subset is a convex polytope.

Example 11. Given the Nash maximal subsets identified for
Example 8, the maximal Selten subsets of this game are 𝑆

1
=

{1, 7}, 𝑆
2
= {2, 3}, 𝑆

3
= {4}, 𝑆

4
= {5}, and 𝑆

5
= {6}.

Quintas [12] showed that the set of Nash equilibrium
points in a polymatrix game is a finite union of convex
polytopes. These convex polytopes are possibly disjoint as
in Example 8. Following Proposition 9 and Corollary 10, we
state that the set of perfect Nash equilibrium points of
a polymatrix game is a finite union of convex polytopes,
possibly disjoint.

Theorem 12. The set of perfect Nash equilibrium points of a
polymatrix game is a finite union of convex polytopes, possibly
disjoint.

Proof. Any maximal Selten subset is a convex polytope
contained in a maximal Nash subset. Therefore, the set of
perfect Nash equilibrium points of a polymatrix game is a
finite union of convex polytopes. The maximal Selten subsets
are possibly disjoint as in Example 8.

5. Applications

Many applications can be found to illustrate how polymatrix
games can be used. In the following, we illustrate our results
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on a three-player chain store competition game and a three-
player inspection management game inspired from Fandel
and Trockel [29].

Application 1. Figure 1 illustrates an extensive competition
game with imperfect information involving three chain
stores. Each of the chain stores 1, 2, and 3 has to decide either
to enter the market zones of both of its opponents or not.
Hence, each chain store randomizes on two pure strategic
decisions “In” and “out.” Each chain store gets a partial payoff
depending on its decision and the opponents’ decisions. For
example, if chain store 1 decides to get “In” while chain stores
2 and 3 decide to stay out, chain store 1 gets 4 + 5 as a total
payoff and chain stores 2 and 3 get, respectively, 4 + 3 and
3+2, respectively.This game can be reduced to a three-person
polymatrix game with the following payoff matrices:

𝐴
1.
= (

1 4

0 2

2 5

3 3
) ,

𝐴
2.
= (

−1 2

4 1

3 4

−1 3
) ,

𝐴
3.
= (

−1 −2

3 1

5 4

1 2
) .

(59)

Using exact arithmetics, the 𝐸𝜒MIP algorithm enumer-
ated three extremeNash equilibria for this game, as presented
in Table 2. This game has three completely disjoint maximal
Nash subsets 𝑇

1
= {1}, 𝑇

2
= {2}, and 𝑇

3
= {3}. The extreme

Nash equilibria 1 and 3 are not perfect. In fact, for both of
these extreme equilibria, 𝑋

1
= (1, 0) dominates 𝑋

1
= (0, 1)

and 𝑋
1

= (5/6, 1/6), respectively. The second strategy of
player 1 is weakly dominated by his first strategy. Therefore,
any Nash equilibrium which assigns to this strategy a strictly
positive probability cannot be perfect. The extreme Nash
equilibrium 2 is perfect and defines by itself the unique
maximal Selten subset of this game. This equilibrium is also
the unique subgame perfect Nash equilibrium of the original
extensive game with imperfect information.

Application 2. A polymatrix management inspection game
involves three players; the manager (M), the controller
(C), and the company’s management (U). The manager
has to randomize between two pure strategies: 𝑚, to plan
methodically, or 𝑛𝑚, not to plan methodically.The controller
controls the manager’s work and has to randomize between
two pure strategies: ℎ, to compile a precise report on the
manager’s activity, or 𝑛ℎ, not to compile a precise report on
the manager’s activity. The company’s management inspects
the controller’s report and has to randomize between two
pure strategies: 𝑎, to perform an intensive inspection of
the controller’s report, or 𝑛𝑎, not to perform an intensive
inspection of the controller’s report.

