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Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data.
Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its
applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be
formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved
temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for
daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of
determination (R2) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface
temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the
temperature index model in an area with sparse air temperature observations.

1. Introduction

In most of the middle and high latitude regions, snow
accumulation and subsequent snowmelt are considered as the
most important hydrological processes, because the stream
hydrograph is dominated by spring snowmelt [1]. In addition,
nutrient transport from land to sea is significantly influenced
by spring flood processes [2, 3]. Hence, knowledge of the
spring snowmelt process is essential not only for hydrological
modeling, but also for further study of nutrient dynamics and
transport in middle and high latitude regions. Distributed
hydrological models have been proven useful and applicable
to investigate streamflow andnutrient transport in snowmelt-
dominated basins [4, 5].

Recently, the physically based energy-balance method
has been demonstrated to be accurate and powerful for
calculating snowmelt processes [6–8]. However, the demand
for accurate and variable input data and complex param-
eterization still limits applicability of the method [9, 10].
Conversely, the temperature index (henceforth, 𝑇-𝐼) method

has been widely used despite its simplicity for the following
reasons [11]: (1) wide availability of air temperature data, (2)
relative ease of air temperature interpolation and forecasting,
and (3) computational simplicity. Thus, hydrological models
such as the Soil Water Assessment Tool [12], Hydrological
Simulation Program Fortran (HSPF, [13]), MIKE [14], and
Snowmelt Runoff Model (SRM, [15]) have adopted the 𝑇-𝐼
method to simulate snow accumulation and the snowmelt
process. Because 𝑇-𝐼 is based on an assumption that the
relationship between ablation and air temperature is usually
expressed in the form of positive temperature sums [11], the
air temperatures are obviously one of the most important
variables for this method.

Air temperature (𝑇
𝑎
) data can be easily obtained in

regions where meteorological observation network is dense,
but many remote areas have sparse stations. However, with
development of earth observations, MODIS remotely sensed
land surface temperature (LST) data have proven powerful for
creating 𝑇

𝑎
data. For example, Kloog et al. [16] successfully

applied the spatial smoothing method to evaluate daily air
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temperature data using MODIS LST data in Massachusetts,
United States. Zhu et al. [17] also used MODIS LST to
evaluate daily and subdaily maximum and minimum air
temperature on the northern Tibetan Plateau. Zakšek and
Schroedter-Homscheidt [18] reviewed that there are three
different methods commonly applied for estimating the 𝑇

𝑎

based on the LST data: (1) the statistical methods; (2) the
temperature-vegetation index methods (TVX); (3) energy-
balance methods. They reported that the statistical methods
generally performwell, within the spatial and time frame they
were derived from, but require large amounts of data to train
the algorithms [19].TheTVXmethod is based on the assump-
tion that, for an infinitely thick canopy, the top-of-canopy
temperature is the same as within the canopy [17] and uses
the Normalized Difference Vegetation Index (NDVI) as a key
input variable. However, the assumption of linear and nega-
tive slope betweenLST andNDVI is not always applicable and
is influenced by seasonality, ecosystem type, and soilmoisture
variability [19, 20], and the period of created data is limited
by the periods of both LST and NDVI data. In addition, Zhu
et al. [17] also found that the results of the statistical method
are similar to the TVXmethod. Although the energy-balance
methods are physically based, the major disadvantage of this
method is the requirement of large amounts of information
oftennot provided by remote sensing [19].The linear relation-
ship betweenMODISLST and𝑇

𝑎
data has been demonstrated

in different study regions [21–24]. Thus, the linear regression
method is a common choice for 𝑇

𝑎
data estimation using

MODIS LST data. Colombi et al. [25] used the linear
regression method and MODIS LST data to generate average
daily temperature in Italian alpine areas, and they proved that
the result of the linear regression method was superior to
that of the spatial interpolation method. Shen and Leptoukh
[26] also used the linear regression relationship between air
temperature and MODIS LST data to create new daily air
temperature data in northern China and central Russia.

One critical disadvantage of using MODIS LST data is
that the period of newly created air temperature data is
limited by the operational period of the satellite. However,
we frequently need historical data, especially for long-term
hydrological simulations. Thus, it is necessary to find an
easy and effective way to create spatially dense and tem-
porally long-termair temperature data. Motivated by this
unsolved problem, we set our research objectives as follows:
(1) development of a simple method to create accurate air
temperature data over a longer period; (2) hydrological
simulation of the snowmelt process using newly created air
temperature data for three test basins in the Amur River
basin; and (3) evaluation of the validity of the newly created
air temperaturedata by analysis of simulated results.

2. Study Area and Data

2.1. Test Basins. Three basins were selected for model testing,
which are located in the upper, middle, and lower stream
of the Amur River basin. Basic geographic characteristics
of the basins are shown in Figure 1 and Table 1. The Amur
River is the tenth longest in the world and is recognized as
an important dissolved iron source for the Sea of Okhotsk

[27].There are four distinct phases in the Amurwater regime:
spring floods, summer low water, summer and autumn
floods, and winter low water. The main water source is
rainfall, supplying 70–80% of total water, and snowmelt
during spring floods adds 10–20% [28]. In the upper stream
(basin A, Gari), the annual temperature is −2.4∘C and the
annual precipitation is 494mm, and in the lower stream
(basin B, Apkoroshi), the annual temperature is −0.1∘C and
the annual precipitation is 641mm. In the middle stream
(basin C, Malinovka), the mean annual temperature is 1.1∘C
and the annual precipitation is 593mm [29].

