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The theory of generalized thermoelasticity with fractional order strain is employed to study the problem of one-dimensional
disturbances in a viscoelastic solid in the presence of amoving internal heat source and subjected to amechanical load.The problem
is in the context of Green-Naghdi theory of thermoelasticity with energy dissipation. Laplace transform and state space techniques
are used to obtain the general solution for a set of boundary conditions. To tackle the expression of heat source, Fourier transform
is also employed. The expressions for different field parameters such as displacement, stress, thermodynamical temperature, and
conductive temperature in the physical domain are derived by the application of numerical inversion technique. The effects of
fractional order strain, two-temperature parameter, viscosity, and velocity of internal heat source on the field variables are depicted
graphically for copper material. Some special cases of interest have also been presented.

1. Introduction

The classical thermoelasticity theory based on Fourier’s law
of heat conduction suffers from the deficiency of admitting
thermal signals propagating with infinite speed. Numerous
alternative theories of heat conduction have been put forth to
overcome this deficiency, allowing heat to propagate as wave
at finite speed. Among these theories, the extended theory of
thermoelasticity proposed by Lord and Shulman [1] involving
one relaxation time and the temperature-rate dependent
theory of thermoelasticity propounded byGreen and Lindsay
[2] involving two relaxation times are the earliest and well
established theories. Green and Naghdi [3–5] developed a
theory where the characteristics of material response for
thermal phenomenon are based on three types of constitutive
response functions, labelled as types I, II, and III. When
the theory of type I is linearized, we obtain the classical
system of thermoelasticity. In model II, the internal rate of
production of entropy is taken to be identically zero, implying
no dissipation of thermal energy. Model III includes the

previous two models as special case and admits dissipation
of energy in general.

In the late 1960s, Chen and Gurtin [6] and Chen et al. [7,
8] formulated the two-temperature thermoelasticity theory.
In this theory, the classical Clausius Duhamel inequality was
replaced by another one depending on two temperatures—
conductive temperature 𝜑 and thermodynamical tempera-
ture 𝜃.The first is due to the thermal processes and the second
is due to the mechanical processes inherent between the
particles and layers of elastic materials. Boley and Tolins [9]
found that the two temperatures and the strain have represen-
tations in the form of a travelling wave pulse response which
occurs instantaneously throughout the body.The key element
that sets the two-temperature thermoelasticity apart from the
classical theory of thermoelasticity is the material parameter
𝑎, called the temperature discrepancy. Specifically, if 𝑎 = 0,
then 𝜑 = 𝜃 and the field equations of classical theory can be
fully recovered from the two-temperature thermoelasticity.

Warren and Chen [10] investigated the wave propagation
in the two-temperature thermoelasticity. Youssef [11] put
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forward this theory in the context of generalized theory of
thermoelasticity. Youssef and Al-Lehaibi [12] studied a one-
dimensional problem of two-temperature generalized ther-
moelasticity by employing the state-space technique. They
showed that the obtained results are qualitatively different
as compared to those in case of one-temperature thermoe-
lasticity. Youssef [13] constructed another two-temperature
generalized thermoelasticity theory for a homogeneous and
isotropic medium in the context of Green and Naghdi model
of type II.

Deswal and Kalkal [14] considered a new model of time-
fractional derivative in the context of micropolar generalized
thermoviscoelasticity theory with two temperatures. Zenk-
our and Abouelregal [15] employed state-space approach
for an infinite medium with a spherical cavity based upon
two-temperature generalized thermoelasticity and fractional
heat conduction. Othman and Hilal [16] studied a two-
dimensional problem of thermoelastic rotating material with
voids under the effect of gravity and temperature depen-
dent properties employing the two-temperature generalized
thermoelasticity in the context of Green-Naghdi theory of
types II and III. Bera et al. [17] applied two-temperature
generalized thermoelasticity to determine the conductive and
thermodynamic temperatures as well as the deformation and
stresses in an annular disk.

The fractional calculus has attracted intense attention of
an increasing number of mathematicians, physicians, and
engineers since the early 1990s. Fractional calculus is a
branch of mathematical analysis that focuses on the study of
differential operators of arbitrary order. Fractional integrals
and derivatives extend the well-known definitions of integer-
order primitives and derivatives to the ordinary differential
calculus to real-order operators. Abel was the first to attack a
physical problem using the techniques of fractional calculus.
The increased interest in this field is due to the fact that the
fractional differential operators are nonlocal and therefore
enable us to provide better description of real phenomena. A
brief history of the development of fractional calculus can be
found in Ross [18] andMiller and Ross [19]. A survey ofmany
emerging applications of the fractional calculus in the area of
science and engineering is done in the text by Podlubny [20].

A quasi-static uncoupled theory of thermoelasticity based
on fractional heat conduction equation was constructed by
Povstenko [21]. The Caputo time-fractional derivative [22]
was used by Povstenko [23] to investigate thermal stresses in
an infinite body with a circular cylindrical hole. Sherief et al.
[24] put forward a newmodel of generalized thermoelasticity
using fractional calculus. A uniqueness theorem, reciprocity
relation, and variational principle have also been established
in the same article. Youssef [25] also proposed a new
theory of generalized thermoelasticity using the methodol-
ogy of fractional calculus and discussed one-dimensional
application. Deswal and Kalkal [26] employed state space
approach to study the magneto-thermoelastic interactions
in an initially stressed isotropic medium under the purview
of two-temperature theory of generalized thermoelasticity.
The problem of magnetothermoelastic interactions in an
unbounded and perfectly conducting half-space whose sur-
face suffers from a time harmonic thermal shock in the