If the manager (M) plans methodically, he is rewarded by
the company’s board with a bonus compensation 𝐵

𝑎

𝐷
or 𝐵𝑛𝑎
𝐷

depending on the company’s board inspection. Otherwise,
a penalty 𝑆

𝑎

𝐷
or 𝑆
𝑛𝑎

𝐷
is subtracted from his salary. If the

controller (C) compiles a precise report he is rewarded by the
company’s board with a bonus amount 𝐵𝑎

𝐶
or 𝐵𝑛𝑎
𝐶

depending

1

2

3

In

Out

1 + 2, −1 + 3, −1 + 5

1 + 5, −1 + 4, 3 + 1

4 + 2, 4 − 1, −1 + 4

4 + 5, 4 + 3, 3 + 2

0 + 3, 2 + 3, −2 + 5

0 + 3, 2 + 4, 1 + 1

2 + 3, 1 − 1, −2 + 4

2 + 3, 1 + 3, 1 + 2

In

In

In

In

In

Out
Out

Out

Out

Out

Out

In

Figure 1: Chain store competition game.

Table 2: Extreme Nash equilibria for Application 1.

Eq. 𝛼
1

𝛼
2

𝛼
3

𝑋
1

𝑋
2

𝑋
3

𝑇 Perfect
1 3 5 3 (0, 1) (1, 0) (1, 0) 1 No
2 9 7 5 (1, 0) (0, 1) (0, 1) 2 Yes
3 3 5/2 23/6 (5/6, 1/6) (1, 0) (1, 0) 3 No

on the company’s board inspection. Otherwise, a penalty 𝑆
𝑎

𝐶

or 𝑆𝑛𝑎
𝐶
is subtracted from his remuneration. The manager not

planning methodically has a leisure gain payoff 𝐿. The cost of
a precise report to the controller is 𝐾𝑚

𝐶
if the manager plans

methodically. Otherwise the cost of the report is 𝐾𝑛𝑚
𝐶

. The
cost of an intensive inspection to the company’s board is𝐾ℎ

𝑈
if

the controller compiles a precise report. Otherwise the cost is
𝐾
𝑛ℎ

𝑈
. If the manager plans methodically the company’s board

(U) earns a profit Π. Otherwise a loss Δ is registered. The
payoff matrices can be expressed as follows:

𝐴
𝐷
= (

0 0

𝐿 𝐿

𝐵
a
𝐷

𝐵
𝑛𝑎

𝐷

−𝑆
𝑎

𝐷
−𝑆
𝑛𝑎

𝐷

)

𝐴
𝐶
= (

−𝐾
𝑚

𝐶
−𝐾
𝑛𝑚

𝐶

0 0

𝐵
𝑎

𝐶
𝐵
𝑛𝑎

𝐶

−𝑆
𝑎

𝐶
−𝑆
𝑛𝑎

𝐶

)

𝐴
𝑈
= (

Π − 𝐵
𝑎

𝐷
−Δ + 𝑆

𝑎

𝐷

Π − 𝐵
𝑛𝑎

𝐷
−Δ + 𝑆

𝑛𝑎

𝐷

−𝐾
ℎ

𝑈
− 𝐵
𝑎

𝐶
−𝐾
𝑛ℎ

𝑈
+ 𝑆
𝑎

𝐶

−𝐵
𝑛𝑎

𝐶
𝑆
𝑛𝑎

𝐶

) .

(60)

The current values of the game parameters are displayed
in Table 3.

This game has three extreme Nash equilibria and two
maximal Nash subsets 𝑇

1
= {1, 2} and 𝑇

2
= {2, 3}. As

presented in Table 4, the extreme Nash equilibria 2 and 3

are not perfect. In fact, for both of these extreme equilibria,
𝑋
1

= (0, 1) dominates 𝑋
1

= (1/2, 1/2). For the manager
(D), the weakly dominated strategy 𝑚 cannot be assigned
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Table 3: Three-player management inspection game parameters.

(𝐷) (𝐶) (𝑈)
𝐿 = 440 𝐾

𝑚

𝐶
= 400, 𝐾𝑛𝑚

𝐶
= 600 𝐾

ℎ

𝑈
= 100, 𝐾𝑛ℎ

𝑈
= 200

𝐵
𝑎

𝐷
= 40 𝐵

𝑎

𝐶
= 300 Π = 1000

𝐵
𝑛𝑎

𝐷
= 10 𝐵

𝑛𝑎

𝐶
= 100 Δ = 500

𝑆
𝑎

𝐷
= 400 𝑆

𝑎

𝐶
= 200

𝑆
𝑛𝑎

𝐷
= 100 𝑆

𝑛𝑎

𝐶
= 100

Table 4: Extreme Nash equilibria for Application 1.