2.2. Data for Hydrological Simulation. Detailed structure of
the snow melt component of SWAT model is explained in
the following sections. To generate input data needed for
SWAT, a digital elevation model (DEM), soil data, land use
and land cover (LULC) data, and weather data are required
[30]. In addition, discharge data are required for calibration
of hydrological simulations.

A Shuttle Radar Topographic Mission (SRTM 90m)
DEM was used to delineate subbasins of the test basins. We
applied the same flow accumulation threshold (200 km2) in
watershed delineation of all three test basins. The subbasins
were delineated by the ArcSWAT interface. As shown in
Figure 1, there are nine subbasins in basin A and 11 in basin
B and basin C.The land use/land cover map was constructed
by combined use of vegetationmaps of China, Mongolia, and
Russia and satellite images [31]. Soil data were taken from the
Harmonized World Soil Database (HWSD, [32]), obtained
from the International Institute for Applied Systems Analysis
(IIASA). The spatial resolution of LULC data is as same as
DEM data (90m), and the resolution of soil data is 1 km.

Temporal resolution of all weather data was daily. Asian
Precipitation Highly Resolved Observational Data Integra-
tion towards Evaluation of Water Resources (APHRODITE,
[33]) was used for daily precipitation data. The most impor-
tant driving data of distributed hydrological models are of
accurate precipitation. It has been shown that APHRODITE
can give good performance in this study area [34, 35]. Max-
imum air temperature (𝑇

𝑎,max), minimum air temperature
(𝑇
𝑎,min), and wind speed data were obtained from the Global

Historical Climatic Network-Daily (GHCN-Daily, [36]) of
theNational ClimateDataCenter (NCDC).TheSWATmodel
calculates the distance between geometer center of subbasin
and the candidate weather station to attach the nearest station
for each subbasin as the unique driving station. In our study,
the SWAT model selected eight monitoring air temperature
stations (Figure 1 and Table 2) for SWAT model. Relative
humidity and solar radiation data were from the NCEP-
DOE reanalysis 2 dataset [37] on the website of the NOAA
Earth System Research Laboratory. Because we focused on
improving snowmelt simulations in the 𝑇-𝐼 method, daily
monitoring runoff data during March through May were
used for the calibration period to obtain optimized parameter
values. The years 1983–1987 were selected for basins B and
C, and because of lack of the monitoring, 1983, 1984, 1986,
and 1988 were used for basin A. Runoff data were provided
by the Russian Federal Service for Hydrometeorology and
Environmental Monitoring (Roshydromet).
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Figure 1: Study area and location of three test basins: Gari (A), Apkoroshi (B), and Malinovka (C).

2.3. MODIS Land Surface Temperature Data. The AQUA/
MODIS daily LST data at 1 km spatial resolution of both
daytime and nighttime were acquired from mid-2002 to
2010. (https://lpdaac.usgs.gov/products/modis products ta-
ble/myd11a1). For different MODIS LST data (TERRA/
MODIS and AQUA/MODIS), Mostovoy et al. [23] already
proved that the AQUA and TERRA have no significant
difference in𝑇

𝑎
estimation. In addition, Vancutsem et al. [20]

also proved that the AQUA data can give reasonable results
even if its observation period is shorter than TERRA.MODIS
LST data are derived from thermal infrared bands 31 (10.78–
11.28 𝜇m) and 32 (11.77–12.27𝜇m). Atmospheric effects are
corrected by a generalized split-window algorithm [38]. The
latest LST data are version 005; these datasets have error less
than 1∘C within the range −10 to 50∘C, assuming that surface
emissivity is known [19, 39]. In addition, ground-based
validation has shown that errors were less than 1∘C at homo-
geneous surfaces such as water, crop, and grassland [39].

3. Methodology

3.1. Long-TermAir TemperatureData Creation andValidation.
The simplest method to estimate the air temperature is to
create a linear regression equation between𝑇

𝑎
at points𝐴 and

𝐵 (Figure 2) using observed 𝑇
𝑎
data. In this case, the linear

regression equation can be written as follows:

𝑇
𝑎,𝐵
= 𝑎
1
× 𝑇
𝑎,𝐴
+ 𝑏
1
. (1)

Table 1: Basic geographic information of test basins.

Name Gari (A) Apkoroshi
(B)

Malinovka
(C)

Area (km2) 3315 4105 5006
Slope (degree) 2.8 18.3 12.1
Land-cover type
composition (%)

Forest 30 65 90
Wetland 25 7 0
Shrub 45 7 6
Farmland 0 0 4
Pasture 0 21 0

Here, 𝑎
1
and 𝑏
1
are coefficients of the linear regression

equation, and subscripts 𝐴 and 𝐵 indicate the points.
We call this the 𝑇

𝑎
-𝑇
𝑎
method. If monitoring data at

both points 𝐴 and 𝐵 are available, we can use the method.
However, if we have no data at a point we need to know,
the method is not applicable. Here, we use the monitoring
𝑇
𝑎
stations and their nearest stations (Table 2) to evaluate the

linear relationships between two different places (Figure 2).
We used three indices: coefficient of determination (𝑅2),

mean absolute error (MAE), and root mean square error
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(RMSE) for the evaluation. Equations for 𝑅2, MAE, and
RMSE are as follows:

𝑅
2
=

{{

{{

{

∑
𝑛

𝑖=1
(𝑦
𝑖
− 𝑦) (𝑦

𝑖
− 𝑦
𝑖
)

[∑
𝑛

𝑖=1
(𝑦
𝑖
− 𝑦)
2

] [∑
𝑛

𝑖=1
(𝑦
𝑖
− 𝑦
𝑖
)
2

]

}}

}}

}

,

MAE = 1
𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑖
󵄨󵄨󵄨󵄨 ,

RMSE = (
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑖
󵄨󵄨󵄨󵄨

2

𝑛
)

1/2

.

