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Abstract

Progress in our understanding of molecular oncology has started to shed light on dysregulation of spatio-temporally
controlled signaling pathways, inactivation of tumor suppressor genes, tumour and normal stem cell quiescence,
overexpression of oncogenes, extracellular and stromal microenvironments, epigenetics and autophagy. Sequentially
and characteristically it has been shown that cancer cells acquire the ability to escape from apoptotic cell death,
proliferate uncontrollably, sustain angiogenesis and tactfully reconstitute intracellular pathways to avoid immune
surveillance. We have attempted to provide a recent snapshot of most recent progress with emphasis on how
rutin modulates wide ranging intracellular signaling cascades as evidenced by in-vitro and in-vivo research. It is worth
describing that 'single-cell proteomics' analysis has further improved our understanding regarding intracellular signaling
pathways frequently activated in cancer cells resistant to therapeutics and can provide biomarkers for cancer diagnosis
and prognosis. Data obtained from preclinical studies will prove to be helpful for scientists to bridge basic and
translational studies.
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Introduction
Decades of research have using high-throughput technolo-
gies have sequentially revealed that cancer is a multifaceted
and genomically complex disease. Genetic, genomic and
proteomic studies have provided near complete resolution
of landscape of molecular oncology. It is now progressively
becoming more clear that inactivation of tumor suppressor
genes, overexpression of oncogenes, genomic instability,
genetic/epigenetic mutations, tumor microenvironment,
intracellular signaling cascades and loss of apoptosis
are some of the extensively studied mechanisms. Death
receptor pathway is a complicated biological mechanism
that initiates by the binding of extracellular ligands such
as FasL and TRAIL to respective transmembrane recep-
tors [1]. Ligands signal through the receptors and trigger
intracellularly assembly of death domain adaptor protein,
FADD and procaspase-8 at receptor to form death indu-
cing signaling complexes (DISC). Activated caspase-8
further activates caspase-3, which is an essential step of
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extrinsic pathway. Intrinsic pathway operates through
transmigration of Bid after caspase-8 mediated cleavage
into mitochondrion, thus facilitating release of cytochrome-
c, SMAC/DIABLA, Omi/Htra. Mechanistically it has been
shown that a signalosome is formed by assembly of Cyto-
chrome C, APAF and Pro-caspase-9 to form a apoptosome.
Activated caspase-9 further activated caspase-3 [2,3].
There is a list of newly emerging scientific evidence

highlighting molecular mechanisms reported to be modu-
lated by rutin to induce apoptosis in cancer cells. We
partition this commentary into in-vitro and in-vivo evi-
dences which have added new layers of knowledge into
the existing pool of scientific information related to rutin.
In vitro studies
Rutin present in curry leaf Murraya koenigii extracts is
an active ingredient and has significant activity against
breast cancer MDA-MB-231 cells [4]. DNA protective
effects of rutin against pro-carcinogens in HTC hepatic
cells are also reported [5]. We divide this multi-component
discussion into how rutin modulates, Wnt signaling, JAK-
STAT signaling, EGF signaling, AP-1, NF-κB and Akt. We
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also discuss how ER stress induced response is targeted by
rutin to induce apoptosis in cancer cells.

Wnt signaling
Binding of WNT protein to the receptor complex initiates
a signaling cascade intracellularly. Negative modulators of
beta-catenin including CK1 (casein kinase 1), GSK3beta,
AXIN1 and APC are inhibited and β-catenin moves into
the nucleus to form an active transcription factor complex
with TCF to transcriptionally upregulate target genes [6,7].
Hammada scoparia flavonoidic fraction and its bioactive

ingredient rutin exerted inhibitory effects on survival of
leukemic progenitors (CD34(+)38(-)123(+)). Moreover,
there was a notable decrease in active glycogen synthease
kinase 3 β (GSK-3β) in rutin treated cells [8]. Wolfberry
water soluble phytochemicals specifically rutin and quer-
cetin have been shown to stabilize β-catenin in Jurkat
cells. Detailed in-vitro analysis indicated an increase in
β-catenin protein alongwith a dose-dependent decrease
in phosphorylation of GSK-3β on Ser9 in Jurkat cells
[9] Shown in figure. Although Rutin did not target
Wnt/β-catenin signaling in an experimental model of
Xenopus embryos [10], it still needs research in different
cancer cell lines.
Figure showing Wnt induced signaling. Rutin has been

shown to target different modulators of Wnt signaling.

JAK-STAT signaling
It is now well established that cytokine-receptor-associated
Janus-family kinases (JAKs) phosphorylate intracellularly
located, cytoplasmic tails of the receptor to provide docking
sites for positioning of monomeric STATs. These receptor
docked STATs are phosphorylated and transported into the
nucleus to trigger expression of target genes. Increasingly
it is being realized that STAT3 mediated signaling is
negatively modulated by different inhibitory molecules.
Rutin has been shown to inhibit inflammatory responses
in UVB-irradiated mouse skin by inhibiting the increase in
phosphorylated levels of STAT3 [11].
Therapeutically controlling STAT3 signaling using differ-

ent natural phytochemicals although has shown promise
[12-14] however it still needs a detailed research.

