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Self-adaptivity is the ability of a system to adapt itself dynamically to internal and external changes. Such a capability helps systems
to meet the performance and quality goals, while judiciously using available resources. In this paper, we propose a framework
to implement application level self-adaptation capabilities in KPN applications running on NoC-based MPSoCs. The monitor-
controller-adapter mechanism is used at the application level. The monitor measures various parameters to check whether the
system meets the assigned goals. The controller takes decisions to steer the system towards the goal, which are applied by the
adapters. The proposed framework requires minimal modifications to the application code and offers ease of integration. It
incorporates a generic adaptation controller based on fuzzy logic. We present the MJPEG encoder as a case study to demonstrate
the effectiveness of the approach. Our results show that even if the parameters of the fuzzy controller are not tuned optimally,
the adaptation convergence is achieved within reasonable time and error limits. Moreover, the incurred steady-state overhead due
to the framework is 4% for average frame-rate, 3.5% for average bit-rate, and 0.5% for additional control data introduced in the

network.

1. Introduction

Recent trends in microprocessor design have witnessed a
paradigm shift from single core architectures towards Multi-
processor-System-on-Chips (MPSoCs) due to unsustainable
increases in power dissipation while running a single proces-
sor at very high frequencies. As the number of cores in the
system increases, on-chip communication becomes a bottle-
neck. To address the scalability issues of MPSoCs, Networks-
on-chips (NoCs) [1] have emerged as a new communication
paradigm. However, even in the case of NoC-based systems,
if shared memory access is employed, memory coherence
protocols induce an overhead in the communication network
rendering the gain from additional cores useless. No Remote
Memory Access (NORMA) [2] model addresses this problem
by assigning a private local memory for each NoC tile. This
solution is especially suited for programming models based
on message passing.

Embedded systems are often subject to stringent non-
functional goals such as high computational performance
and dependability, low power consumption, memory usage,

and chip area. Satisfying such requirements imposed by the
application designer on systems with increasing complexity
of the underlying architectures is a fundamental challenge.
To deal with this problem, designers often resort to self-
adaptation-based techniques [3]. Self-adaptive systems are
able to react when the actual operating conditions of the sys-
tem such as the workload, the internal/external conditions,
and the quality-of-service goals differ from the design-time
assumptions.

The techniques to be developed for implementing self-
adaptive applications depend heavily on the adopted model
of computation. In this paper, we adopt Kahn Process
Networks (KPN) [4] model due to its suitability for
NORMA-based NoC multiprocessors. KPN represents a
stream-oriented computation model, where an application
is organized as streams and computational blocks; streams
represent the flow of data, while computational blocks
represent operations on a stream of data, making it a
suitable computation model to represent most of the signal
processing and multimedia applications of the embedded
systems world.



There are certain challenges to be tackled when designing
self-adaptive systems. A general concern is the overhead
introduced in making the system monitorable and adaptable.
A large overhead can easily compensate the benefits of
adaptation. There are two types of overhead. The first type,
which can be called steady state overhead, is the overhead
experienced simply due to the additional hardware or soft-
ware for enabling monitoring and adaptation capabilities. It
is present even when there are no ongoing adaptations. This
overhead should be minimized because it has to be afforded
at all times. The second type, which can be called transient
overhead, is the overhead experienced while an adaptation
is taking place. The major sources of this overhead are the
adaptation control logic and the realization of an adaptation.
If the system is expected to have frequent adaptations, then
care must be taken to minimize this type of overhead.

Separation of concerns is a key feature for self-adaptive
systems. However, the realization of this principle is quite
challenging for several reasons. It emphasizes that the
application programmer should be involved as minimally
as possible in making the system self-adaptive. Although
it may be possible to realize this for adaptations at the
run-time environment and hardware levels because of the
clear interface between the application and the execution
platform, it is a more difficult task for application level
adaptations. Intrinsic application knowledge by the appli-
cation programmer is required in order to expose the
feasible adaptations in the application. Automatic inference
of such adaptations would be very difficult, if possible at
all. Depending on the adaptation goal, another difficulty is
in the inference of what to monitor and how to monitor it
without involving the programmer. There is a semantic gap
to be bridged between the given goal and the application.
Monitoring involves choosing the correct program variables
and operating on them in order to calculate the actual
metric that corresponds to the goal. Another issue with
the separation of concerns principle is that it is likely to
conflict with the low overhead goal mentioned previously.
The less the programmer has to do would lead to the
more the self-adaptation logic has to do, thus yielding
to more overhead due its complexity. Last but not least,
the behavior of the adaptation controller is application-
dependent. Machine learning algorithms can be used to
obtain the application knowledge, particularly the relation
between the goal and the adaptations, but it would result
in a complex control logic with a bigger overhead which
may not be acceptable for embedded systems. Alternatively,
the required application knowledge can be provided to the
controller by the application programmer.

Another fundamental challenge for system-wide self-
adaptivity is presented by the management of the adap-
tations. The systems are usually faced with multiple goals
to satisfy at run-time such as a desired throughput, low
power consumption, and high dependability. Satisfying all
the goals by controlling various possible adaptation options
is a difficult task. Changing the set of goal types would
require a complete or partial redesign of the controller.
Possible solutions to this problem are automated controller
synthesis or designing generic controllers.
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In this paper, we are addressing the application level
self-adaptation challenges mentioned above in the context
of streaming applications based on the KPN model and
running on NORMA-based NoC multiprocessors. The main
contribution of this work is the investigation of fuzzy
control as a generic adaptation management mechanism
for self-adaptive systems. In doing so, methods for adding
adaptation and monitoring capabilities to KPN applications
are proposed. Results are presented showing the generality
and quality of control. The overhead of the proposed self-
adaptive framework is also reported with a case study.

The remaining part of the paper is organized as follows.
An overview of the related work is provided in Section 2.
Section 3 introduces our framework with implementation
details of monitoring, controlling, and adaptive tasks.
Section 4 discusses adaptive-MJPEG as a case study, which
is built using the proposed M-C-A framework. The results of
the case study are provided in Section 5. Section 6 discusses
the main design principles and generality of the proposed
framework, while Section 7 concludes our work.