(2)

Here, 𝑦
𝑖
is observed 𝑇

𝑎
on day 𝑖, 𝑦

𝑖
is created air

temperature on day 𝑖 by eachmethod,𝑦 is the average value of
observed𝑇

𝑎
,𝑦
𝑖
is the average value of created air temperature,

and 𝑛 is the total number of days. The results of linear
correlation analysis for𝑇

𝑎
are shown in Table 3 and discussed

in Section 4.1.
Further, the study of Sun et al. [24] presented a theoretical

derivation of linear regression relationships between 𝑇
𝑎
and

LST and proved that the 𝑇
𝑎
can be mainly explained by the

LST in the linear regression equation, and they also showed
that the errors of created 𝑇

𝑎
based on the linear regression

method are limited in a reasonable range, in the North China
Plain. In addition, Mostovoy et al. [23] also proposed the
similar method to estimate 𝑇

𝑎
at any point from LST at that

point. By constructing linear regression equations between
𝑇
𝑎
and LST at 161 monitoring station points in the state of

Mississippi, they also found a common relationship between
LST and 𝑇

𝑎
, irrespective of location. Furthermore, both of

these researches indicate that the first order coefficient of
linear equation between 𝑇

𝑎
and LST is equal to 1. Here, we

use the monitoring 𝑇
𝑎
data and LST data to estimate the air

temperature between them; we call this the LST-𝑇
𝑎
method.

In this case, the linear regression equation can be written as

𝑇
𝑎
= LST + const. (3)

We also validate the linear regression relationships
between the 𝑇

𝑎
and LST in all stations (Table 4); the 𝑅2

is over 0.95 for both daily maximum and minimum 𝑇
𝑎
-

LST analysis for all station pairs. In addition, the results
also showed that the first order coefficient (slope or “𝑎”) of

linear regression equations (Table 4) is very close to 1. These
results also correspond to the theoretical analysis of previous
researches in China North Plain [24] and Mississippi of USA
[23].

However, the results of 𝑇
𝑎
-LST indicate that this method

extends the errors compared with the 𝑇
𝑎
-𝑇
𝑎
method. Fur-

thermore, a disadvantage of this method is that because LST
data are necessary for this method; it can only be applied to
periods after MODIS was launched. As already addressed,
we frequently need historical air temperature data to execute
hydrological models that include snow accumulation and
snowmelt processes. Moreover, many watersheds have very
sparse observed air temperature data. Because both the𝑇

𝑎
-𝑇
𝑎

and LST-𝑇
𝑎
methods are unsuitable for such common cases,

we developed a new method as follows.
In the first step, a linear regression equation of LST

between two points is created as follows:

LST󸀠
𝐵
= 𝑎
2
× LST

𝐴
+ 𝑏
2
. (4)

Here, 𝑎
2
and 𝑏
2
are coefficients of the linear regression

equation, and subscripts 𝐴 and 𝐵 indicate the points. LST󸀠
𝐵

is the result of the predicted LST value of point B from (4).
We conducted the linear regression analysis of LST data

in all station pairs. According to the results (Table 5), the
same as the previous two methods, it is clear that high linear
correlations are obtained in all station pairs for LST data.

In addition, based on the linear analysis results of 𝑇
𝑎
-

LST of station pairs, and using the 𝑇
𝑎
-LST method, we can

estimate 𝑇
𝑎,𝐴

and 𝑇
𝑎,𝐵

at the same time:

𝑇
𝑎,𝐴
≅ LST

𝐴
+ const

𝐴
, (5)

𝑇
𝑎,𝐵
≅ LST

𝐵
+ const

𝐵
. (6)

Based on the results of linear correlation analysis of LST
data (Table 5), we neglect the error between the LST󸀠

𝐵
and

LST
𝐵
and by substituting LST

𝐵
in (6) by LST󸀠

𝐴
, 𝑇
𝑎,𝐵

can be
expressed by LST

𝐴
as

𝑇
𝑎,𝐵
= 𝑎
2
× LST

𝐴
+ 𝑏
2
+ const

𝐵
. (7)

Combining (7) with (5), we get

𝑇
𝑎,𝐵
= 𝑎
2
× 𝑇
𝑎,𝐴
+ 𝑏
2
+ const

𝐵
− 𝑎
2
× const

𝐴
. (8)
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Because the 𝑇
𝑎
-LST relationship in the study basins can

only be acquired in the point which monitors both LST and
𝑇
𝑎
data, const

𝐵
cannot be obtained as 𝑇

𝑎
is not monitored in

place B. In this study, we take the const
𝐵
− 𝑎
2
× const

𝐴
as

an entirety. It is clear that if this entirety can be ignored, the
equation will be simplified drastically.

Thus, we calculated the const
𝐵
− 𝑎
2
× const

𝐴
in all station

pairs based on the results listed in Tables 4 and 5. The
results (Table 6) indicate that in station pair 4-4𝑁 there is
a relative large error compared with other station pairs for
both daily maximum and minimum analysis. The error is
larger in the daily minimum analysis of 2-2𝑁 and 6-6𝑁, and
it is also larger in the 7-7𝑁 for the daily maximum analysis.
In addition, the average value of all station pairs is 0.38∘C
for daily maximum analysis and 0.45∘C for daily minimum
analysis. However, we also recognize that the effects of 𝑇

𝑎

data on the snowmelt processes are based not only on the
“point” or “situ” scale but also on its accurate distribution
in the entire basin. Thus, considering relative small average
errors (Table 6), we ignore the const

𝐵
−𝑎
2
× const

𝐴
of (8) and

the new equation is

𝑇
𝑎,𝐵
= 𝑎
2
× 𝑇
𝑎,𝐴
+ 𝑏
2
. (9)

This means that once we acquire coefficients 𝑎
2
and 𝑏

2

from linear regression analysis of LST, we can estimate 𝑇
𝑎,𝐵

using a known 𝑇
𝑎,𝐴

. We call this the LST-LST method. We
performed a linear regression analysis for creation of𝑇

𝑎
based

on both daily maximum and minimum LST data. However,
according to the limited monitoring period of MODIS LST
data, the linear regression equations are formulated only in
the entire period. We compared estimated 𝑇

𝑎
from the LST-

LST method with the 𝑇
𝑎
-𝑇
𝑎
method, using the same station

pairs listed in Table 2, and also the errors caused from the
approximation are discussed, especially the approximations
of (8) which may cause more errors for the 𝑇

𝑎
estimation.

