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This paper studies the self-organized fission control problem for flocking system. Motivated by the fission behavior of biological
flocks, information coupling degree (ICD) is firstly designed to represent the interaction intensity between individuals. Then, from
the information transfer perspective, a “maximum-ICD” based pairwise interaction rule is proposed to realize the directional
information propagation within the flock. Together with the “separation/alignment/cohesion” rules, a self-organized fission control
algorithm is established that achieves the spontaneous splitting of flocking systemunder conflict external stimuli. Finally, numerical
simulations are provided to demonstrate the effectiveness of the proposed algorithm.

1. Introduction

The fission behavior of flocking system is a widely observed
phenomenon in biology, society, and engineering applica-
tions [1]. A bird flock may sometimes split into multiple clus-
ters for food foraging or predator escaping [2]. An unmanned
ground vehicle (UGV) swarm often needs to segregate into
small subgroups for the multisite surveillance mission [3].
In these cases, members in the flock are often identical ones
with limited sensing and computing capabilities and only
rely on the local interaction with their nearest neighbors
[4]. Therefore, the fission phenomenon of flocking system is
virtually an emergent behavior that arises in a self-organized
fashion [5]. How a cohesive flock splits and forms clusters
remains a fascinating issue of both theoretical and practical
interests.

Currently, the research on flocking systemmainly focuses
on the consensus based problems such as aggregation and
formation [6, 7], of which the central rules are separa-
tion, alignment, and cohesion [8]. These rules have been
extensively used in the distributed sensing of mobile sensor
networks, formation keeping of satellite clusters, cooperative
control of unmanned ground/aerial/underwater vehicles, and
so forth [9]. However, the “average consensus” property of
these rules gives the flock a “collectivemind” [10] and leads to
a group-level ability of “consensus decision making” [11, 12],

which may dispel the conflict information and encumber the
process of group splitting [13].

At present, literatures that address the fission control
problem seem diverse. By predefining the leaders/targets
to different individuals, fission behavior emerged in the
multiobjective tracking process [14–16]; in [17], Kumar et al.
assigned different coupling strength to heterogeneous robot
swarm that leads weak coupling robots to separate and the
strong coupling robots form clusters. In addition, a long
range attractive, short range repulsive interaction aswell as an
intermediate range Gauss-shaped interaction was employed
for flock aggregation and splitting in [18].

In this paper, we tend to study the self-organized fission
control problem for flocking system without predefining the
leaders or identifying the differences between individuals.
Motivated by the fact that interaction intensity plays a
crucial role in the fission behavior of animal flocks [2,
11, 19], information coupling degree (ICD) is used as an
index to denote the interaction intensity between individuals.
Then, a “maximum-ICD” based pairwise interaction rule
is proposed to achieve the effective information transfer
within the flock. Together with the traditional “separa-
tion/alignment/cohesion” rules, a self-organized fission con-
trol algorithm is established, which realizes the spontaneous
splitting of a cohesive flock under conflict external stimuli.
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Finally, numerical simulations are performed to illustrate the
effectiveness of the proposed method.

The remainder of this paper is organized as follows: in
Section 2, the fission control problem for flocking system is
formulated; in Section 3, the biological principle for fission
behavior is described and an information coupling degree
based fission strategy is established; in Section 4, a self-
organized fission control algorithm that includes a new pair-
wise interaction rule is proposed and the theoretical analysis
is given; in Section 5, various numerical simulations and
discussions are carried out to demonstrate the effectiveness of
the fission control algorithm; Section 6 offers the concluding
remarks.

2. Problem Formulation

Consider a flocking system consisting of𝑁 identical individ-
uals moving in the 𝑛-dimensional Euclidean space with the
following dynamics:
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(control input) acting on it. For notational convenience, we
let

𝑝 =

[
[
[
[

[

𝑝
1

𝑝
2

.

.

.

𝑝
𝑁

]
]
]
]

]

, 𝑞 =

[
[
[
[

[

𝑞
1

𝑞
2

.

.

.