2. Related Work

In [5], authors presented a monitor-controller-adapter-
based framework to enable self-adaptivity for streaming
applications. The paper introduces a framework based on the
KPN computation model. However, implementation details
of monitors and adaptation controllers are not provided.
Even though a case study is provided, no results are available
to evaluate the framework in terms of its effectiveness and
performance (timing, convergence, etc.).

A standardized way to manage self-adaptivity at appli-
cation level is provided in [6], which proposes separation
of concerns between adaptation management and system
functionalities. Self-adaptivity is obtained by applying a
set of adaptation policies on software components, while
these policies are triggered by certain configurable system
events. Possible adaptations for component behavior and
application parameters are also discussed. Unfortunately,
they do not discuss if and how a general goal is achieved.

In [7], the authors present the results of project
MADAM that has delivered a comprehensive solution for the
development and operation of context-aware, self-adaptive
applications. The main contributions of this work are
(a) a sophisticated middleware that supports the dynamic
adaptation of component-based applications, and (b) an
innovative model-driven development methodology based
on abstract adaptation models and corresponding model-to-
code transformations.

A generic model of a self-adaptive system is presented in
[8], in which a proposal to manage self-adaptivity at hard-
ware and software levels by means of a decentralized control
algorithm is provided. A goal management methodology, a
goal specification interface, along with a decentralized and
coordinated control mechanism is proposed as part of this
work.

In [9-11], several techniques for fine-grained QoS con-
trol of multimedia applications are presented. The proposed
methods generate a controlled application that meets given
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FIGURE 1: A self-adaptive KPN application based on M-C-A framework.

QoS requirements from an input application software. The
controller monitors the progress of the computation in a
cycle and chooses the next action to run and its quality level,
guided by safety and optimality constraints for the system.
Our work differs from these methods in two aspects: (1)
we target applications running on MPSoCs in a distributed
manner, whereas these works consider single threaded appli-
cations for which it is possible to estimate by using timing
analysis and profiling techniques, worst-case execution times
and average execution times, for different levels of quality. (2)
Our controller is generic and requires minimal knowledge
of application characteristics as compared to these methods
which require deep knowledge of the data-flow structure of
the application.

A middleware-based approach to enable run-time migra-
tion of processes among tiles of a NoC is presented in [12].
Such a technique helps in achieving application-independent
adaptivity support such as fault tolerance. On the other
hand, our work deals with application-dependent parameter
adaptations using a M-C-A based approach.

3. Self-Adaptive KPN Applications Using
Distributed M-C-A Framework

This section presents our framework to build self-adaptive
component-based applications by incorporating a dis-
tributed monitor-controller-adapter (M-C-A) mechanism in
the KPN application pipeline (as proposed in [5]). Monitor-
ing involves measurements of various parameters to check
whether the system meets the assigned goals. The controller
is capable of driving adaptations when goals are not met,
whereas adapters are in charge of performing adaptations.
In case of KPN applications running on MPSoCs, various
tasks of the application will be mapped onto different tiles
of the platform. Hence it is quite possible that the parameter
to be monitored is present in one tile, whereas the task
to be adapted may exist on a different tile. This forces the

monitor, controller, and adapters to be implemented on
different tiles in a distributed manner. For example, in case
of a video encoder application, bit-rate monitoring should
be done on the tile where sink task is present whereas
the frame-size adapter logic has to be present on the tile
where source task is located. Our framework represents a
self-adaptive application in terms of the following entities:
adaptive tasks implementing adapter functions, monitoring
tasks calling monitoring functions, adaptation controller(s),
and adaptation propagation channels alongside the original
task graph. Figure 1 depicts a simple KPN application and its
self-adaptive version based on our framework.

3.1. Adaptive Task. In order to implement application spe-
cific adaptations, each task should expose its adaptation
space (set of adaptable parameters) to the external world.
Adaptive tasks will have control channels and multiple
optional adaptation propagation channels in addition to
nominal input/output data channels. Control channels carry
the control commands from the controller to adaptive
tasks whereas adaptation propagation channels carry new
parameter values from adaptive tasks to other tasks which
require these updated values. For example, in case of an
adaptive source task (which supports frame-size adapta-
tion) in a video encoding application, control channel will
carry the frame-size control command from the controller,
whereas the adaptation propagation channels will carry the
new frame-size to any other relevant tasks. The frequency
at which these channels will be read/written by the task
depends on the application as well as the granularity required
for the control. In order to perform the adaptation, the
task should read the control command from the control
channel and call the adapter functions, with control com-
mand as the argument. It should also send the modified
values of the adapted parameter to other tasks which need
these updated parameters. Figure 2 shows the modifications
required (shown in blue) to transform a KPN task into an
adaptive KPN task.



/adaptiveTask() \
{

for(i=0; i<M; i++) {

read(CTRL_CH, &ctrISignal);
adaptParam(ctriSignal);
write(ADAPT_PROP_CH, newParam);

for(j=0; j<N ; j++) {
read(DATA_IN_CH, &inData)
outData = process(inData);
write(DATA_OUT_CH, outData);

}

] /

F1GURE 2: An adaptive task.

mitoringTask()
{

for(i=0; i<M; i++) {

\

int dataCounter = 0;

for(j=0; j<N ; j++) {
read(DATA_IN_CH, &inData);
dataCounter += sizeof(inData);
outData = process(inData);
write(DATA_OUT_CH, outData);

}

timeStamp t = getCurrentTime();
alignSlidingWindow(dataCounter, t);

tr = calculateTokenrate();
write(MONITOR_CH_BR, br);

write(MONITOR_CH_TR, tr);

br = calculateBitrate();
}
}

FIGURE 3: A monitoring task.
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3.1.1. Adapter Functions. Adapter functions perform the
actions needed to perform the adaptations. The implemen-
tation of adapter functions is parameter dependent. An
adapter function for adapting “paraml” has the follow-
ing signature: void adaptParaml(CtrlCommand c); where
control command argument can take one of the following
values: (a) —2: modify the adaptable parameter so as to
aggressively reduce the monitored parameter, (b) —1: modify
the adaptable parameter so as to mildly reduce the monitored
parameter, (¢) 0: maintain same value for the parameter, (d)
+1: modify the adaptable parameter so as to mildly increase
the monitored parameter, (e) +2: modify the adaptable
parameter so as to aggressively increase the monitored
parameter. The adapter functions need to be implemented by

the application programmer with appropriate interpretation
of the mild/aggressive changes to the parameter.