The comparison was for both the entire period and spring
snowmelt period. We defined the snowmelt period as March
through May. The results are presented in Section 4.1.

3.2. Air Temperature Calculation in the SWAT Model. The
SWAT model can consider orographic effects on air temper-
ature by dividing the subbasin into multiple elevation bands
[40]. This significantly influences snow cover and snowmelt
processes. The equation is

𝑇band = 𝑇𝑎 + (𝐸𝐿band − 𝐸𝐿gage) ×
𝑇𝐿𝐴𝑃𝑆

1000
. (10)

Here,𝑇band is calculated𝑇𝑎 in each elevation band (
∘C),𝑇

𝑎

is temperature recorded at a monitoring gage (∘C), 𝐸𝐿band is
mean elevation of each elevation band (m),𝐸𝐿gage is elevation
of an existing monitoring gage (m), 𝑇𝐿𝐴𝑃𝑆 is temperature
lapse rate (∘C/km), and 1000 is a unit conversion factor
from meters to kilometers. By multiplying 𝑇band and areal
percentage of a band and summing over all elevation bands,
we can obtain average𝑇

𝑎
of each subbasin. All test basinswere

divided into ten elevation bands, based on an equal interval
of elevation.

3.3. Snowmelt Simulation in the SWAT Model. Based on the
basic concept of the𝑇-𝐼method, the snowmelt module of the
SWAT model is as follows (time interval is daily):

SNOmlt = 𝑏mlt × SNOcov × (
𝑇snow + 𝑇mx

2
− 𝑇mlt) . (11)

Here, SNOmlt is the amount of snowmelt (mm H
2
O),

𝑏mlt is the melt factor (mm H
2
O/day-∘C), and SNOcov is

the fraction of the hydrological response unit (HRU) area
covered by snow. The HRU is divided by using land use and
soil types in each subbasin. The HRU is the simulated unit in
the SWAT model; the simulation of water budget in SWAT
is based on the HRU. 𝑇snow is snow pack temperature (∘C),
𝑇mx is maximum 𝑇

𝑎
(∘C), and 𝑇mlt is the base temperature

above which snowmelt is allowed (∘C). 𝑏mlt allows seasonal
variation with maximum and minimum values occurring on
the summer and winter solstices. SNOcov allows nonuniform
snow cover caused by factors such as shading, land cover, and
topography.

Consider

𝑇snow(𝑑
𝑛
)
= 𝑇snow(𝑑

𝑛
−1)
× 𝑙sno + 𝑇av × (1 − 𝑙sno) . (12)

Here, 𝑇snow(𝑑
𝑛
)
is snow pack temperature on a given day

(∘C),𝑇snow(𝑑
𝑛
−1)

is snow pack temperature on the previous day
(∘C), 𝑙sno is snow temperature lag, and 𝑇av is mean 𝑇

𝑎
on a

given day. In SWAT model, the 𝑇av is the arithmetic mean
value of daily maximum 𝑇

𝑎
and minimum 𝑇

𝑎
.

3.4. Model Calibration and Evaluation. To evaluate different
input 𝑇

𝑎
datasets influences on SWAT model snowmelt

simulation, we conducted hydrological simulations under
two different scenarios: (1) Elev𝑇

𝑎
, which used the original

𝑇
𝑎
data with elevation band method; (2) New𝑇

𝑎
, which used

the newly created 𝑇
𝑎
data based on the LST-LST method

without elevation bands. For other settings such as watershed
delineations, HRU generations, input data (except 𝑇

𝑎
), and

initial range of calibration parameters, we keep them the same
for all different scenarios in each test basin.

Model parameters were calibrated using the Sequential
Uncertainty Fitting Version 2 (SUFI-2) method [30]. Table 7
lists the calibration parameters for each scenario. 𝑇𝐿𝐴𝑃𝑆 is
only included in the Elev𝑇

𝑎
scenario. Two different parameter

sets were constructed for testing the performance of each
scenario. One is the so-called “the least parameters setting”
and the other is “complete parameters setting.”

For the least parameters setting, to test the performance
of two different 𝑇

𝑎
datasets, we fixed the values of parameters

that might significantly influence snowmelt simulations; that
is, 𝑆𝑁𝑂𝐶𝑂𝑉50 = 0.5, 𝑆𝑁𝑂𝐶𝑂𝑉𝑀𝑋 = 300, 𝑆𝐹𝑇𝑀𝑃 = 1∘C,
𝑆𝑀𝑇𝑀𝑃 = 0.5

∘C, 𝑆𝑀𝐹𝑀𝑋 = 4.5mm/H
2
O-∘C, 𝑆𝐹𝑀𝑁 =

4.5mm/H
2
O-∘C, and 𝑇𝐼𝑀𝑃 = 0∘C. Remaining parameters

were calibrated to control the entire simulation hydrograph.
Parameters listed in Table 7 were all applied to evaluate the
influence of all factors on snowmelt simulations with the
complete parameters setting.