EGFR induced signaling
Epidermal Growth Factor (EGF) induced signaling has
emerged as a deeply studied molecular mechanism. It
is intriguing to note that EGF signaling is frequently
deregulated in different cancers [15-17]. EGF signals
through EGFR in cancer cells. EGFR undergoes auto-
phosphorylation at tyrosine residues and is reported to
be involved in activating various downstream effectors
of different signaling axis particularly, Ras/Raf/Mek/
Erk and PI3K/Akt. Rutin has been shown to inhibit
EGFR kinase activity. Rutin also exerted inhibitory
effects on Akt and Raf/MEK/ERK signaling pathways.
Rutin has been noted to directly bind with EGFR as
evidenced by pull-down assay which indicated that
EGFR protein was pulled down with rutin–Sepharose
4B beads [18]. This finding needs additional verification in
different cancer cell lines to know if Rutin can effectively
inhibit EGFR induced signaling in HER2-overexpressing
breast cancer. Moreover, how effectively rutin may inhibit
PDGFR and VEGFR is also an outstanding question that
needs to be addressed.
AP-1, NF-κB and Akt
Activator proteins (AP-1) include the JUN, FOS, ATF
protein families, which undergo homo-dimerization and
hetero- dimerization through their leucine-zipper domains
[19]. AP-1activity has been reported to be modulated
by extracellular signals including growth factors and
intracellular signaling primarily through extracellular-
signal-regulated kinase (ERK), p38 and c-Jun N terminal
Kinase [20].
Inhibitor of -Kappa B (IκB) bound Nuclear factor-Kappa

B (NF-κB) exists in an inactive state in the cytoplasm,
however, proteasomal degradation of IκB promotes its
nuclear accumulation to trigger expression of antiapop-
totic genes [21].
Transactivation of AP-1 and NF-κB was also notably

reduced in rutin treated cells [18]. Wolfberry water sol-
uble phytochemicals specifically rutin and quercetin have
considerable biological activity against jurkat cells. Results
revealed inhibition of NFκB and AKT activity in jurkat
cells [9]. Rutin also inhibited inflammatory responses in
UVB-irradiated mouse skin by inhibiting the increase in
phosphorylated levels of p38 MAPK and JNK. Moreover,
AP-1 did not show nuclear accumulation in rutin treated
cells [11].
Endoplasmic reticulum (ER) stress
The endoplasmic reticulum (ER) stress triggers activation
of multifunctional sensors including activating transcription
factor 6 (ATF6), inositol-requiring protein 1 (IRE1) and
PKR-like ER kinase (PERK) to transduce information about
the folding status [22]. Signaling machinery consisting of
IRE1 and PERK undergo oligomerization in the plane of
the membrane and activated by trans-autophosphorylation
of activation loop during ER stress [23]. Some other well
studied triggers for ER stress response include loss of
binding to BIP (chaperone immunoglobulin heavy chain-
binding protein) and intricate interaction with misfolded
proteins [23]. Mechanistically, rutin was reported to
considerably reduce ROS, IRE1, PERK and ATF6 to
induce apoptosis in cancer cells. Gene silencing strategy
also confirmed that PERK, ATF6 and IRE1 silenced
cancer cells displayed a higher apoptotic rate [9].
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Extrinsic and Intrinsic pathway
BCL2/BAX ratio and expression of BCL2, both were
notably reduced in rutin treated neuroblastoma LAN-5
cells. G2/M arrest and a marked increase in apoptotic
rate were noted in neuroblastoma LAN-5 cells [24]. Rutin
present in ethanolic extract of aerial parts of Pupalia
lappacea also exerted effects on leukemia K562 cells by
functionalizing intrinsic pathway mediated apoptosis [25].
Extract of Cyrtosperma johnstonii contains rutin as a bio-
active ingredient and has potent biological activity against
small cell lung carcinoma cells as evidenced by cell cycle
arrest and apoptosis [26].

In vivo
Rutin considerably reduced tumor growth in mice xeno-
grafted with SW480 colon cancer cells [27]. Extract of
Phyllanthus urinaria is rich in polyphenols particularly
rutin. Extract has been shown to remarkably inhibit
tumor spread in mice xenografted with metastatic A549
and Lewis lung carcinoma (LLC) cells. Mechanistically
it was shown that nuclear accumulation of NF-κB and
AP-1 was drastically reduced. Moreover, metalloproteinase-
2 expression was also noted to be downregulated [28]. It
is noteworthy that administration of 120 mg/kg of rutin
in mice xenografted with leukemia HL-60 cells induced
regression of tumor [29]. Radioprotective effects of troxer-
utin are also studied in irradiated mice [30]. Extract of
Prunella vulgaris is enriched in rosmarinic acid, quercetin
and rutin. Extract significantly inhibited tumor growth in
C57BL/6 mice [31]. It has previously been convincingly
revealed that rutin remarkably reduced size of enlarged
spleen in mice intraperitoneally injected with WEHI-3
cells [32]. Rutin has been shown experimentally to effect-
ively block development of adenomas in the lungs of
wild-type mice, however the results were not noted in
BRM null mice [33]. It has recently been reported that
preneoplasic lesions induced by 1,2-dimethylhydrazine in
rat colon were remarkably reduced in troxerutin treated
animal group [34].
There is a direct piece of experimental evidence sug-