3.2. Monitoring Task. Monitoring refers to the measurement
of a parameter in the system, that is, of interest. The
accuracy and timing of these measurements are critical,
since it impacts the overall quality of adaptation. A normal
KPN task is converted to a monitoring task by calling
monitoring functions provided by the framework. Figure 3
shows a simple monitoring task obtained by modifying
a typical KPN task by adding calls to the monitoring
functions (shown in blue). Our framework supports two
types of throughput monitoring: bit-rate and token-rate. The
granularity of monitoring is application-dependent and it
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is the application programmers responsibility to insert calls
to the monitoring functions at an appropriate place in the
code. Furthermore, the framework assumes support from
the platform to measure the current time. Monitoring task
should also send the monitored parameter values to the
adaptation controller using monitor channels.

3.2.1. Monitoring Functions. The following are the monitor-
ing functions provided.

AlignSlidingWindow. We propose sliding-window monitor-
ing, which is triggered by a call to the alignSlidingWindow
function. Sliding window method is deployed to find the
average of last few instantaneous values of a monitored
parameter. It is realized using two circular arrays of size equal
to monitor-width, which is configurable in the implementa-
tion. These arrays are used to hold the parameter values and
the timestamp of their measurements. When alignSliding-
Window is called (with the newly captured parameter value
and its timestamp as arguments), the windows are adjusted
so that the arrays contain the most recent parameter values.

CalculateTokenRate. Token rate is the number of tokens
received per unit time by the monitoring task. It is calculated
using the number of entries in the sliding window and
the difference in timestamps between the latest and oldest
entries.

CalculateBitRate. This function calculates the throughput of
the generated data. Throughput (bit-rate) is calculated by
dividing the sum of all entries in the monitoring window
by the difference in timestamps between the latest and oldest
entries.

The width of the sliding window can be specified by the
application programmer using the monitor-width param-
eter. This parameter decides the sensitivity of the control
mechanism (i.e., how fast the variations in the monitored
variables are perceived). If the monitor-width is too large,
the sensitivity will be low, that is, the effect of a particular
adaptation strategy will be reflected in the average value only
after many values got generated under that strategy. On the
other hand, a very small monitor window helps in detecting
changes in the parameter very fast. However, this may cause
large ripples in the output since any adaptation strategy
needs some settling time before its effects are visible. Hence
it is very important to keep monitor-width at an optimum
value to obtain a good quality of adaptation.

3.3. Controller. The most important entity of any adaptation
scheme is the controller, because it takes decisions to steer
the monitored parameters towards their target values. The
correctness and speed of the decisions taken by the controller
influence the effectiveness of the adaptation mechanism.
Hence controller is the most critical entity in the design of
self-adaptive systems. In order to free the application devel-
oper from self-adaptivity concerns, our framework provides
a generic fuzzy logic [13] based adaptation controller that
should work for any application being run on the platform.

5
Monitored
B m c Fuzzy u pargeter
I_) controller
> L

FIGURE 4: A simple fuzzy control-based system.

Fuzzy logic is a form of multivalued logic that deals
with reasoning in an approximate way rather than precise.
It is derived from the fuzzy set theory which is based
on the understanding that every fact is present or not
up to a certain degree. Fuzzy control represents formal
methodology for presentation, manipulation, and imple-
mentation of human heuristic knowledge about how certain
processes should be controlled by using a simple, rule-based
“if X and Y then Z” approach rather than attempting to
model a system mathematically. For example, instead of
dealing with temperature control in precise terms, fuzzy
controller uses linguistic terms such as “if (process is too
cool) and (process is getting colder) then (heat the process)”
or “if (process is too hot) and (process is heating) then (cool
the process quickly).” These terms are imprecise yet very
descriptive of what must actually happen. We chose to
use fuzzy logic control since the mathematical models of
most application processes are unknown and would be very
difficult to build, yet it can easily be described linguistically
such as if process is very hot and the temperature is
increasing, it is clear that the process has to be cooled quickly.

Figure 4 depicts a simple fuzzy logic controlled system.
Here some parameter of interest within the system is
monitored. The error signal (€) is the difference between the
reference value (r) of the parameter and its monitored value.
The fuzzy control logic takes this error signal and its rate of
change as inputs and generates the control signal (u) as the
output, which will be fed to the adapter logic.

We propose to implement a separate fuzzy controller for
each specified goal of the system, thus offering scalability
in terms of adding new goals. This also allows controller
tasks to be placed in tiles which are at optimum distances
from the corresponding adaptive and monitoring tasks,
hence reducing the latency and the amount of network
traffic introduced by control data. The frequency at which
the controller should be run is application-dependent. For
example, in case of a frame-rate control in a video encoder,
the algorithm can be run for every third video frame.

Our design of the fuzzy controller is based on the
following parameters.

Error (€). The difference between the monitored value of a
parameter and its target value.

Delta Error (A€). The difference between current error and
previous error.

Control Settling Width. The duration for which the con-
troller should wait for a control decision to take its effect on



TABLE 1: Error ranges for the fuzzy controller.

Error range Range name

(Error threshold high) < €
(Error threshold low) < € < (error threshold high) Positive large

Positive huge
0 < € < (error threshold low) Positive small
—(Error threshold low) < € < 0

—(Error threshold high) < € < — (error threshold
low)

€ < —(error threshold high)

Negative small
Negative large

Negative huge

TaBLE 2: Delta-error ranges for the fuzzy controller.