Objective functions used for parameter optimization in
runoff simulations were the Nash-Sutcliffe efficiency (NSE)
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Table 7: Calibration parameters in Elev𝑇
𝑎
and New𝑇

𝑎
scenarios.

Parameters Definition Method Range/percent
ALPHA BF Base-flow alpha factor (days) V 0-1
CN2 Initial SCS CN II value R ±50%
ESCO Soil evaporation compensation factor V 0.25–0.75
GW DELAY Groundwater delay (days) V 0–30
SFTMP Snowfall temperature (∘C) V −5 to 5
SMTMP Snowmelt base temperature (∘C) V −5 to 5
SMFMN Melt factor for snow on December 21 (mmH2O/

∘C-day) V 0–3
SMFMX Melt factor for snow on June 21 (mmH2O/

∘C-day) V 3–9
SNO50COV Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover V 0.01–0.99
SNOCOVMX Minimum snow water content corresponding to 100% snow cover (mm) V 0–500
SOL AWC Average available water R ±50%
SOL K Saturated conductivity R ±50%
SURLAG Surface runoff lag time (days) V 1–24
TIMP Snow pack temperature lag factor (∘C) V 0.01–1
TLAPS Temperature lapse rate changed with the elevation (∘C) V −10 to 0
Elev𝑇𝑎 scenario is elevation bands combined with the original monitoring air temperature data scenario, and New𝑇𝑎 scenario is the newly created air
temperature data. V means the true value of the parameter and R means the relative range of the original parameter.

and coefficient of determination (𝑅2). The sensitivity of
parameters was evaluated by the 𝑡-test of each parameter in
the linear multiple regression, which was created using the
parameters as arguments and the objective value (NSE) as the
dependent variable. The NSE is calculated as follows:

NSE = 1 −
∑
𝑛

𝑖=1
(𝑃
𝑖
− 𝑂
𝑖
)
2

∑
𝑛

𝑖=1
(𝑂
𝑖
− 𝑂)
2
. (13)

Here, 𝑂
𝑖
is observed runoff on day 𝑖, 𝑂 is average

observed runoff for the entire period, 𝑃
𝑖
is simulated runoff

on day 𝑖, and 𝑛 is the total number of days.

4. Results and Discussion

4.1. Comparison between the LST-LST and 𝑇
𝑎
-𝑇
𝑎
Methods.

The 𝑅2 of the entire (year) period was over 0.95 for both
maximum and minimum 𝑇

𝑎
estimation of 𝑇

𝑎
-𝑇
𝑎
method

(Figures 3, 4, and 5). The results clearly demonstrate
that based on the long monitoring period and abundant
monitoring data there are high linear correlations in all
station pairs. For the LST-LST method, except the station
pairs 2-2𝑁 and 7-7𝑁, all other station pairs are over 0.90.
Although these 𝑅2 were less than 0.95 in spring using both
methods, they exceeded 0.9 in the 𝑇

𝑎
-𝑇
𝑎
method. Also, the

results of the𝑅2 in spring period for LST-LSTmethod showed
the same trend as the entire period. For both the entire year
and spring, MAE of the LST-LST method was slightly larger
than that of the 𝑇

𝑎
-𝑇
𝑎
method (Figure 6). Overall, MAE

performances were around 1.0−2.0∘C in the entire year for
daily maximum 𝑇

𝑎
prediction, but this increasedto 2.0−3.5∘C

in spring. For daily minimum 𝑇
𝑎
prediction, MAE was

1.5−2.5∘C for the entire year and 1.5−4.0∘C in the spring. The
results of RMSE (Figure 7) show the same trend as MAE;
RSME of the LST−LST method was larger than that of the

𝑇
𝑎
-𝑇
𝑎
method. The larger errors are obtained especially

at the station pairs 2-2𝑁, 4-4𝑁, 6-6𝑁, and 7-7𝑁. These
results highly agree with the results listed in Section 3.1 and
Table 6, in which the potential errors caused by neglecting
the item const

𝐵
− 𝑎
2
× const

𝐴
of (8) are presented. Benali et

al. [19] and Vancutsem et al. [20] demonstrated that the land
cover may influence the 𝑇

𝑎
estimation results from statistical

method based on MODIS LST data. Here, in our study, the
station pairs 2-2𝑁, 4-4𝑁, 6-6𝑁, and 7-7𝑁 all contained
the land cover type wetland (2𝑁, 4𝑁, 6, and 7 station), and
the land cover type of their corresponding stations is forest
for station 2, shrub for stations 4 and 6𝑁, and agriculture
land for 7𝑁. Further, Westermann et al. [41] presented that
MODIS LST data exhibit the high difference between dry
area and wet area during snowmelt season in the tundra
of Svalbard, Norway. Hachem et al. [42] also concluded
that the stagnant surface water which can modify the heat
exchanges between the ground surface and the atmosphere
leads to the difference between the air temperature and LST
in Alaska. Obviously, the water content and vegetation cover
are significantly different between the wetland and other land
covers. Thus, in our study, the difference of water content
in different land cover type is also the probable reason that
induces the relative larger error in the station pairs: 2-2𝑁,
4-4𝑁, 6-6𝑁, and 7-7𝑁.