Eq. 𝛼
1

𝛼
2

𝛼
3

𝑋
1

𝑋
2

𝑋
3

𝑇 Perfect
1 40 −200 −100 (0, 1) (0, 1) (1, 0) 1 Yes
2 40 −200 430 (1/2, 1/2) (0, 1) (1, 0) 1, 2 No
3 40 −200 360 (1/2, 1/2) (7/40, 33/40) (1, 0) 2 No

Table 5: Computational results on randomly generated polymatrix games.

Size 𝑑 = 0.125 𝑑 = 0.25 𝑑 = 0.5 𝑑 = 0.75 𝑑 = 1.0

ne np % ne np % ne np % ne np % ne np %
2 × 2 × 2 53 32 60 29 22 76 15 13 87 16 16 100 10 10 100
3 × 3 × 3 110 66 60 76 20 26 29 23 79 20 19 95 16 15 94
4 × 4 × 4 157 48 31 75 38 51 39 37 95 32 27 84 39 30 77

a nonzero probability strategy.The extremeNash equilibrium
1 is perfect and defines by itself the unique maximal Selten
subset of this game.

6. Computational Results

Our computational experiments on randomly generated
polymatrix games with different size and density are pre-
sented in Table 5. Using C++ implementations of the 𝐸𝜒MIP
algorithm, these experimental results were obtained under
WindowsXP onworkstations with 3.3 GHz Intel Core i5 vPro
processors and 3.2GB RAM. The optimization of the linear
programs defined by Proposition 7 is performed using an
exact arithmetics implementation of the Simplex algorithm
[30].

The column (Size) indicates the number of strategies
of each player before elimination of strongly dominated
strategies as performed in [4]. The value (d) indicates the
density of the generated partial payoff matrices. The column
(ne) indicates the total number of extreme Nash equilibria
enumerated over 10 randomly generated polymatrix games.
The column (np) indicates the total number of extreme
perfect equilibria obtained. Finally the column (%) indicates
the percentage of extreme perfect equilibria.

6.1. Discussion. The experimental results show that the
percentage of extreme perfect equilibria increases with an
increase of the polymatrix games density. Hence, reducing
the partial payoff matrices density increases the number
of extreme Nash equilibria of the polymatrix game and

decreases the probability of generating perfect extreme equi-
libria. For 2 × 2 × 2 three-person polymatrix games, Table 5
illustrates how the percentage of extreme perfect equilibria
goes from 60%, for the sparsest case where the polymatrix
games density is 12.5%, to 100%, for a density of 100%.
Meanwhile, the average number of extreme Nash equilibria
decreases from 53 to 10. This could be explained by the
fact that the high number of zeros in the payoff matrices
reduces the number of strictly dominated strategies and
increases the number of extreme Nash equilibria by offering
a number of strategies with the same zero payoff for each
player. At the same time, the high number of zeros in the
payoff matrices increases the number of weakly dominated
strategies which decreases the probability ofmeeting extreme
perfect equilibria. This behavior was already observed for
bimatrix games [26].

7. Conclusion

Game theoretic applications have been increasingly encoun-
tered in engineering, management and political sciences.
Decision makers can often be represented by autonomous
agents such as hardware (central units) or software (program
applications), which are unable to distinguish between a set
of Nash equilibria unless a refinement procedure is used.
This paper presents a new characterization of perfect Nash
equilibria for polymatrix games. This characterization shows
that a Nash equilibrium is perfect if and only if it is a
best response to any combination of the other players pure
strategic plays. While this characterization is generally not
right for 𝑛-player games as shown by van Damme (see
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[27, Chapter 2]), the additive structure of polymatrix games
payoffs allows the undominance property of perfect equilibria
to be extended to this particular class of 𝑛-player normal form
games.

Moreover, we show that any perfect Nash equilibrium is a
convex combination of extreme perfectNash equilibria. As an
immediate implication of this result, the set of perfect Nash
equilibria of a polymatrix game is a finite union of convex
polytopes. A linear programming formulation to identify
perfect equilibria for polymatrix games is presented. Finally,
the results of this paper are used to perform computational
experiments on randomly generated polymatrix games with
different size and density.
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