Delta-error range Range name

(Delta error threshold) < Ae

0 < A€ < (delta error threshold)
—(delta error threshold) < Ae < 0
A€ < —(delta error threshold)

Positive large
Positive small
Negative small
Negative large

TaBLE 3: Control levels and their meanings.

Control levels Meaning

-2 Aggressively reduce the monitored parameter

-1 Mildly reduce the monitored parameter

0 Maintain same value for the monitored parameter
+1 Mildly increase the monitored parameter

+2 Aggressively increase the monitored parameter

the monitored parameter before taking the next decision. In
other words, settling width represents the duration between
two consecutive control decisions. For example, in the case
of frame-rate control, the settling width can be represented
in terms of the number of frames between two consecutive
control decisions.

Error Threshold Low and Error Threshold High. Threshold
values divide the error axis into distinct intervals (i.e., error
ranges). The decision taken by the controller depends on
which interval in the error axis the current error value
belongs to.

Delta Error Threshold. Similar to the error thresholds, delta-
error threshold divides the delta-error axis into sub intervals
(i.e., delta-error ranges). The interval in which delta-error
falls also influences the decision of the controller.

Depending on which interval the value of error/delta-
error falls, they are assigned a range value. Tables 1 and 2
give all the possible range values and the corresponding range
names for errors and delta-errors, respectively.

Our controller implements five discrete levels of control
as detailed in Table 3. For example, to reduce the monitored
parameter aggressively, controller generates —2 as the control
command. Similarly +1 at the controller output seeks for
mild increase in the parameter. The interpretation of these
discrete outputs is parameter dependent and has to be done
by the adapter functions.
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The decision making algorithm of the controller is
summarized as follows.

(i) If error range is positive huge then control command
is —2 (i.e., if the current value of the parameter is
very much greater than the target value then seek to
decrease it aggressively).

(ii) If error range is positive large and delta-error range
is negative large then control command is 0 (i.e., if
the current value of the parameter is greater than the
target value and the error is decreasing at a very fast
pace then seek to maintain previous situation. This
means that the decision taken at the previous step was
correct, so do not change anything).

(iii) If error range is positive large and delta-error range is
not negative large then control command is -1 (i.e.,
if the current value of the parameter is greater than
the target value and the error is not decreasing at a
very fast pace then reduce the parameter mildly. This
means that the decision taken at the previous step was
not enough and further reduction of parameter value
is needed).

(iv) If error range is positive small and delta-error range
is positive large then control command is —1 (i.e., if
the current value of the parameter is slightly greater
than the target value and the error is increasing at a
very fast pace then reduce the parameter mildly. This
means that even though error is within the tolerance
band it is deviating in the positive direction very fast,
so try reducing the parameter value mildly).

(v) If error range is positive small and delta-error range
is not positive large then control command is 0
(i.e., if the current value of the parameter is slightly
greater than the target value and the error is not
increasing at a very fast pace then seek to maintain
previous situation. This means that error is smoothly
maintaining its value within the tolerance limits, so
no action needed).

(vi) If error range is negative small and delta-error range
is negative large then control command is +1 (i.e., if
the current value of the parameter is slightly lesser
than the target value and the error is decreasing at an
abrupt pace then increase the parameter mildly. This
means that even though error is within the tolerance
band it is deviating in the negative direction very fast,
so try increasing the parameter value mildly).

(vii) If error range is negative small and delta-error range
is not negative large then control command is 0 (i.e.,
if the current value of the parameter is slightly lesser
than the target value and the error is not decreasing
fast then nothing needs to be changed. This means
that error is smoothly maintaining its value within
the tolerance limits, so no action needed).

(viii) If error range is negative large and delta-error range
is positive large then control command is 0 (i.e., if the
current value of the parameter is much smaller than
the target value and the error is increasing at a very
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Figure 5: MJPEG encoder pipeline.

fast pace then seek to maintain previous situation.
This means that the decision taken at the previous
step was correct, so no action required).

(ix) If error range is negative large and delta-error range
is not positive large then control command is +1 (i.e.,
if the current value of the parameter is much smaller
than the target value and the error is not increasing
at a very fast pace then seek to increase the parameter
mildly. This means that the decision taken at the
previous step was not enough and further increase of
parameter is needed).

(x) If error range is negative huge then control command
is +2 (i.e., if the current value of the parameter is
very much smaller than the target value then seek to
increase it aggressively).

Table 4 captures the behavior of the algorithm for all
possible situations.

The functioning of the controller can be summarized
as below. For every new received value of the monitored
parameter, the controller decides whether to take a new
control decision depending on the settling-width. If this
input has to be ignored for a parameter then the corre-
sponding adaptive task will be asked to maintain its previous
situation (by sending 0 as the control command). On the
other hand, if this input has to be considered for a parameter
then following actions are performed. Error and delta-
error for that parameter are calculated first. Then control
algorithm will be run using these values to decide the control
command. The generated command will be communicated
to the respective adaptive task through the control channel.

4. Case Study: Motion JPEG (MJPEG)

This section presents MJPEG [14], a popular video com-
pression standard, as a case study to demonstrate our
framework. This algorithm is selected because its processes
are coarse grained with high computation/communication
ratio, a characteristic of an application suited for NoC-based
MPSoCs. A typical MJPEG encoder pipeline is shown in
Figure 5, where all the components can be modeled as KPN
tasks.

Video Source (SRC). This component captures the input
video frame-by-frame and feeds it to the succeeding com-
ponents in the pipeline one block (8 x 8 pixels) at a time.

Discrete Cosine Transform (DCT). This component performs
discrete cosine transform on each video block received from
the SRC component and sends it to the Quantizer for further

7
TABLE 4: Adaptation control algorithm.
Delta-error
Control command POS_ POS_ NEG_ NEG-
large small small large
POS_huge -2 -2 -2 -2
POS_large -1 -1 -1 0
POS_small -1 0 0 0
Error
NEG_small 0 0 0 1
NEG_large 0 1 1 1
NEG_huge 2 2 2 2
Frame-size
Frame-size QMatrix

Frame-size l

%
Data Data
N
BR-ctr! Bit-rate
FR-ctrl Frame-rate

FiGURE 6: Adaptive-MJPEG encoder pipeline (see the color legend
of Figure 1).

processing. DCT is widely used for multimedia compression
algorithms such as MP3, JPEG, and MPEG, where high
frequency components of less amplitude can be discarded
without compromising quality.