Furthermore, the statistical analysis method always needs
abundant training data to generate stable results [18]. The
amount of data listed in the Tables 3, 4, and 5 clearly suggested
that the short observation period of the MODIS LST data
might be an important factor that induces the larger errors in
the LST-LSTmethod.The results also indicate that during the
spring, ranges of MAE and RMSE from both 𝑇

𝑎
-𝑇
𝑎
and LST-

LST methods are increased compared with the entire year.
Obviously, comparing with the entire period, the available
data for the linear regression analysis is much less, and
therefore this is the main reason that the 𝑇

𝑎
-𝑇
𝑎
method and
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Figure 3: 𝑅2 values of daily maximum and minimum 𝑇
𝑎
creation results for 𝑇

𝑎
-𝑇
𝑎
and LST-LST methods. In each group of bars, from left to

right are 𝑇
𝑎
-𝑇
𝑎
(entire period), LST-LST (entire period), 𝑇

𝑎
-𝑇
𝑎
(spring), and LST-LST (spring).
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Figure 4: Scatter plot of daily maximum 𝑇
𝑎
creation results for 𝑇

𝑎
-𝑇
𝑎
and LST-LST methods during the entire period (a) and spring (b),

taking station pair 1-1𝑁 as example.
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Figure 5: Scatter plot of daily minimum 𝑇
𝑎
creation results for 𝑇

𝑎
-𝑇
𝑎
and LST-LST methods during the entire period (a) and spring (b),

taking station pair 1-1𝑁 as example.
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Figure 6: MAE values of daily maximum and minimum 𝑇
𝑎
creation results for 𝑇
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and LST-LST methods. In each group of bars, from left
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(entire period), LST-LST (entire period), 𝑇

𝑎
-𝑇
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(spring), and LST-LST (spring).
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Figure 7: RMSE values of daily maximum and minimum 𝑇
𝑎
creation results for 𝑇
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𝑎
and LST-LST methods. In each group of bars, from
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Table 8: Performance of Elev𝑇
𝑎
and New𝑇

𝑎
scenarios in the least parameters and complete parameters settings.

Basin
The least parameters settings Complete parameters setting

Elev𝑇
𝑎

New𝑇
𝑎

Elev𝑇
𝑎

New𝑇
𝑎

𝑅
2 NSE 𝑅

2 NSE 𝑅
2 NSE 𝑅

2 NSE
A 0 −0.88 0.15 0.15 0.22 0.11 0.42 0.42

B 0 −3.98 0.19 −0.51 0.43 0.29 0.57 0.49

C 0.67 0.63 0.75 0.73 0.79 0.72 0.79 0.75

Elev𝑇𝑎 scenario is elevation bands combined with the original monitoring air temperature data scenario, and New𝑇𝑎 scenario is the newly created air
temperature data. 𝑅2 is coefficient of determination, and NSE is Nash-Sutcliffe efficiency.

the LST-LST method tend to include more error during the
spring.

Although the errors are extended by the LST-LST
method, the MAEs and RMSEs obtained herein were still
within a reasonable range compared with earlier research
in different regions. For example, based on the multistep
linear regression method, Colombi et al. [25] predicted 𝑇

𝑎

in alpine areas of Italy. Their RMSE = 1.89∘C for daily
average temperature and maximum and minimum 𝑇

𝑎
were

2.47∘C and 3.36∘C, respectively, similar to our results. Shen
et al. [26] used a single linear regression method to predict
daily maximum and minimum 𝑇

𝑎
based on LST data, with

error 2-3∘C. Generally, although the error is enlarged in
LST-LST method compared with the 𝑇

𝑎
-𝑇
𝑎
method, the

various indexes still show that errors of the LST-LST method
were within a reasonable range, and overall performance of
the method demonstrated its capability for predicting daily
maximum and minimum temperature.

4.2. Simulation Results of Elev𝑇
𝑎
and New𝑇

𝑎
Scenarios in

the Least and Complete Parameters Settings

4.2.1. Simulations with the Least Parameters Setting. Simula-
tion results for bothscenarioswith the least parameters setting
are shown in Figures 8, 9, and 10 and Table 8. Basically, the

trend of these results in basin A was the same as in basin B.
In basin A, the coefficient of determination of the Elev𝑇

𝑎
and

New𝑇
𝑎
scenarios was 0.0 and 0.15, respectively, and NSE was

−0.88 and 0.15. Snowmelt simulation results in both scenarios
were overestimated in the early part of each year, while peak
flow during snowmelt season was underestimated. In basin
B, the coefficient of determination for Elev𝑇

𝑎
and New𝑇

𝑎

was 0.0 and 0.19. Although NSE values from both scenarios
were negative and coefficients of determination were weak,
New𝑇

𝑎
gave better results than Elev𝑇

𝑎
, especially for NSE.

Although all evaluation indices indicated poor performance,
the results demonstrated that New𝑇

𝑎
was superior to Elev𝑇

𝑎
.

By contrast, for basinC, both scenarios achieved good results.
There, the performance of New𝑇

𝑎
(𝑅2 = 0.75, NSE = 0.73)

was again better than Elev𝑇
𝑎
(𝑅2 = 0.67, NSE = 0.63).

These results clearly show that performances of New𝑇
𝑎

scenarios were always better than Elev𝑇
𝑎
in all test basins.

However, it was also suggested that the SWAT model
cannot attain an acceptable level of simulation without
model calibration. Although the test basins were in the
same region, differences of snowmelt processes must still be
considered. Because there were no additional observed data,
parameter calibration is the only way to improve simulation
performance to an acceptable level. Thus, simulation and
parameter calibration with the complete parameters setting
are discussed in the following section.
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Figure 8: Spring snowmelt simulation results (March, April, and May) for the least parameters setting (a) and complete parameters setting
(b) of basin A.
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Figure 9: Spring snowmelt simulation (March, April, and May) results of the least parameters setting (a) and complete parameters setting
(b) of basin B.
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Figure 10: Spring snowmelt (March, April, and May) simulation results of least parameters setting (a) and complete parameters setting (b)
of basin C.