context of micropolar generalized thermoelasticity with frac-
tional heat transfer has been analyzed by Deswal and Kalkal
[27]. Abbas [28] considered the problem of fractional order
thermoelastic interaction in a material placed in a magnetic
field and subjected to moving plane heat source. Santra et al.
[29] aimed at studying the effect of rotation on thermoelastic
interactions in a homogeneous isotropic three-dimensional
medium whose surface is traction-free and is subjected to a
time-dependent heat source.The problem has beenmodelled
on the basis of fractional order generalized thermoelasticity.
Wang et al. [30] suggested a new theory of generalized
thermoelasticity for elastic media with variable properties
in the context of fractional order heat conduction equation.
They derived the formulations of anisotropic heterogeneous
material with temperature dependent material properties
by making use of the Clausius inequality and the higher
expansions of free energy.

Recently, Youssef [31] derived a new theory of ther-
moelasticity by modifying the Duhamel-Neumann stress-
strain relation. In this theory, this relation depends on the
fractional order of strain which adds knowledge about the
time history to the deformation of materials after being acted
upon bymechanical or thermal loadings. In his work, Youssef
constructed a new unified system of differential equations
governing seven different models of thermoelasticity in the
context of one-temperature type and two-temperature type.
A one-dimensional application of the thermoelasticity with
fractional order strain for an isotropic and homogeneous
medium for some models is also elaborated in the same
article.

Due to the extensive engineering applications, such as
pulsed-laser cutting and welding and high speed machining
and grinding, several research works have been devoted to
problems involving a moving heat source or thermal shock.
Danilovskaya [32] was the first who solved a dynamical heat
source problem under the purview of coupled thermoe-
lasticity. The problems of instantaneous and moving heat
sources in infinite and semi-infinite space and static line heat
sources in semi-infinite space were considered by Eason and
Sneddon [33], Nowacki [34], and others under the coupled
theory of thermoelasticity. Sherief and Anwar [35] inves-
tigated the thermoelastic interactions due to a continuous
line heat source in a linear, homogeneous unbounded solid
in the context of the Lord-Shulman model of generalized
thermoelasticity.

The theoretical study and applications in viscoelastic
materials have become an important task for solid mechanics
with the rapid development of polymer science and plastic
industry as well as with the wide use of materials under
high temperature in modern technology and application of
biology and geology in engineering. Freudenthal [36] com-
mented that most solids, when subjected to loading, exhibit
viscous effects, particularly at an elevated temperature. The
stress-strain law for many materials such as polycrystalline
metals and high polymers can be approximated by the linear
viscoelasticity theory. So the consideration of viscoelastic
properties of the medium makes the studies more mean-
ingful. The theory of thermoviscoelasticity and the solutions
of some boundary value problems of thermoviscoelasticity
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were explored by Ilioushin and Pobedria [37]. Several inves-
tigations relating to thermoviscoelasticity theory have been
presented in [38–42].

In the present work, a viscoelastic medium with internal
heat source is considered. The governing equations are taken
in the context of GN-III model of two-temperature gener-
alized thermoelasticity with fractional order strain. Laplace
transform and state-space techniques are adopted to find out
the general solution of the problem. The results obtained
theoretically have been computed numerically and depicted
graphically. Some comparisons are exhibited in figures to
demonstrate the effects of fractional order strain, viscosity,
two-temperature parameter, and the presence of internal heat
source.

2. Basic Equations and Problem Formulation

Following Youssef [31], the constitutive equations and the
field equations for generalized viscoelastic two-temperature
GN-III model of thermoelasticity with fractional order strain
and in the presence of internal heat source may be written as
follows:

(i) The constitutive relation is

𝜎
𝑖𝑗
= 2𝜇
∗
(1 + 𝜏

𝛽
𝐷
𝛽

𝑡
) 𝑒
𝑖𝑗
+ 𝜆
∗
(1 + 𝜏

𝛽
𝐷
𝛽

𝑡
) 𝑒
𝑘𝑘
𝛿
𝑖𝑗

− 𝛽
∗

1
𝜃𝛿
𝑖𝑗
, (𝑖, 𝑗 = 1, 2, 3) .

(1)

(ii) The strain-displacement relation is

𝑒
𝑖𝑗
=
1

2
(𝑢
𝑖,𝑗
+ 𝑢
𝑗,𝑖
) . (2)

(iii) Equation of motion is

𝜎
𝑗𝑖,𝑗

= 𝜌𝑢̈
𝑖
. (3)

(iv) Two-temperature heat conduction equation is

𝐾
∗
𝜑
,𝑖𝑖
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𝐸
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(v) Relation between thermodynamical and conductive
temperature is

𝜑 − 𝜃 = 𝑎𝜑
,𝑖𝑖
. (5)

In the preceding equations, 𝜎
𝑖𝑗
and 𝑒
𝑖𝑗
are the components of

stress and strain tensors, respectively, 𝑢
𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) are the

components of displacement vector, 𝜃 = 𝑇 − 𝑇
0
represents

the thermodynamical temperature, 𝑇 being the absolute
temperature and 𝑇

0
denoting the temperature of medium

in its natural state, 𝜑 = 𝜑 − 𝑇
0
stands for the conductive

temperature, 𝜌 is the density of medium, 𝜏 is mechanical
relaxation time, 𝛽 is the fractional strain parameter, 𝜆∗ =

𝜆
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,

𝜆
𝑒
and 𝜇

𝑒
are Lame’s elastic constants, 𝛼

0
and 𝛼

1
are the

viscoelastic relaxation times, 𝛼
𝑡
is the coefficient of linear

thermal expansion, 𝑐
𝐸
represents specific heat at constant

strain, 𝑘 is thermal conductivity, 𝐾∗ = 𝑐
𝐸
(𝜆
𝑒
+ 2𝜇
𝑒
)/4 stands

for the material characteristic of GN theory, 𝑄 is the heat
source, a dot over a variable denotes derivative with respect to
time 𝑡, a comma refers to a spatial derivative, and the tensor
convention of summing over repeated indices is used.