Quantization (Q). Quantization refers to reducing the
amplitude of a signal to achieve compression. In MJPEG, an 8
X 8 matrix of coefficients (QMatrix) is used for this purpose
and the resultant data is rounded off to the nearest integer.
The Quantizer also performs a 2D to 1D conversion of the
quantized blocks by doing a zig-zag scan.

Variable Length Encoding (VLE). VLE is the last stage of
MJPEG pipeline, where entropy (Huffman) encoding is done
on the received video blocks. VLE also acts as the sink
component, generating the final MJPEG stream by inserting
headers/markers to indicate the start/end of each frame.

4.1. Self-Adaptive MJPEG. In this section, we present the
implementation of the self-adaptive MJPEG encoder on our
NoC-based platform using our M-C-A framework. This
implementation supports autonomous control of bit-rate
(BR) and frame-rate (FR) to match the target values set by
the user. Bit-rate adaptation is achieved by controlling the
quality of encoding (by scaling the QMatrix accordingly),
whereas frame-size scaling is used to control the frame-rate.
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CTRL_SETTLE_WIDTH_BR = CTRL_SWF_BR x MONITOR_WIDTH
CTRL_SETTLE_WIDTH_FR = CTRL_SWF_FR x MONITOR_WIDTH

ERR_THRESHOLD_BR = ERR_TF_BR x TARGET BR
ERR_THRESHOLD_HIGH_BR = ERR_THF_BR x TARGET BR

ERR_THRESHOLD_FR = ERR_TF_FR x TARGET_FR
ERR_THRESHOLD_HIGH_FR = ERR_THF_FR x TARGET_FR

DERR_THRESHOLD BR = DERR_TF_BR x TARGET_BR
DERR_THRESHOLD_FR = DERR_TF_FR x TARGET _FR

CTRL_SWF_BR: Control Settling Width Factor for Bit-rate
CTRL_SWF_FR: Control Settling Width Factor for Frame-rate
ERR_TF_BR: Error Threshold factor for Bit-rate
ERR_THF_BR: Error Threshold High factor for Bit-rate
ERR_TF_FR: Error Threshold factor for Frame-rate
ERR_THF_FR: Error Threshold High factor for Frame-rate

DERR_TF_BR: Delta-error Threshold factor for Bit-rate
QERR_ TF_FR: Delta-error Threshold factor for Frame-rate

L/

F1GURE 7: Settling widths and error thresholds for controller.

The modifications done on the MJPEG pipeline to make it
self-adaptive are shown in Figure 6 and are as follows.

4.1.1. Monitoring VLE. The VLE task is equipped with
monitoring capabilities (for bit-rate and frame-rate) by
adding calls to the monitoring functions. Monitoring is done
at the frame-level, hence these function calls are made after
the task has accumulated all the blocks corresponding to
one frame. Timestamp of a frame is measured by reading
the hardware timer register of the NoC platform. Every time
a new frame is generated, alignMonitorWindow() function
is called with the frame-size and timestamp as arguments.
Average values of the bit-rate and frame-rate are obtained by
calling calculateBitRate() and calculateTokenRate() functions,
respectively.

4.1.2. Controllers. We decided to implement two indepen-
dent controllers, one for bit-rate and the other for frame-
rate. The design principles are as detailed in the previous
section. In our implementation, the settling-widths are
specified as a fraction of the monitor-width whereas the
threshold values of error and delta-error signals are taken as
a percentage of the target parameter values. These fraction
parameters are exposed such that they can be fine tuned by
the user. Calculation of settling-widths and threshold values
used in our implementation are shown in Figure 7. For every
newly generated frame, the controllers receive the monitored
values of bit-rate and frame-rate. Depending on the settling-
width, they decide whether to take a new control decision. If
a new control decision is needed, the fuzzy control algorithm
will be run using the error and delta-error values for the
input. The generated control-command for bit-rate is sent to
the adaptive Quantizer task, whereas the frame-rate control-
command is sent to the adaptive Source task.

4.1.3. Adaptive Quantizer. The quantization of the data has
a direct impact on the generated bit-rate of the encoder.
The output bit-rate can be adapted to the required level by
scaling the QMatrix. For example, when the quantization
coefficients are small, the output of the quantizer has more

nonzero values and hence the VLE component will produce
more bits per frame. On the other hand, when the input
data is quantized using large quantization coefficients, fewer
bits will be generated per frame. Figure 8 shows the output
bit-rates for various scaling factors of QMatrix in case of a
slow, 128 x 128 pixel present the results of running our self-
adaptive MJPEG encoder onel video.

To make the quantizer adaptive, adaptBitrate() function
is implemented, which takes the control command from
the bit-rate controller as input. The implemented bit-rate
adapter logic supports two levels of scaling for the QMatrix-
aggressive and mild. The algorithm maintains three param-
eters (configurable by the user), namely QuantScaleCoeff,
AggrQScaleFactor, and MildQScaleFactor to perform the
adaptations.

QuantScaleCoeff (Quantization Scaling Coefficient). The
coefficient by which all Q-Matrix coefficients will be multi-
plied to produce its scaled version.

AggrQScaleFactor (Aggressive Quantization Scaling Factor).
The constant by which previous value of QuantScaleCoeff
will be multiplied/divided to obtain its current value in case
of aggressive scaling.

MildQScaleFactor (Mild Quantization Scaling Factor). The
constant by which the previous value of QuantScaleCoeff will
be multiplied/divided to obtain its current value in case of
mild scaling.