Table 9: Complete parameters set calibration results, for both Elev𝑇
𝑎
and New𝑇

𝑎
scenarios.

Basin A B C
Parameter Elev𝑇

𝑎
Rank New𝑇

𝑎
Rank Elev𝑇

𝑎
Rank New𝑇

𝑎
Rank Elev𝑇

𝑎
Rank New𝑇

𝑎
Rank

ALPHA BF 0.512 8 0.411 8 0.773 10 0.463 9 0.377 12 0.330 5
CN2 0.062 3 0.228 3 −0.184 4 −0.173 7 −0.390 10 −0.052 7
ESCO 0.338 10 0.712 10 0.691 9 0.279 12 0.349 14 0.550 10
GW DELAY 2.708 6 22.463 13 29.512 14 9.412 8 3.488 4 4.538 6
SFTMP 4.888 12 0.398 11 3.348 13 2.033 11 0.538 5 −2.438 13
SMFMN 0.574 5 1.183 9 0.704 11 1.595 6 0.520 9 1.342 8
SMFMX 4.046 7 7.607 2 8.486 2 3.764 4 4.211 6 6.002 3
SMTMP −2.283 13 2.538 7 4.728 12 −0.008 5 4.323 8 3.438 9
SNO50COV 0.440 1 0.820 4 0.644 3 0.608 14 0.728 1 0.644 2
SNOCOVMX 335.125 2 320.375 1 465.875 1 464.625 1 257.375 3 275.625 1
SOL AWC −0.219 11 0.225 12 0.323 15 −0.169 13 −0.165 7 0.414 12
SOL K 0.043 15 0.148 14 0.304 7 0.455 10 0.487 15 0.353 11
SURLAG 1.017 4 1.420 6 1.776 6 17.163 3 18.969 11 1.615 4
TIMP 0.594 9 0.023 5 0.024 8 0.027 2 0.056 2 0.070 14
TLAPS −8.808 14 −8.453 5 −9.518 13
Elev𝑇𝑎 scenario is elevation bands combined with the original monitoring air temperature data scenario, and New𝑇𝑎 scenario is the newly created air
temperature data.

4.2.2. Simulations with Complete Parameters Setting

(1) Parameter Sensitivity. Parameter sensitivity and optimal
calibration values of the complete parameters setting are
shown in Table 9. Obviously, parameters SNOCOVMX and
SNO50COV that define the snow water content of the entire

basin are in the top ranks for all test basins. SMFMX that
affects daily snowmelt amount and TIMP, which strongly
impacts the snow pack temperature, is also significant.
Parameter CN2, which is generally recognized as the most
important parameter for SWAT [43], was only significant
in basin A and showed less sensitivity than SNOCOVMX
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or SNO50COV. Because our simulations only focused on
the snowmelt period, it is reasonable that CN2, whose main
function is to split net precipitation into surface flow and
infiltration part, is not significant. One of themost influential
parameters in the Elev𝑇

𝑎
scenario is TLAPS, which is related

to elevation change. The sensitivity of TLAPS was significant
in basin B but insignificant in basin A and C. Considering
the poor results of the least parameters setting, sensitivity
results of the complete parameters setting strongly suggest
that the parameters that influenced snowmelt varied between
the test basins and that calibration is essential for the model
to achieve better results.

(2) Simulation Results. Simulation results for the complete
parameters setting are shown in Figures 8, 9, and 10 and
Table 8. In basin A, the coefficient of determination and
NSE of the Elev𝑇

𝑎
scenario (𝑅2 = 0.22, NSE = 0.11)

were greatly improved in New𝑇
𝑎
(𝑅2 = 0.42, NSE =

0.42). In basin B, the coefficient of determination and NSE
of Elev𝑇

𝑎
(𝑅2 = 0.43, NSE = 0.29) were improved in

New𝑇
𝑎
, with respective increases of 0.16 and 0.20 (𝑅2 =

0.57, NSE = 0.49). For basin C, the NSE (𝑅2 = 0.79,
NSE = 0.72) of Elev𝑇

𝑎
was also improved slightly in New𝑇

𝑎

(𝑅2 = 0.79, NSE = 0.75). Obviously, compared with the least
parameters setting, results of the complete parameters setting
were improved in all scenarios via parameter calibration.The
results clearly show that, compared with the least parameters
setting, results of the complete parameters setting can match
the trend of monitoring data well. In basin A (1984, 1986,
and 1987, Figure 8) and basin B (1983–1987, Figure 9) in
particular, simulation results for the peak flow and early melt
hydrograph can match monitoring data well, relative to the
least parameters setting.

Aside from meteorological influences, land cover is
another influence on snowmelt. Wetlands are believed to
be a major factor in snowmelt simulation, because of its
capacity for water storage [44]. Hydrological properties of
these wetlands are very sensitive to variations of 𝑇

𝑎
, seasonal

precipitation, and other climatic factors [45]. To simulate
snowmelt processes in wetlands, Fang et al. [46] applied a
physically based approach to a wetland-dominated prairie
basin in Canada. They found that the ability of wetlands to
trap blowing snow inwinter and store runoffwater is a crucial
feature of the hydrology, and this poses a substantial challenge
to hydrologicalmodeling.Wang et al. [47] andYang et al. [48]
demonstrated that the SWATmodel’s hydrological simulation
component should be improved for wetland-dominated areas
based on detailed wetland measurement data, such as annual
water table depth and normal and maximum water storage
capacities. Wetland covered over 25% of the entire basin A.
However, in a data-sparse area, it is difficult to acquire enough
data to conduct physically based snowmelt simulation of
wetlands, and this is the likely reason that the NSE and 𝑅2
were weak in that basin.