By taking 𝜏 = 0 in the above governing equations, we
may resume the equations of two-temperature thermovis-
coelasticity with internal heat source in the context of GN-III
theory.

We consider an infinite thermoelastic solid body which
is unstrained and unstressed initially at uniform temperature
𝑇
0
occupying the region −∞ < 𝑥 < ∞, whose state

depends only on the space variable 𝑥 and time 𝑡 so that
the displacement vector 𝑢⃗, conductive temperature 𝜑, and
thermodynamical temperature 𝜃 can be expressed in the
following form:

𝑢
𝑥
= 𝑢 (𝑥, 𝑡) ,

𝑢
𝑦
= 0,

𝑢
𝑧
= 0,

𝜑 = 𝜑 (𝑥, 𝑡) ,

𝜃 = 𝜃 (𝑥, 𝑡) .

(6)

The governing equations (1)–(5) in one-dimensional case
assume the shape
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Equation (9) may also be expressed as

𝜕
2
𝜎

𝜕𝑥2
= 𝜌 ̈𝑒. (12)

Now we transform the above equations into nondimensional
forms by introducing the following dimensionless parame-
ters:
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𝜃
󸀠
=

𝜃

𝑇
0

,

𝜑
󸀠
=

𝜑

𝑇
0

,

𝜎
󸀠
=

1

𝛽
1𝑒
𝑇
0

𝜎,

𝑄
󸀠
=

𝑄

𝜌𝑐
𝐸
𝑇
0
𝜔
,

(13)

where 𝜔 = 𝑐
𝐸
(𝜆
𝑒
+ 2𝜇
𝑒
)/𝑘 and 𝑐

2

1
= (𝜆
𝑒
+ 2𝜇
𝑒
)/𝜌.

Equations (7) and (10)–(12) may now be reduced to the
following system of dimensionless equations (after removing
the primes for clarity):
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0
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1
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2
/𝑐
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1
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the temperature discrepancy.
Performing the Laplace transform defined as

𝑓 (𝑥, 𝑠) = 𝐿 {𝑓 (𝑥, 𝑡)} = ∫

∞

0

𝑓 (𝑡) 𝑒
−𝑠𝑡

𝑑𝑡, (18)

over (14)–(17), and using the homogeneous initial conditions,
we obtain the following system of differential equations:

𝜎 = (1 + 𝛿
0
𝑠) (1 + 𝜏

𝛽
𝑠
𝛽
) 𝑒 − (1 + 𝛽

1
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2
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2
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1
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𝛽
𝑠
𝛽
) 𝑠
2
𝑒

− 𝜖𝑠𝑄,

𝜑 − 𝜃 = 𝛼𝐷
2
𝜑,

𝐷
2
𝜎 = 𝑠
2
𝑒,

(19)

where𝐷 ≡ 𝜕/𝜕𝑥.

We consider that a moving heat source of constant
strength is located at the origin and at time 𝑡 = 0

+ begins
moving along the positive direction of 𝑥-axis with a constant
velocity V releasing its energy continuously.This moving heat
source is considered to be of the following nondimensional
form:

𝑄 = 𝑄
0
𝛿 (𝑥 − V𝑡)𝐻 (𝑡) , (20)

where 𝑄
0
is the strength of the heat source, 𝛿(𝑥) is well-

known Dirac-delta function, and 𝐻(𝑡) stands for Heaviside
unit step function. Applying Laplace transform defined in
(18) and Fourier transform defined as

𝑓
∗
(𝜉, 𝑠) = ∫

∞

−∞

𝑓 (𝑥, 𝑠) 𝑒
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to (20) and then inverting Fourier transformmanually, we get

𝑄 =
𝑄
0

2V
𝑒
(𝜄𝑠/V)𝑥

[2𝐻 (𝑥) − 1] . (22)

As in the current problem, the heat source is moving along
the positive 𝑥-axis, and therefore we have

𝑄 =
𝑄
0

2V
𝑒
(𝜄𝑠/V)𝑥

. (23)

Eliminating 𝑒 and 𝜃 from (19), we arrive at the following
system of differential equations:
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where
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,
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1
)

(1 + 𝛿
0
𝑠) (1 + 𝜏𝛽𝑠𝛽)

,

𝑀
2
=
𝑠
2
[1 − 𝛼𝐿

2
(1 + 𝛽

1
𝑠)]

(1 + 𝛿
0
𝑠) (1 + 𝜏𝛽𝑠𝛽)

,

𝑀
3
= −

𝐿
3
𝛼𝑠
2
(1 + 𝛽

1
𝑠)

(1 + 𝛿
0
𝑠) (1 + 𝜏𝛽𝑠𝛽)

.

(25)
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3. State-Space Formulation

Having chosen the conductive temperature 𝜑 and stress
component 𝜎 as state variables, (24) may be recast in matrix
form as

𝐷
2
𝑉 (𝑥, 𝑠) = 𝐴 (𝑠) 𝑉 (𝑥, 𝑠) + 𝐵 (𝑥, 𝑠) , (26)

where

𝑉 (𝑥, 𝑠) = [
𝜑 (𝑥, 𝑠)

𝜎 (𝑥, 𝑠)
] ,

𝐴 (𝑠) = [
𝐿
1

𝐿
2

𝑀
1

𝑀
2

] ,

𝐵 (𝑥, 𝑠) = [
𝐿
3

𝑀
3

] .