The bit-rate adapter works as follows. Before reading
the data for a new frame, the quantizer task reads the
bit-rate control command from the controller and calls
adaptBitrate() function with this value. If the decision by
the controller is to aggressively decrease the bit-rate, the
current value of the QuantScaleCoeff will be multiplied by
AggrQScaleFactor to obtain its new value. On the other
hand, if the adapter is asked to mildly increase the bit-
rate, previous value of QuantScaleCoeff will be divided
by MildQScaleFactor to get its new value. The value of
QuantScaleCoeff will be left unchanged to keep the bit-rate at
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the current level. Once the new value for the QuantScaleCoeff
is decided, the scaled version of the QMatrix is calculated
by multiplying all its elements by this new QuantScaleCoeff.
For all the blocks of the frame, this scaled version of the
QMatrix will be used. The quantizer task also sends the
newly generated QMatrix to the VLE through a dedicated
adaptation propagation channel so that it can be inserted in
the frame header of the generated frame.

4.1.4. Adaptive Source. The output frame-rate is decided by
how fast the encoder can complete the processing of one
frame. Since the processing time for a frame is proportional
to the amount of data contained in it, frame-rate can be
controlled by scaling the dimensions of the input video.
Even though this will produce smaller images at the output,
target frame-rate can be easily achieved by using this method.
Figure 9 shows the impact of the frame-size parameter on the
output frame-rate.

The source task is made adaptive by providing the
adaptFramerate() function, which takes care of scaling the
input frame size. The implementation of frame-size scaling
logic is based on the following configurable parameters.

CurFrameNumVBlocks. The number of vertical blocks in the
current frame.

CurFrameNumHBlocks. The number of horizontal blocks in
the current frame.

AggrFsScaleFactor (Aggressive Frame-Size Scaling Factor).
The constant by which current value of frame-size (number

of vertical and horizontal blocks) will be multiplied/divided
to obtain its new value in case of aggressive scaling.

MildFsScaleFactor (Mild Frame-Size Scaling Factor). The
constant by which current value of frame-size (number of
vertical and horizontal blocks) will be multiplied/divided to
obtain its new value in case of mild scaling.

The algorithm functions as follows. Similar to the bit-
rate adaptation, the Source task reads the frame-rate control
command from the controller and passes this value to the
adaptFrameSize() function. If the decision by the controller
is to aggressively decrease the frame-rate, the previous values
of the curFrameNumVBlocks and curFrameNumHBlocks will
be multiplied by AggrFsScaleFactor to obtain their new
values. Similarly, if the adapter is asked to mildly increase the
frame-rate, these parameters will be divided by MildFsScale-
Factor to calculate their new values. To keep frame-rate at the
current level, the number of blocks in the frame will be left
unchanged. The frame-rate adapter also sends the new value
of the frame-size to DCT, Q, and VLE tasks using separate
adaptation propagation channels so that they know exactly
how many blocks to be processed for the next frame.

4.1.5. Adaptation Propagation Channels. Some additional
channels need to be added to the pipeline to communicate
the changes done by the adaptive tasks to other tasks. A
channel to send the scaled version of the QMatrix from
Quantizer to VLE is added. This is necessary because the
QMatrix used for a particular frame needs to be inserted
in its header so that the decoder can use the correct value
while decoding the frame. Channels to propagate new frame-
size values are also added between Source-DCT and Source-
Q tasks. Quantizer and DCT should know the frame-size
to calculate the number of blocks to be processed for each
frame. To send the frame-size values from Source to VLE, we
use the existing channel in the original task graph.

5. Results

In this section, we present the results of running our self-
adaptive MJPEG encoder on a 2 X 2 NoC-based FPGA plat-
form. The platform is generated by the SHMPI builder
tool [15] and it is a mesh-based 2 X 2 NoC consisting
of Microblaze processors emulated on a Xilinx Virtex6
FPGA. The software stack enabling the execution of KPN
applications on this platform is based on the request-driven
middleware explained in [12].

5.1. Design Space Exploration for Adaptation Control. As evi-
dent from the design of M-C-A framework, the quality of
the adaptation control is influenced by various parameters
used inside the monitors, controllers, and adapters. In order
to achieve smooth and fast adaptation, a careful selection of
these parameters is needed. To find such a combination, a
design space exploration (DSE) is performed. The first step
in DSE is to determine the design space for the configurable
parameters. The design space tends to be enormous due to
the large number of parameters and the different values each
can assume. To carry out the DSE within a reasonable time,
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TaBLE 5: Design space for the M-C-A framework. TaBLE 6: Two step DSE for adaptation control.

Parameter Values Parameter After step 1 After step 2
Monitor width 6, 12,20 Monitor width — 12
Settling width factor (BR) 0.1,0.2 Settling width factor (BR) — 0.2
Settling width factor (FR) 0.1,0.2 Settling width factor (FR) 0.2 0.2
Error threshold factor (BR) 0.05,0.1 Error threshold factor (BR) — 0.05
Error threshold factor high (BR) 0.15,0.2 Error threshold factor high (BR) — 0.2
Delta-error threshold factor (BR) 0.03 Delta-error threshold factor (BR) — 0.03
Error threshold factor (FR) 0.1,0.2 Error threshold factor (FR) 0.2 0.2
Error threshold factor high (FR) 0.2,0.3 Error threshold factor high (FR) 0.3 0.3
Delta-error threshold factor (FR) 0.05 Delta-error threshold factor (FR) 0.05 0.05
Mild Q scaling factor 1.1, 1.2 Mild Q scaling factor — 1.1
Aggressive Q scaling factor 1.4, 1.6 Aggressive Q scaling factor — 1.6
Mild frame-size scaling factor 1.1, 1.2 Mild frame-size scaling factor 1.1 1.1
Aggressive frame-size scaling factor 1.25,1.4 Aggressive frame-size scaling factor 1.25 1.25
we chose only a few values for each parameter. The design 6
space used is captured in Table 5. é ’g 51

The evaluation of a design point is based on the following o5& 41
two metrics speed of adaptation (quantified by rise/fall time) 2% 5
and convergence of adaptation (quantified by mean absolute 28
error). cE 27

§ £ 14 3
Rise/Fall Time. It is the time (in number of frames) taken by 0 ' : . : ' : '
6 7 8 9 10 11 12 13 14

the system to move from an initial state to the target state.