𝑞
𝑁

]
]
]
]

]

∈ R𝑁𝑛. (2)

The neighboring set of individuals 𝑖 is defined asN
𝑖
(𝑡) =
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‖ ≤ 𝑅, 𝑗 = 1, . . . , 𝑁, 𝑗 ̸= 𝑖}, where

‖ ⋅ ‖ is the Euclidean norm and 𝑅 is the sensing range of
each individual. Also, we define the neighboring graph G =

(V,E,A) [20] to be an undirected graph consisting of a set
of nodes V = {V

1
, V
2
, . . . , V

𝑁
}, a set of edges E = {(V
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) ∈

V × V : V
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adjacency matrixA of undirected graphG is symmetric and
the corresponding Laplacian matrix is L = D − A, where
D = diag{𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑁
} ∈ R𝑁×𝑁 is the in-degree matrix of

graphG and 𝑑
𝑖
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𝑗=1
𝑎
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is the in-degree of node V

𝑖
.

Essentially speaking, flocking behavior is a self-organized
emergent phenomenon of large numbers of individuals by
interacting with their neighbors and surrounding environ-
ment [21]. Correspondingly, the control input acting on an
individual member can be written as

𝑢
𝑖
= 𝑢

in
𝑖
+ 𝑔
𝑖
𝑢
out
𝑖
, (3)

where 𝑢in
𝑖
is the internal interaction force between individual

𝑖 and its neighbors and 𝑢out
𝑖

is the force acting on individuals
from external environment. Usually, not all the members
are directly influenced by the environment; here we utilize
𝑔
𝑖
to denote whether individual 𝑖 can sense environment

information, where 𝑔
𝑖
= 1 means the environment infor-

mation can be directly obtained by individual 𝑖 and 𝑔
𝑖
= 0,

otherwise.
Fission behavior often occurs when a cohesive flock

encounters obstacles/danger on their moving path or
observes multiple targets for tracking [2, 15, 22, 23]. In such
occasions, only a small portion of individuals (e.g., lie on the
edge of the flock) are directly influenced by the environment
information and often response with fast maneuvering like
abrupt accelerating or turning [2, 22]; the motion of other
members is only governed by their internal interaction force
𝑢
in
𝑖
. Therefore, environment information can only be seen as

the trigger event of fission behavior; whether the whole flock
has the ability to split is essentially determined by its local
interaction rules [5].

Therefore, the objective of this paper is to design the
distributed local interaction rules and synthesize the control
input 𝑢

𝑖
for a flocking system such that when conflict

environment information acts on part of members in the
flock, it can segregate into clustered subgroups spontaneously.

To better describe the fission behavior in a quantitative
way, we first give the mathematical definition of fission
behavior as follows.

Definition 1. A flocking system is said to be segregated (or a
fission behavior occurs) if and only if it satisfies the following
conditions.

(1) The distance between individuals in the same sub-
group remains bounded; that is, ‖𝑝

𝑖
(𝑡) − 𝑝

𝑗
(𝑡)‖ ≤ 𝛿,

𝑖, 𝑗 ∈ 𝐺
𝑘
, where 𝛿 is a constant value and 𝐺

𝑘
denotes

the subgroup 𝑘.

(2) For individuals in the same subgroup, their velocities
will asymptotically converge to the same value; that is,
‖𝑞
𝑖
(𝑡) − 𝑞

𝑗
(𝑡)‖ → 0, 𝑖, 𝑗 ∈ 𝐺

𝑘
.

(3) For any distance 𝐷 > 𝑅, there exists a time after
which the distance between individuals in different
subgroups is at least𝐷; that is, min ‖𝑝

𝑖
(𝑡)−𝑝

𝑗
(𝑡)‖ ≥ 𝐷,

𝑖 ∈ 𝐺
𝑘
, 𝑗 ∈ 𝐺

𝑙
, which means that the subgroups will

ultimately lose connection with each other and hence
the fission behavior emerges.