gesting that rutin mediated suppression in monocyte
migration into peritoneal tumors contributes to tumor
growth. The results revealed that macrophages infiltrating
tumor dramatically reduced peritoneal colorectal car-
cinoma metastases however rutin significantly inhibited
infiltration of macrophages [35].

Human studies
Pharmacokinetic profile of rutin was determined in 18
healthy non-obese females having normal cholesterol levels
who volunteered for the study. Plasma flavonoids were
considerably higher in the rutin-supplemented females.
Endogenous oxidation of pyrimidines was significantly
decreased in both placebo and rutin-treated volunteers
[36]. In another, diet-controlled, double blind two-period
cross-over study, 16 healthy volunteers were orally admin-
istered with varying doses of rutin. After rutin ingestion,
inter-individual variability in maximum concentration
(Cmax) and area under curve (AUC) (0-32) values were
significant and gender associated [37]. Mesenteric lymph-
atic/duodenum-cannulated rat model was intraduodenally
administered with 300 mg/kg of Rutin. Maximum concen-
tration of rutin in lymph, was slightly lesser as compared
to plasma. Area under curve (AUC) of rutin in lymph was
2-fold higher as compared to plasma rutin [38].

Pharmacokinetics
There is a recent report suggesting that phenolic com-
pounds including resveratrol, quercetin, and rutin displayed
poor absorption through colon adenocarcinoma Caco-2
cells [39]. Different approaches have been utilized to
enhance availability of rutin and in line with this approach,
encapsulation of rutin in different substituents of cyclodex-
trin, such as 2-hydroxypropyl-β-cyclodextrin (HP-β-CD),
hydroxypropyl-γ-cyclodextrin(HP-γ-CD),β-cyclodextrin
(β-CD) and γ2-β-cyclodextrin(γ2-β-CyD) have shown
potential in improving solubility and stability of rutin
[40]. Mechanistically it has been shown that β-CD and
HP-β-CD formed stable inclusion complexes with rutin
[41]. Rutin dissolution rates enhanced efficiently upon
complexation with cyclodextrins. Cyclodextrins stabilize
rutin in gastrointestinal tract (GIT) after oral administra-
tion as rutin hydrolysis in small intestinal homogenates of
drug treated animal group was considerably reduced. Oral
bioavailability of rutin has also been noted to be signifi-
cantly increased upon complexation with HP-β-CyD as
evidenced by faster dissolution rate, increase in solubility
and gastrointestinal stability. Higher aqueous solubility
and negligible toxicity is a hallmark of HP-β-CyD associ-
ated pharmaceutical formulations.
Absorption of rutin from the gastrointestinal tract

(GIT) is slower. Cross-linked sodium carboxy, methyl-
cellulose (CMC-XL) has been used to formulate rutin
containing fast-release tablets and prolonged-release for-
mulations using hydroxypropylmethylcellulose (HPMC)
of different viscosity grades have also been developed
[42]. There is an exciting piece of evidence highlighting
that hydrolyzed rutin had a higher biological activity
against wide ranging cancer cell lines [43].

Rutin regulation of DNA damage
Ethyl methanesulfonate (EMS) induced alkylation medi-
ated DNA damage was notably reduced in Drosophila
melanogaster males because rosmarinic acid and rutin
encircled nucleotides and occupied EMS binding space
thus generating an impermeable barrier for the EMS
molecule to trigger alkylation [44]. Moreover, Doxorubi-
cin induced DNA damage was notably reduced in Rutin
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treated hepatoma HepG2 cells [45]. However, another
role of Rutin has been documented as a DNA damage
inducer. Rutin moderately induced DNA damage in
BRCA mutant cells [46]. The data related to how Rutin
actually modulates DNA damage signaling is insufficient
and needs detailed research. It will be essential to note
how it positively and/or negatively modulates DNA
damage signaling in different cancer cell lines.

Concluding remarks
Although there are advancements in understanding of the
molecular networks and signaling cascades reported to be
modulated by rutin in cancer cells, it still needs detailed
research. TGF/SMAD and SHH mediated signaling axis
are insufficiently studied in different cancer cell lines.
Moreover, we still have outstanding questions regarding
rutin mediated effects on oncogenic and tumor suppressor
micro RNAs. Detailed and extensive research should be
focused on combinatorial approaches to overcome resist-
ance against therapeutics in resistant phenotypes.
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