Mean Absolute Error. It is the mean of absolute error values
for a monitored parameter over several consecutive frames.

To calculate these two metrics for a monitored parameter,
the encoder is run for a fixed number of frames of a test
video with an initial value of the parameter. Then its value
is changed to the target value and the system is allowed to
adapt. The number of frames taken for the parameter to
reach within a tolerance band (+5%) about its target value is
the rise/fall time. The absolute error value for the parameter
is calculated for all frames starting from where it reached the
tolerance band till the last frame. The mean of these absolute
error values gives the mean absolute error. We have used
the following sets of goals for the DSE experiments: initial
BR = 200000 bits/sec, initial FR = 8 frames/sec, final BR =
300000 bits/sec, and final FR = 16 frames/sec.

Since both bit-rate and frame-rate control are con-
sidered in the case study, the DSE is a four-dimensional
minimization problem consisting of rise-times and mean-
absolute-errors for BR and FR control as objectives. In
order to simplify the procedure, the following facts are
taken into account. Bit-rate adaptation has no impact on
the frame-rate, since it only scales the QMatrix (i.e., data
to be processed per frame does not change). On the other
hand, frame-rate adaptation affects also the bit-rate, since
it changes the amount of data generated per frame. So,
initially the DSE is done by varying only those parameters
that affect the frame-rate. The bit-rate controller is turned off
during this step to obtain the optimum frame-rate control
parameters. This step is a two-dimensional optimization

Rise-time for frame-rate control (number of frames)

B Pareto point

m Selected Pareto point

FiGgure 10: DSE for frame-rate control (step 1).

problem over a smaller design space. The results of the first
DSE stage are presented in Figure 10. The Pareto points are
represented with rectangular markers, whereas the selected
Pareto point is colored in red. In the second step, only bit-
rate control parameters are varied while using the values of
the selected Pareto point from the first step for frame-rate
control parameters. Both bit-rate and frame-rate control are
enabled in this step. Pareto points are obtained with respect
to the four optimization objectives. The selected parameter
values after each DSE step is shown in Table 6.

In order to assess the sensitivity of the control quality to
the design parameters, we calculated the distribution of all
the points in the design space. The cumulative distributions
of error and rise-time for bit-rate are shown in Figure 11. It
can be seen that 95% of the design points have less than 5%
bit-rate error, whereas the rise-time of 90% of them are below
8 frames. Similar plots for frame-rate are shown in Figure 12.
Here 80% of the design points have less than 12% frame-
rate error, whereas the rise-time of 84% of them are below 9
frames. This shows the generality of the proposed solution,
because even for nonoptimal parameter configurations, the
system is able to adapt fast while keeping the error within
tolerable limits.
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5.2. Bit-Rate and Frame-Rate Adaptation Tests. To demon-
strate the effectiveness of our adaptation scheme, we con-
ducted various experiments by setting different goals for bit-
rate and frame-rate. All these tests are carried out using
128 x 128 video (for 200 frames) stored in the memory.
The selected Pareto point (shown in Table 6) obtained
from the DSE is used to configure the controller. Figure 13
shows the results when the encoder is run with initial
BR = 200000 bits/sec, initial FR = 8 frames/sec, final BR =
300000 bits/sec and final FR = 16 frames/sec. The adaptation
in terms of quantization scaling coefficient and frame-size
is also shown. It can be seen that the scaling coefficient is
reduced from its initial value of 1 to a value of 0.5 to meet the
initial bit-rate. But after frame 60, its value is further reduced
to 0.35 to increase the bit-rate to its final value. Similarly, the
frame-size is reduced from its initial value of 16000 pixels
to 9000 pixels in order to achieve the initial frame-rate of
8 fps. But after frame 60, it is further reduced to about 4000
pixels to increase the frame-rate to 16 fps. The rise time and
mean absolute errors for this scenario are: rise time (BR) =
6 frames, mean absolute error (BR) = 7684 bits (2.56%), rise
time (FR) = 9 frames, mean absolute error (FR) = 0.33 frames
(2.06%).

5.3. Fast Video versus Slow Video. Figure 14 shows the results
of evaluating the framework using slow and fast video inputs.
Figure 14(a) characterizes the two videos in terms of the

number of bytes generated by the encoder per frame (for 128
X 128 video), when there is no bit-rate/frame-rate control.
From Figures 14(b) and 14(c), it can be seen that for both
videos, the targets are achieved with the following metrics.

Slow Video. Rise time (BR) = 6 frames, mean absolute error
(BR) = 7790 bits (2.59%), rise time (FR) = 9 frames, mean
absolute error (FR) = 0.36 frames (2.25%).

Fast Video. Rise time (BR) = 5 frames, mean absolute error
(BR) = 10440 bits (3.48%), rise time (FR) = 9 frames, mean
absolute error (FR) = 0.24 frames (1.5%).

The results reveal that for slow video the bit-rate control
converges fast whereas for fast video, a lot of ripples are
observed at the output, resulting in a higher mean absolute
error. In case of frame-rate control the fastness or slowness
of the input does not have much impact and the frame-size
converges to the same value in both cases without ripples.

5.4. Cost of Adaptation. To measure the steady-state over-
head due to the introduction of the M-C-A feedback loop
in the application pipeline, the following procedure is used.
First, the encoder is run without the feedback loop as
well as the adaptation propagation channels to obtain the
average value of frame-rate without the framework. The
experiment is repeated after introducing the M-C-A loop
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and the additional channels to obtain the reduced frame-
rate. In this case, both bit-rate and frame-rate control are
turned off inside the controller, since only the overhead due
to the framework needs to be measured. Figure 15 depicts the
outcome of this test for a 128 x 128 test video. It is observed
that the introduction of the framework results in a frame-
rate reduction of only 4%. Similarly, the reduction in bit-rate
is about 3.5%. The reduction in the bit-rate and frame-rate is
due to the increase in the inter-arrival time between frames.