(27)

The formal solution of the differential equation (26) may be
written as

𝑉 (𝑥, 𝑠) = exp [−√𝐴 (𝑠)𝑥]

⋅ [𝑉 (0, 𝑠) + {𝐴 (𝑠) +
𝑠
2

V2
𝐼}

−1

𝐵 (0, 𝑠)]

− [𝐴 (𝑠) +
𝑠
2

V2
𝐼]

−1

𝐵 (𝑥, 𝑠) ,

(28)

where 𝑉(0, 𝑠) = [
𝜑(0,𝑠)

𝜎(0,𝑠)
] = [

𝜑
0

𝜎0
] and 𝐼 is an identity matrix

of second order. The terms containing exponents of growing
nature in the space variable 𝑥 have been discarded due to the
regularity condition at infinity.

If there is no heat source inside the medium, then (28)
assumes the form

𝑉 (𝑥, 𝑠) = exp [−√𝐴 (𝑠)𝑥]𝑉 (0, 𝑠) . (29)

The characteristic equation of matrix 𝐴(𝑠) is obtained as

𝜆
2
− (𝐿
1
+𝑀
2
) 𝜆 + 𝐿

1
𝑀
2
− 𝐿
2
𝑀
1
= 0, (30)

where the roots 𝜆
1
and 𝜆

2
of (30) must satisfy

𝜆
1
+ 𝜆
2
= 𝐿
1
+𝑀
2
,

𝜆
1
𝜆
2
= 𝐿
1
𝑀
2
− 𝐿
2
𝑀
1
.

(31)

The Taylor series expansion of the matrix exponential has the
form

exp [−√𝐴 (𝑠)𝑥] =

∞

∑

𝑛=0

[−√𝐴 (𝑠)𝑥]
𝑛

𝑛!
. (32)

Making use of the well-knownCayley-Hamilton theorem, we
can express𝐴2 and higher orders ofmatrix𝐴 in terms of 𝐼 and
𝐴.

Thus the infinite series in (32) can be truncated as

exp [−√𝐴 (𝑠)𝑥] = 𝑎
0 (𝑥, 𝑠) 𝐼 + 𝑎

1 (𝑥, 𝑠) 𝐴, (33)

where 𝑎
0
and 𝑎
1
are constants depending on 𝑥 and 𝑠.

Again by Cayley-Hamilton theorem the characteristic
roots 𝜆

1
and 𝜆

2
of the matrix 𝐴 must satisfy (33). Therefore,

we have

exp [−√𝜆
1
𝑥] = 𝑎

0
+ 𝑎
1
𝜆
1
,

exp [−√𝜆
2
𝑥] = 𝑎

0
+ 𝑎
1
𝜆
2
.

(34)

On solving the above linear system of equations, we obtain

𝑎
0
=
𝜆
1
𝑒
−√𝜆2𝑥 − 𝜆

2
𝑒
−√𝜆1𝑥

𝜆
1
− 𝜆
2

,

𝑎
1
=
𝑒
−√𝜆1𝑥 − 𝑒

−√𝜆2𝑥

𝜆
1
− 𝜆
2

.

(35)

Substituting the values of 𝑎
0
and 𝑎
1
along with 𝐼 and 𝐴 into

(33), we have

exp [−√𝐴 (𝑠)𝑥] = Γ
𝑖𝑗 (𝑥, 𝑠) , (𝑖, 𝑗 = 1, 2) , (36)

where the components Γ
𝑖𝑗
(𝑥, 𝑠) are given by

Γ
11

=
𝑒
−√𝜆2𝑥 (𝜆

1
− 𝐿
1
) − 𝑒
−√𝜆1𝑥 (𝜆

2
− 𝐿
1
)

𝜆
1
− 𝜆
2

,

Γ
12

=

𝐿
2
(𝑒
−√𝜆1𝑥 − 𝑒

−√𝜆2𝑥)

𝜆
1
− 𝜆
2

,

Γ
21

=

𝑀
1
(𝑒
−√𝜆1𝑥 − 𝑒

−√𝜆2𝑥)

𝜆
1
− 𝜆
2

,

Γ
22

=
𝑒
−√𝜆2𝑥 (𝜆

1
−𝑀
2
) − 𝑒
−√𝜆1𝑥 (𝜆

2
−𝑀
2
)

𝜆
1
− 𝜆
2

.

(37)

Hence solution (28) can be written as

𝑉 (𝑥, 𝑠) = Γ
𝑖𝑗
[𝑉 (0, 𝑠) + {𝐴 (𝑠) +

𝑠
2

V2
𝐼}

−1

𝐵 (0, 𝑠)]

− [𝐴 (𝑠) +
𝑠
2

V2
𝐼]

−1

𝐵 (𝑥, 𝑠) .