Remark 2. It is worth mentioning that the fission behavior
studied in this paper is a spontaneous response to external
stimuli, during which only a small portion of members
directly sense the external stimuli and the whole flock
governed by the fission control algorithm is able to segregate
autonomously in a self-organized fashion. Therefore, it is
fundamentally different from the aforementioned fission
control approaches like assignment, identification, or central-
ized control [14–17] and is more consistent with the fission
behavior of real flocking system [2, 23].

3. Information Coupling Degree
Based Fission Rule

Fission behavior is the result of “collective decision making”
in the presence of motion differences of individuals in the
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flock [2, 24]. Couzin et al. revealed that, for significant
differences in the preferences of individuals, the decision
dynamics may bifurcate away from consensus and lead to the
emergence of fission behavior [11]. In addition, research from
biologists also suggests that fission behavior, to a large extent,
depends on themutual interaction intensity between individ-
uals [1, 25]. Individuals with larger interaction intensity tend
to have tighter correlation and form clusters in the presence of
significant differences in the preferences of individuals [2, 11].

Inspired by the above results, we construct a new index
named information coupling degree (ICD) to denote the
mutual interaction intensity between individuals. ICD is a
motion dependent variable that is relevant to many factors;
for example, individuals are usually more influenced by the
close neighbors (distance) [26], they tend to bemore sensitive
to fast moving neighbors (velocity) [19, 27], and individual
with more neighbors are usually more dominated (number
of neighbors) [28]. In particular, we choose the two most
dominating factors, the relative position and relative velocity
between individuals, to design ICD in the following form:

𝑐
𝑖𝑗
= 𝜉
𝑖𝑗
⋅ 𝜔
𝑖𝑗
, (4)

where 𝜉
𝑖𝑗
is the position coupling term determined by the

relative position between individuals. As the influence of
neighbors is decreasing with the increase of their relative
distance due to the sensing ability [29], we write the position
coupling term as follows:
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2
, (5)

where 𝑟
𝑖𝑗
> 0 is the coefficient of position coupling term.

In addition, 𝜔
𝑖𝑗
is the velocity coupling term that is

relevant to the relative velocity between individuals. Gener-
ally, individuals are very sensitive to some specific behavior
of their neighbors like abrupt accelerating or turning [19];
therefore we design 𝜔

𝑖𝑗
as
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, (6)

where 𝑞
𝑖
= (1/𝑁

𝑖
) ∑
𝑗∈N𝑖(𝑡)

𝑞
𝑗
is the average velocity of the

neighbors of individual 𝑖, 𝑁
𝑖
is the number of its neighbors,

and 𝜇
𝑖𝑗
> 0 is the coefficient of velocity coupling term. Here,
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) × 𝑞
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‖ reflects the degree of the difference between
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) and 𝑞
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, with (𝑞

𝑖
− 𝑞
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) being the relative velocity

between two individuals. The bigger ‖(𝑞
𝑖
− 𝑞
𝑗
) × 𝑞
𝑖
‖ is, the

more different motion of individual 𝑗 is from the neighbors
of individual 𝑖, the more attention will be paid by individual
𝑖 to individual 𝑗, and the tighter correlation they will tend to
have, correspondingly.

From the information transfer perspective, fission behav-
ior can be generalized as the conflict stimulus information
propagation process among members within the flock [2,
23, 30]. Individuals which change their direction of travel in
response to the direction taken by their nearest neighbors
can quickly transfer information about the predator or
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Figure 1: Internal interaction mechanisms of individuals based on
“maximum-ICD” strategy.

food source [30]. Therefore, we propose a “maximum-ICD”
based strategy tomaximize the stimulus information transfer,
where individuals tend to have closer relation with the
neighbor that has maximum ICD with it [19, 31].

Based on the above description, we formulate the “maxi-
mum-ICD” strategy as

𝑓
𝑖
= {𝑗 | max 𝑐

𝑖𝑗
, 𝑐
𝑖𝑗
> 𝑐
∗
, 𝑗 ∈N

𝑖 (𝑡)} , (7)

where 𝑐∗ is the threshold value of the fission behavior.
When 𝑐

𝑖𝑗
> 𝑐
∗, fission behavior occurs; otherwise, it is

not disturbed by conflict environment stimuli and moves
in stable formation. In this paper, we choose 𝑐∗ to be an
appropriate value to prevent the unexpected fission behavior
due to random fluctuation or other unknown factors.