The overhead in terms of the additional control data
introduced by our M-C-A mechanism is minimal. For every
video frame, it sends a total of 72 additional tokens over
the network. This includes one token from monitoring task
to bit-rate controller, one token from monitoring task to
frame-rate controller, one token from bit-rate controller to
Quantizer task, one token from frame-rate controller to
Source task, 64 tokens from Quantizer to VLE (to send
the QMatrix), two tokens from Source to DCT (to send
the height and width of the frame), and two tokens from
Source to Quantizer (to send the height and width of the
frame). This is equivalent to 288 bytes of data since a token
is represented as integer type by the middleware. For a
128 x 128 frame the total video data to be sent over the
NoC is 49152 bytes. This includes the pixel data sent from
Source to DCT, DCT to Quantizer, and Quantizer to VLE. So
the framework introduces approximately 0.5% of additional
control data.

5.5. Effect of Parameter Variations. This section presents the
experimental results regarding the effect of varying various
design parameters on the quality of adaptation control.

5.5.1. Monitor-Width. Figure 16 shows the impact of varying
the monitor-width on the four quality metrics of the con-
troller. Monitor-width plays an important role in deciding
the sensitivity of the control mechanism. If the monitor-
width is too large the sensitivity will be low, because the
effect of a particular adaptation decision will be reflected
in the average value only after many frames are generated
with that decision, resulting in an increase in rise/fall time.
On the other hand, very small monitor windows will help in

13
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terms of reduction in BR/FR.

detecting changes in the monitored parameter at a very early
stage. However, this may cause large ripples in the output
since any adaptation strategy needs some time for its effect
to be visible at the output, resulting in large errors in the
monitored parameter. Similarly, when the monitor-width is
large, the error will increase due to slow response of the
controller. Hence it is very important to keep the monitor-
width at an optimum value.

5.5.2. Q Scaling Factors. Figure 17 shows the effect of varia-
tions in Q scaling factors on the quality of control. Adapters
deploy aggressive scaling when the monitored value of the
parameter deviates too much from the target, whereas mild
scaling is used otherwise. A high value of aggressive scaling
factor will help to reduce the rise/fall time, but it may cause
large overshoots in the output and hence may increase the
average error. Similarly, a small value for mild scale factor
will help in reducing the ripples after the output converges.
From the results, it can be deduced that large values for Q
scaling factors will cause larger average errors in the output,
in spite of the reduction in rise/fall time.

5.5.3. Error Thresholds. Figure 18 shows the effect of vari-
ations in error thresholds on the bit-rate control. The x-
axis represents bit-rate error thresholds in the format (error-
threshold-low, error-threshold-high, delta-error-threshold).
From the results, it can be seen that when error-threshold-
low is increased keeping error-threshold-high as constant, the
mean-error increases. This is due to the possibility of the
monitored parameter settling at a value which is far from its
target, thus increasing the error. On the other hand, when
error-threshold-high is increased keeping error-threshold-low
as constant, the rise-time increases. This can be explained as
follows: when error-threshold-high is large, aggressive scaling
is used less often, causing an increase in the rise-time.

5.6. Reusing the Adaptation Controller. The results presented
in Section 5.1 use the MJPEG encoder case study and are
performed with the aim of minimizing both rise-time and
mean-error. The framework requires fine tuning in order to
be used for a different application. The effect of parameter
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variations studied in Section 5.5 can be used as a guideline
while configuring the adaptation controller for a new set
of application requirements. For example, to increase the
responsiveness of the control, either the aggressive scaling
factor can be increased or the error-threshold-high can be
reduced. Similarly, if the application demands a closer con-
vergence of a parameter to the target value while tolerating
slow response, the user can tighten the error-threshold-low
and lessen the aggressive scaling factor.

6. Discussion on the Framework

The self-adaptivity mechanism proposed in this work relies
on monitoring, controlling and adaptation capabilities. For
the monitoring and adaptation support, despite the fact
that some general mechanisms such as monitoring and
adaptive functions are used, the methods are based on some
advantages that come with the KPN computation model.
In this work, we are particularly interested in throughput
monitoring and parametric adaptations. The KPN model
facilitates implementation of such monitoring and adapta-
tion capabilities. For the former, since KPN is composed
of computational blocks and their explicit communication
with tokens over channels, monitoring the throughput (e.g.,
the rate at which tokens are produced as well as the
bit-rate on a channel) can be achieved in an application
independent manner. For the latter, the reconfiguration of
the application to work with a new value of an application
parameter requires that the relevant parts of the application
to be updated consistently. Consistency implies that a token
is processed by tasks throughout the application pipeline
with the right parameter value. KPN helps in achieving
this by synchronizing the updating of tasks via blocking
channels. These properties of the KPN model address the
aforementioned separation of concerns challenge.

On the other hand, the fuzzy control approach is not
specific to KPN and can be used for controlling any self-
adaptive system. The control is event-based rather than time-
based. Unlike the widely practiced periodic monitoring and
control, this approach involves monitoring in an event-based
manner (e.g., at the end of processing of a frame). Such an

approach is suited better for networked systems as it is less
sensitive to possible delays in the network and incurs less
overhead on the amount of data transferred on the network.
Comparison of these approaches is left as a future work.

7. Conclusion

In this paper, we proposed an approach to implement
application level self-adaptation capabilities for KPN appli-
cations running on networks-on-chip based MPSoCs. The
proposed framework is based on introducing a monitor-
controller-adapter mechanism in the application pipeline.
Techniques to add monitoring and adaptation capabilities
to normal KPN tasks are discussed along with the design
of a generic fuzzy logic-based adaptation controller. Finally,
we presented an adaptive MJPEG case study on a FPGA
based 2 x 2 NoC platform. Our results show that even if
the parameters of the fuzzy control are not tuned optimally,
the adaptation convergence is achieved within reasonable
time and error limits for most of the designed controllers.
Moreover, the steady-state overhead introduced due to the
framework is low (4%) in terms of frame-rate reduction.
Since the controller is a generic one, this framework can
be easily integrated to other applications also, requiring
minimal modifications to the code.
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