(38)
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Plugging the values of 𝑉(𝑥, 𝑠), [𝐴(𝑠) + (𝑠
2
/V2)𝐼]−1, and

𝐵(𝑥, 𝑠) into (38) and after some straightforward calculation,
the expressions for conductive temperature and stress are
evaluated as

𝜑 (𝑥, 𝑠) =
1

𝜆
1
− 𝜆
2

[(𝜆
1
𝜑
0
− 𝐿
1
𝜑
0
− 𝐿
2
𝜎
0
+ 𝛾
1
𝜆
1

− 𝛾
1
𝐿
1
− 𝛾
2
𝐿
2
) 𝑒
−√𝜆2𝑥 − (𝜆

2
𝜑
0
− 𝐿
1
𝜑
0
− 𝐿
2
𝜎
0

+ 𝛾
1
𝜆
2
− 𝛾
1
𝐿
1
− 𝛾
2
𝐿
2
) 𝑒
−√𝜆1𝑥] − 𝛾

3
,

𝜎 (𝑥, 𝑠) =
1

𝜆
1
− 𝜆
2

[(𝜆
1
𝜎
0
−𝑀
2
𝜎
0
−𝑀
1
𝜑
0
− 𝛾
1
𝑀
1

+ 𝜆
1
𝛾
2
−𝑀
2
𝛾
2
) 𝑒
−√𝜆2𝑥 + (𝑀

2
𝜎
0
− 𝜆
2
𝜎
0
+𝑀
1
𝜑
0

+ 𝛾
1
𝑀
1
− 𝜆
2
𝛾
2
+𝑀
2
𝛾
2
) 𝑒
−√𝜆1𝑥] − 𝛾

4
,

(39)

where

𝛾
1
=
𝑇
2

𝑇
1

,

𝛾
2
=
𝑇
3

𝑇
1

,

𝛾
3
=
𝑇
4

𝑇
1

,

𝛾
4
=
𝑇
5

𝑇
1

,

𝑇
1
=

𝑠
4

V4
+
𝑠
2

V2
(𝐿
1
+𝑀
2
) + 𝐿
1
𝑀
2
− 𝐿
2
𝑀
1
,

𝑇
2
= 𝑁
1
𝑀
2
− 𝐿
2
𝑁
2
+
𝑠
2

V2
𝑁
1
,

𝑇
3
= 𝐿
1
𝑁
2
−𝑀
1
𝑁
1
+
𝑠
2

V2
𝑁
2
,

𝑇
4
= 𝐿
3
𝑀
2
− 𝐿
2
𝑀
3
+
𝑠
2

V2
𝐿
3
,

𝑇
5
= 𝐿
1
𝑀
3
− 𝐿
3
𝑀
1
+
𝑠
2

V2
𝑀
3
,

𝑁
1

=
−𝜖𝑠 (1 + 𝛿

0
𝑠) 𝑄
0

] [(1 + 𝛿
0
𝑠) {1 + 𝜖𝑠 (1 + 𝛼𝑠)} + 𝛼𝜁𝑠2 (1 + 𝛽

1
𝑠)
2
]

,

𝑁
2
=

−𝑁
1
𝛼𝑠
2
(1 + 𝛽

1
𝑠)

(1 + 𝛿
0
𝑠) (1 + 𝜏𝛽𝑠𝛽)

.

(40)

Inserting the expression of𝜑(𝑥, 𝑠) into (16), the expression for
𝜃(𝑥, 𝑠) can be derived as

𝜃 (𝑥, 𝑠) =
1

𝜆
1
− 𝜆
2

[(𝜆
1
𝜑
0
− 𝐿
1
𝜑
0
− 𝐿
2
𝜎
0
+ 𝛾
1
𝜆
1

− 𝛾
1
𝐿
1
− 𝛾
2
𝐿
2
) (1 − 𝛼𝜆

2
) 𝑒
−√𝜆2𝑥 − (𝜆

2
𝜑
0
− 𝐿
1
𝜑
0

− 𝐿
2
𝜎
0
+ 𝛾
1
𝜆
2
− 𝛾
1
𝐿
1
− 𝛾
2
𝐿
2
) (1 − 𝛼𝜆

1
) 𝑒
−√𝜆1𝑥]

− 𝛾
3
(1 + 𝛼

𝑠
2

V2
) .

(41)

4. Application

We consider a homogeneous isotropic viscoelastic medium
occupying the region 𝑥 ≥ 0 with quiescent initial state and
boundary conditions in the following forms.

4.1. Mechanical Boundary Condition. We will suppose that
the medium is subjected to a mechanical shock at 𝑥 = 0 as
follows:

𝜎 (0, 𝑡) = 𝜎
0
= −𝜎
∗
𝐻(𝑡) , (42)

where 𝜎∗ is a constant.
By applying Laplace transform defined in (18), we obtain

𝜎 (0, 𝑠) = 𝜎
0
= −

𝜎
∗

𝑠
. (43)

4.2. Thermal Boundary Condition. The medium at 𝑥 = 0 is
kept at reference temperature 𝑇

0
; that is,

𝜑 (0, 𝑡) = 𝜑
0
= 0. (44)

Operating Laplace transform on the above equation, one can
obtain

𝜑 (0, 𝑠) = 𝜑
0
= 0. (45)

Hence, we can utilize the values of 𝜎
0
and 𝜑

0
from (43) and

(45) in (39) and (41) to finally achieve the solutions in the
Laplace transform domain as

𝜑 =
1

𝜆
1
− 𝜆
2

[{𝛾
1
(𝜆
1
− 𝐿
1
) + 𝐿
2
(
𝜎
∗

𝑠
− 𝛾
2
)} 𝑒
−√𝜆2𝑥

− {𝛾
1
(𝜆
2
− 𝐿
1
) + 𝐿
2
(
𝜎
∗

𝑠
− 𝛾
2
)} 𝑒
−√𝜆1𝑥] − 𝛾

3
,

(46)
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𝜎 =
1

𝜆
1
− 𝜆
2

[{(𝜆
1
−𝑀
2
) (𝛾
2
−
𝜎
∗

𝑠
) − 𝛾
1
𝑀
1
}

⋅ 𝑒
−√𝜆2𝑥 − {(𝜆

2
−𝑀
2
) (𝛾
2
−
𝜎
∗

𝑠
) − 𝛾
1
𝑀
1
}

⋅ 𝑒
−√𝜆1𝑥] − 𝛾

4
,

(47)