Furthermore, as shown in Table 1, the average slope of
basin A is only 2.8 degrees. Obviously, snowmelt simulation
in such a flat area is greatly influenced by input meteorolog-
ical data, more than by topographic factors. The parameter
sensitivity analysis results also demonstrate that elevation

has less influence on snowmelt in this basin, based on the
sensitivity rank of the TLAPS parameter (14th among the
16 parameters). However, the simulations indicate that the
results are weak in both the least and calibrated Elev𝑇

𝑎

scenarios and are greatly improved in the calibrated New𝑇
𝑎

scenario.
SWATmodel performance wasmore reasonable in basins

B and C. A likely reason is that their elevation differences
are significant; average slope of basin B is 18.2 degrees
and that of basin C is 12.1 degrees (Table 1). Earlier studies
proved that snowmelt performance of SWAT is reasonable
in mountainous areas [40, 49, 50]. Furthermore, dominant
land use types in the two basins are forest and pasture; some
studies have demonstrated that SWAT model performance
is stable in such basins. For example, Zhang et al. [43]
used SWAT for the headwaters of the Yellow River, where
land cover is dominated by pasture land. They found that
SWATcould simulate snowmelt well, based on comparing the
temperature index model with two other physical process-
based models. Further, Debele et al. [51] demonstrated
that SWAT performance was more stable than a physically
based snowmelt model in a forest-dominated, watershed-
scale basin. Although performance of the Elev𝑇

𝑎
scenariowas

superior in the two basins relative to basin A, the New𝑇
𝑎
data

achieves better results.
In addition, based on the land cover information listed in

the Tables 1 and 2, it is clear that the land cover type of the
basin A is same as the 𝑇

𝑎
monitoring stations which are used

for the LST-LST method. In the basin B, the shrub, forest,
and wetland are land cover types of 𝑇

𝑎
monitoring stations.

Although the land cover of the basin B (Table 1) showed
that the pasture is also one of main land cover types the 𝑇

𝑎

monitoring station is consistent with the other land cover
types (forest, shrub, and wetland; 79%). It is likely that the
increment of NSE in the basin A and basin B can be explained
by the homogeneity of land cover between monitoring 𝑇

𝑎

stations and test basins. Contrarily, wetland is the only land
cover type of 𝑇

𝑎
stations and forest is the dominated land

cover in the basin C. Consequently, the increment of NSE in
this test basin is insignificant (Table 8). Hence, the results of
our study indicate that the consistency between the land cover
types of test basins and the 𝑇

𝑎
stations used for creation of

new 𝑇
𝑎
can influence the increment of snowmelt simulation

results. However, we should also recognize that the temper-
ature is not the only factor that influences the snowmelt
processes; the precipitation, topography, and wind speed
also have great influences on the snowmelt. As previously
mentioned (Section 3.4), we fixed other factors to make the
𝑇
𝑎
the only influence factor for the snowmelt simulation in

each parameter settings; thus, the simulation results ofNew𝑇
𝑎

scenarios can still prove the advantages of new created data
for improving snow simulation in this study area. In addition,
these results also suggest that the errors caused from the
assumptions and approximations in the Section 3.1 have less
effect on the final simulation results. The new created data
performed well compared with the original 𝑇

𝑎
data.

Furthermore, although satisfactory results of runoff sim-
ulations are obtainedwith the Elev𝑇

𝑎
scenario in basins B and

C, calibrated TLAPS values indicated probable errors for the
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original data and method. Even though actual TLAPS values
cannot be evaluated because of sparse monitoring of 𝑇

𝑎
data

in our study area, its calibrated values (−8.8∘C/km for basinA,
−8.5∘C/km for basin B, and −9.5∘C/km for basin C) deviated
strongly from the typical temperature lapse rate measured
around the world (−6∘C/km or −6.5∘C/km). Our calibration
results also clearly show that the lapse rate varied between
test basins. This also applies for the basins (B and C) with
large sensitivity differences, and the calibration values of the
TLAPS also varied sharply.

These results strongly demonstrate that the elevation
band method, which depended only on a fixed temperature
lapse rate and the original sparsemonitoring𝑇

𝑎
dataset, had a

less effect on daily snowmelt simulation in the study area.The
results also clearly prove that the new high spatial density 𝑇

𝑎

data with no additional parameter or elevation modification
can achieve superior results for both steep and flat basins.

5. Conclusions

The main objective of this study was to evaluate a new 𝑇
𝑎

data creation method to generate 𝑇
𝑎
data with high spatial

density and accuracy, for improving the performance of
snowmelt modeling using the 𝑇-𝐼method.The research used
a simple linear regression equation between two locations.
The method was tested at eight pairs of air monitoring
stations and compared with the regression method based on
the monitoring data. Although the approximation of linear
regression method might extend errors for 𝑇

𝑎
estimation,

the results still demonstrate that this simple linear regression
approach can create 𝑇

𝑎
data with limited errors range over

long periods, and spatial density of the created data is
very high. Snowmelt simulations with the newly created 𝑇

𝑎

data and original data were compared in three test basins
with varying slope and land cover types. Both the least
parameters and complete parameters settings were tested in
all basins. The calibration results evaluated using different
indices indicate that the newly created 𝑇

𝑎
data can obtain

better simulation results than the original data and method,
in all test basins. The simple linear regression using MODIS
LSTwas generally successful and applicable in our study area.
The research showed that using the newly created 𝑇

𝑎
data

to improve the temperature index-based hydrological model
(SWAT) is feasible, and the results of this new approach
suggest that it could be a powerful means for extending the
applicability of the 𝑇-𝐼method to areas with sparse 𝑇

𝑎
data.
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