Utilizing the “maximum-ICD” strategy, we propose a
pairwise interaction rule to realize the directional informa-
tion flow among individuals.The internal interactionmecha-
nism of individuals during the fission process is illustrated in
Figure 1. Assume that, at time 𝑡 − Δ𝑡, individual 𝑓

𝑖
(locates at

𝑝
𝑡−Δ𝑡

𝑓𝑖
with velocity 𝑞𝑡−Δ𝑡

𝑓𝑖
) is propelled by external stimuli and

changes its motion rapidly to a new position 𝑝𝑡
𝑓𝑖
with velocity

𝑞
𝑡

𝑓𝑖
in a small time interval Δ𝑡. According to (4), individual 𝑖

is more influenced by 𝑓
𝑖
and tends to have a relatively tighter

correlation with it. Therefore, at time 𝑡 the force of neighbors
acting on individual 𝑖 can be written as

𝑢
𝑖 (𝑡) = 𝑢

𝑡−Δ𝑡

𝑓𝑖
+

𝑁𝑖−1

∑

𝑖=1

𝑢
𝑡−Δ𝑡

𝑖
, (8)

where 𝑢𝑡−Δ𝑡
𝑓𝑖

is the pairwise interaction force of the most
correlated neighbor 𝑓

𝑖
acting on individual 𝑖 and ∑𝑁𝑖−1

𝑖=1
𝑢
𝑡−Δ𝑡

𝑖

denotes the sum of the forces of other neighbors acting on it,
with𝑁

𝑖
being the number of neighbors.
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Remark 3. It can be seen from (4)∼(6) that information
coupling degree combines both the position and velocity
information between individuals and their neighbors; mean-
while they also tend to have closer relation with the fast
maneuvering neighbors that are near to them, which is
consistent with the property of real flocking system [19].

4. Self-Organized Fission Control Algorithm

Based on the above fission control principle, we take the
most correlated neighbor to form a pairwise interaction
with individual 𝑖. By integrating the motion information
of the most correlated neighbor into the coordinated law,
together with the “separation/alignment/repulsion” rules, the
distributed fission control algorithm is formulated as

𝑢
𝑖
= 𝑓
𝑝

𝑖
+ 𝑓

V
𝑖
+ 𝑓
𝑓

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢
in
𝑖

+ 𝑔
𝑖
𝑓
𝑒

𝑖⏟⏟⏟⏟⏟⏟⏟

𝑢
out
𝑖

, (9)

where the environment force 𝑢out
𝑖

is represented by the exter-
nal stimulus term 𝑓

𝑒

𝑖
, it causes the rapid movement change

of individuals and evokes the fission behavior, and 𝑔
𝑖
denotes

whether individual 𝑖 can sense external stimuli. Usually, 𝑓𝑒
𝑖

has diverse forms according to different environment stimuli,
such as the direction to a known source or a segment of a
migration route [11, 32]. Here, for the convenience of analysis,
we design the external stimulus term as the following simple
position feedback form:

𝑓
𝑒

𝑖
= − (𝑝

𝑖
− 𝑝
𝑒

𝑖
) , (10)

where𝑝𝑒
𝑖
is the desired position driven by external stimuli and

it is supposed to be a constant value at every sampling time
interval.

Obviously, the internal interaction force 𝑢in
𝑖
consists of

three components.
(1) 𝑓𝑝
𝑖
is used to regulate the position between individual

𝑖 and its neighbors. This term is responsible for collision
avoidance and cohesion in the flock; that is, when individuals
are too far away from each other, the attraction force will
make them move together; when individuals are too close,
the repulsion force will propel them away to avoid collision.
It is derived from the field produced by a collective function
which depends on the relative distance between individual 𝑖
and its neighbors and is defined as

𝑓
𝑝

𝑖
= − ∑

𝑗∈N𝑖(𝑡)

∇
𝑝𝑖
𝜓
𝑖𝑗
(

𝑝
𝑖𝑗
− 𝑝
𝑓𝑖𝑗

𝜎
) , (11)

where ∇ is the gradient operator, the 𝜎-norm ‖ ⋅ ‖
𝜎
of a vector

is a map R𝑛 → R+ defined by ‖𝑧‖
𝜎
= (1/𝜖)[√1 + 𝜖‖𝑧‖2 − 1]

with a parameter 𝜖 > 0, and 𝑧 = [𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
]
T
∈ R𝑛.