𝜃 =
1

𝜆
1
− 𝜆
2

[{𝛾
1
(𝜆
1
− 𝐿
1
) + 𝐿
2
(
𝜎
∗

𝑠
− 𝛾
2
)}

⋅ (1 − 𝛼𝜆
2
) 𝑒
−√𝜆2𝑥

− {𝛾
1
(𝜆
2
− 𝐿
1
) + 𝐿
2
(
𝜎
∗

𝑠
− 𝛾
2
)} (1 − 𝛼𝜆

1
)

⋅ 𝑒
−√𝜆1𝑥] − 𝛾

3
(1 + 𝛼

𝑠
2

V2
) .

(48)

Using dimensionless variables and Laplace transform in (9),
the displacement component may be evaluated as

𝑢 =
1

𝛼
1
𝑠2

𝜕𝜎

𝜕𝑥
, (49)

where 𝛼
1
= 𝛽
1𝑒
𝑇
0
/𝜌𝑐
2

1
.

Substitution of 𝜎 from (47) into the above equation yields

𝑢 =
−1

𝛼
1
𝑠2 (𝜆
1
− 𝜆
2
)
[√𝜆
2
{(𝜆
1
−𝑀
2
) (𝛾
2
−
𝜎
∗

𝑠
)

− 𝛾
1
𝑀
1
} 𝑒
−√𝜆2𝑥 − √𝜆

1
{(𝜆
2
−𝑀
2
) (𝛾
2
−
𝜎
∗

𝑠
)

− 𝛾
1
𝑀
1
} 𝑒
−√𝜆1𝑥] .

(50)

5. Limiting Cases

5.1.WithoutViscous Effect. If we neglect the effect of viscosity,
then we will be left with the corresponding problem in
generalized two-temperature thermoelasticity with fractional
order strain. In this case, we put 𝛼

0
= 𝛼
1
= 0 which implies

𝜆
∗
= 𝜆
𝑒
, 𝜇∗ = 𝜇

𝑒
, 𝛽∗
1
= 𝛽
1𝑒
, and 𝛽

1
= 0. By implementing the

above changes, the corresponding expressions of the physical
fields can be obtained from (46)–(48) and (50).

5.2. With One Temperature. By setting 𝑎 = 0 and conse-
quently 𝛼 = 0 in the governing equations, we get the expres-
sions for different field variables from (46)–(48) and (50)
for one-temperature case, that is, the case when conductive
temperature coincides with thermodynamical temperature.

5.3. Without Internal Heat Source. Neglecting the influence
of internal heat source, that is, (𝑄

0
= 0), the expressions of

conductive temperature, stress, thermodynamical tempera-
ture, and displacement are obtained in a viscothermoelastic
medium with two-temperature and fractional order strain as

𝜑 =
𝐿
2
𝜎
∗

𝑠 (𝜆
1
− 𝜆
2
)
(𝑒
−√𝜆2𝑥 − 𝑒

−√𝜆1𝑥) ,

𝜎 =
𝜎
∗

𝑠 (𝜆
1
− 𝜆
2
)
[𝑒
−√𝜆1𝑥 (𝜆

2
−𝑀
2
)

− 𝑒
−√𝜆2𝑥 (𝜆

1
−𝑀
2
)] ,

𝜃 =
𝐿
2
𝜎
∗

𝑠 (𝜆
1
− 𝜆
2
)
[(1 − 𝛼𝜆

2
) 𝑒
−√𝜆2𝑥

− (1 − 𝛼𝜆
1
) 𝑒
−√𝜆1𝑥] ,

𝑢 =
𝜎
∗

𝛼
1
𝑠3 (𝜆
1
− 𝜆
2
)
[√𝜆
2
(𝜆
1
−𝑀
2
) 𝑒
−√𝜆2𝑥

− √𝜆
1
(𝜆
2
−𝑀
2
) 𝑒
−√𝜆1𝑥] .

(51)

6. Numerical Inversion of the Transform

Equations (46)–(48) and (50) provide the expressions for
conductive temperature, stress, thermodynamical tempera-
ture, and displacement in Laplace transform domain. To
determine these in physical domain, Laplace inversion is
applied with the help of numerical technique based on
Fourier expansion of functions performed by Honig and
Hirdes [43].

Let 𝑓(𝑠) be the Laplace transform of function 𝑓(𝑡). The
inversion formula of Laplace transform states that

𝑓 (𝑡) =
1

2𝜋𝜄
∫

𝑑+𝜄∞

𝑑−𝜄∞

𝑒
𝑠𝑡
𝑓 (𝑠) 𝑑𝑠, (52)

where 𝑑 is an arbitrary real number greater than all the real
parts of singularities of 𝑓(𝑠). Taking 𝑠 = 𝑑 + 𝜄𝑦 and using
Fourier series in the interval [0, 2𝑇], we get the approximate
formula

𝑓 (𝑡) ≅ 𝑓
𝑁 (𝑡) =

1

2
𝑐
0
+

𝑁

∑

𝑘=1

𝑐
𝑘
, for 0 ≤ 𝑡 ≤ 2𝑇, (53)

where

𝑐
𝑘
=
𝑒
𝑑𝑡

𝑇
Re [𝑒𝜄𝑘𝜋𝑡/𝑇𝑓(𝑑 +

𝜄𝑘𝜋

𝑇
)] (54)

and𝑁 is a sufficiently large integer representing the number
of terms in the truncated Fourier series, chosen such that

𝑒
𝑑𝑡 Re [𝑒𝜄𝑁𝜋𝑡/𝑇𝑓(𝑑 +

𝜄𝑁𝜋

𝑇
)] ≤ 𝜖

1
, (55)

where 𝜖
1
is a prescribed small positive value that corresponds

to the degree of accuracy to be achieved.
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7. Numerical Results and Discussion

With an aim of illustrating the contribution of frac-
tional strain parameter, mechanical relaxation time, two-
temperature parameter, viscosity coefficients, and heat source
on field quantities, a numerical analysis is carried out. For
this purpose, we have taken the following values of relevant
parameters:

𝜆
𝑒
= 7.76 × 10

10 kgm−1 s−2,

𝜇
𝑒
= 3.86 × 10

10 kgm−1 s−2,

𝜌 = 8954 kgm−3,

𝑐
𝐸
= 383.1 J kg−1 K−1,

𝛼
𝑡
= 1.78 × 10

−5 K−1,

𝑘 = 386Wm−1 K−1,

𝛼
0
= 0.6 s,

𝛼
1
= 0.9 s,

𝑡 = 0.1 s,

𝜏 = 0.01 s,

𝜎
∗
= 1,

𝑄
0
= 2,

𝛼 = 0.1,

V = 0.5,

𝛽 = 0.5.

(56)

Making use of the above mentioned numerical values,
we have computed the dimensionless values of displacement,
stress, thermodynamical temperature, and conductive tem-
perature with distance 𝑥 and shown them graphically in four
groups. In the first group (Figures 1–4), we have shown the
effects of mechanical relaxation time 𝜏 and parameter 𝛽 on
the considered physical variables with location 𝑥. For this,
three different sets of values of 𝜏 and 𝛽 are considered: (i)
𝜏 = 0 and 𝛽 ̸= 0, (ii) 𝜏 = 0.01 and 𝛽 = 0.5, and (iii)
𝜏 = 0.01 and 𝛽 = 1.0. The case 𝜏 = 0 leads to Green-
Naghdi model of type III while 𝜏 = 0.01 leads to the same
model in context of fractional order strain. The influence
of the velocity of internal heat source on the considered
physical variables for three values of V, namely, 0.1, 0.5, and
1.0, is shown graphically in the second group (Figures 5–8).
Attention is paid to the investigation of effects of viscosity
and two-temperature parameter on the physical quantities in
the third group (Figures 9–12). For this, all the considered
field variables are examined for three different cases: (i) ther-
moviscoelastic solid with two-temperature under fractional
order strain and heat source (TV2T), (ii) thermoelastic solid
with two-temperature under fractional order strain and heat
source (T2T), and (iii) thermoviscoelastic solid with one
temperature under fractional order strain and heat source
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Figure 2: Profile of stress distribution.

(TV1T). Pattern of different fields in the presence and absence
of heat source has been observed in the fourth group (Figures
13–16).

Group I. Figure 1 elucidates the variations of displacement
field with distance 𝑥. Displacement field starts with its
maximum numerical value for all the considered values of 𝜏
and 𝛽 and then diminishes to zero with the passage of time.
Significant differences in the values of displacement for the
presence (𝜏 = 0.01) and absence (𝜏 = 0) of mechanical
relaxation time can be noticed from the figure. The values
of displacement field for a particular range exhibit sufficient
difference for two values of parameter 𝛽. This distinction
decreases with the increase of distance from the point of
application of source.

In Figure 2, we have shown the profile of stress distribu-
tion to study the effects of mechanical relaxation time 𝜏 and
parameter 𝛽. Stress field enjoys a similar trend of variations
for all the considered values of 𝜏 and 𝛽; however dissimilarity
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Figure 4: Profile of conductive temperature distribution.

lies on the grounds of magnitude. Stress field shows signifi-
cant sensitivity towards the mechanical relaxation time. The
figure also reveals the pronounced effects of parameter 𝛽 on
the stress distribution.

The effects of relaxation time 𝜏 and fractional strain
parameter 𝛽 on thermodynamical temperature distribution
with nondimensional location 𝑥 are depicted in Figure 3.The
thermodynamical temperature experiences a similar pattern
of variations for all the three cases having differences in
magnitude.The effects of both relaxation time and parameter
𝛽 are found to be weak on this field. The values of thermody-
namical temperature get slightly decreased in the context of
fractional order strain.

The variations of conductive temperature distribution
with spatial coordinate 𝑥 are described in Figure 4. As
expected, the conductive temperature has the same starting
value zero for all the three cases which is in good agreement
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Figure 5: Dependence of displacement distribution on velocity V of
heat source.
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Figure 6: Dependence of stress distribution on velocity V of heat
source.

with the boundary conditions.No significant difference in the
value of thermodynamical temperature is noticed for 𝜏 = 0

(without fractional order strain) and 𝜏 = 0.01 (with fractional
order strain).

Group II. The dependence of displacement field on the
velocity of internal heat source is shown in Figure 5. The
effect of velocity V is very much noticeable near the point of
application of the source and it dies out with increase in the
spatial coordinate. Figure 6 demonstrates a comparison of the
stress distribution for three different values of velocity of heat
source. The pertinent effects of velocity V are noticed in the
range 1.6 ≤ 𝑧 ≤ 8. In this range, an increase in the velocity
gives a significant increase in the values of stress.

Variations in the thermodynamical temperature 𝜃 for
different values of velocity V are depicted in Figure 7. The
profile indicates that the velocity of heat source has a
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Figure 8: Dependence of conductive temperature on velocity V of
heat source.

pronounced effect on the thermodynamical temperature
𝜃. The conductive temperature distribution is represented
graphically in Figure 8 at different values of velocity V. The
qualitative behavior of conductive temperature is the same for
all the three values of V. An increase in the velocity V leads to a
significant increase in the values of conductive temperature.

Group III. Figure 9 displays the influence of viscosity and two-
temperature parameter on the spatial variations of displace-
ment distribution 𝑢. For all the three cases, the displacement
distribution starts with its maximum negative values and
then approaches zero gradually. The numerical values of
displacement in TV2T case are found to be smaller than that
in TV1Tmedium and this difference is highly noticeable near
the point of application of the source. Viscosity has a little
impact on this distribution. The dynamic effects of viscosity
and two-temperature parameter on the stress distribution
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Figure 9: Effects of viscosity and two-temperature parameter on
displacement distribution.
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Figure 10: Effects of viscosity and two-temperature parameter on
stress distribution.

are examined in Figure 10. The presence of two-temperature
parameter has caused an increment in the numerical values of
this field.The effect of two-temperature parameter is found to
be more profound than the effect of viscosity.

The distribution of thermodynamical temperature 𝜃

for three different cases is shown in Figure 11. Values of
thermodynamical temperature are more in the context
of two-temperature thermoelasticity as compared to one-
temperature thermoelasticity pointing towards the significant
increasing effect of two-temperature parameter. For the
viscous solid, values of this distribution are found to be
smaller than that of a nonviscous solid. This distribution
experiences a similar pattern of variations for all the three
cases irrespective of their magnitude.

The dependence of conductive temperature 𝜑 on two-
temperature parameter and viscosity is exhibited in Figure 12.
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Figure 11: Effects of viscosity and two-temperature parameter on
thermodynamical temperature.
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Figure 12: Effects of viscosity and two-temperature parameter on
conductive temperature.

This field starts with value zero, increases sharply in the range
0 ≤ 𝑧 ≤ 2.4, and then increases slowly in the rest of the
range for all the three cases. The figure suggests that the
two-temperature parameter acts to decrease the values of
conductive temperature. It can be noted from the figure that
the values of conductive temperature differ slightly for TV2T
and T2T media which signifies the little impact of viscosity
on this field.

Group IV. Figures 13–16 display the variations of considered
physical variables in the presence and absence of heat source.
With reference to Figures 13 and 14, it is found that the
presence of heat source has caused both increasing and
decreasing effects on the displacement and stress distribu-
tions. On the other hand, both thermodynamical and con-
ductive temperature distributions are significantly increased
due to presence of heat source, as can be seen from the plots
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Figure 13: Distribution of displacement with distance 𝑥.
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Figure 14: Distribution of stress with distance 𝑥.

in Figures 15 and 16. From Figures 13–16, we observe that all
the considered fields diminish to zero with increasing values
of 𝑥 in the medium without internal heat source.

8. Conclusions

The effects of mechanical relaxation time, fractional strain
parameter, viscosity, heat source, and two-temperature
parameter in a homogeneous and isotropic elastic solid due
to a mechanical load have been investigated by applying
the recently developed theory of generalized thermoelas-
ticity with fractional order strain. The method of Laplace
transform is used to write the basic equations in the form
of vector-matrix differential equation which is then solved
by state-space approach. The numerical inversion of Laplace
transform is carried out using Fourier series expansion tech-
nique. The present analysis leads to the following concluding
remarks:
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Figure 15: Distribution of thermodynamical temperature with
distance 𝑥.
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Figure 16: Distribution of conductive temperature with distance 𝑥.

(1) The nonzero value of mechanical relaxation time
𝜏 significantly influences the variations of displace-
ment and stress. However it has a little effect on
the variations of thermodynamical temperature and
conductive temperature.

(2) The displacement and stress distributions are found
to be more sensitive towards the fractional strain
parameter 𝛽 than the temperature distributions.

(3) The velocity of heat source is playing a vital role in
increasing or decreasing the speed of wave propaga-
tion through the elastic medium.

(4) Presence of viscosity has caused a little impact on all
the studied fields.

(5) Two-temperature parameter has affected all the con-
sidered physical variables. It acts to increase the mag-
nitude of stress and thermodynamical temperature
distributions while it has decreased the magnitude of

displacement and conductive temperature distribu-
tions.

(6) The presence of internal heat source has an essential
role in changing the values of the distributions. The
displacement and stress fields have received both
increasing and decreasing effects due to heat source
while the magnitude of thermodynamical and con-
ductive temperatures gets enlarged in the presence of
heat source.

(7) It is apparent from the figures that the presence of
heat source prevents all the considered fields except
displacement from becoming zero with distance 𝑥. In
the absence of heat source, all the physical fields have
nonzero values in a bounded region of space and, out-
side this region, values vanish identically manifesting
the phenomenon of finite speed of propagation.

The present work describes the behavior of displace-
ment, stress, thermodynamical temperature, and conductive
temperature in a thermoviscoelastic medium with two-
temperature and internal heat source due to mechanical
shock under the purview of generalized thermoelasticity with
fractional order strain.Thisworkmay prove helpful in biome-
chanics and biomedical problems and in understanding the
viscoelastic properties of human soft tissue and may lead to
improved diagnostic applications.
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