Note that the map ‖𝑧‖
𝜎
is differentiable everywhere, but

‖𝑧‖ = √𝑧
2

1
+ 𝑧
2

2
+ ⋅ ⋅ ⋅ + 𝑧2

𝑛
is not differentiable at 𝑧 = 0. This

property of 𝜎-norm is used for the construction of smooth
collective potential functions for individuals. To construct a
smooth pairwise potential with finite cutoff, we follow the
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Figure 2: The pairwise attractive/repulsive potential function.

work of [7] and integrate an action function 𝜙
𝛼
(𝑧) that varies

for all 𝑧 ≥ 𝑟
𝛼
. Define this action function as

𝜙
𝛼 (𝑧) = 𝜌ℎ (

𝑧

𝑟
𝛼

)𝜙 (𝑧 − 𝑑
𝛼
) ,

𝜙 (𝑧) =
1

2
[(𝑎 + 𝑏) 𝜎1 (𝑧 + 𝑐) + (𝑎 − 𝑏)] ,

(12)

where 𝜎
1
(𝑧) = 𝑧/√1 + 𝑧2 and 𝜙(𝑧) is an uneven sigmoidal

function with parameters that satisfy 0 < 𝑎 ≤ 𝑏,
𝑐 = |𝑎 − 𝑏|/√4𝑎𝑏 to guarantee 𝜙(0) = 0. The pairwise
attractive/repulsive potential function 𝜓

𝛼
(𝑧) is then defined

as

𝜓
𝛼 (𝑧) = ∫

𝑧

𝑑𝛼

𝜙
𝛼 (𝑠) 𝑑𝑠 (13)

and is depicted in Figure 2.
Additionally, 𝑝

𝑖𝑗
= 𝑝
𝑖
− 𝑝
𝑗
is the relative position vector

between individuals 𝑖 and 𝑗; 𝑝
𝑓𝑖𝑗
= 𝑝
𝑓𝑖
− 𝑝
𝑓𝑗
is the relative

position vector between the most correlated neighbors of
individuals 𝑖 and 𝑗.

(2) 𝑓V
𝑖
is the velocity coordination term that regulates the

velocity of individuals

𝑓
V
𝑖
= − ∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗
(𝑞
𝑖𝑗
− 𝑞
𝑓𝑖𝑗
) , (14)

where 𝑞
𝑖𝑗
= 𝑞
𝑖
− 𝑞
𝑗
is the relative velocity vector between

individuals 𝑖 and 𝑗 and 𝑞
𝑓𝑖𝑗
= 𝑞
𝑓𝑖
− 𝑞
𝑓𝑗
is the relative velocity

vector between the most correlated neighbors of individuals 𝑖
and 𝑗.Moreover,A(𝑡) = [𝑎

𝑖𝑗
(𝑡)] is the adjacencymatrixwhich

is defined as

𝑎
𝑖𝑗 (𝑡) =

{{{

{{{

{

0, if 𝑗 = 𝑖,

𝜌
ℎ
(


𝑝
𝑗
− 𝑝
𝑖

𝜎

‖𝑟‖𝜎

) , if 𝑗 ̸= 𝑖
(15)
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with the bump function 𝜌
ℎ
(𝑧), ℎ ∈ (0, 1), being

𝜌
ℎ (𝑧) =

{{{

{{{

{

1, 𝑧 ∈ [0, ℎ) ,

1

2
[1 + cos(𝜋𝑧 − ℎ

1 − ℎ
)] , 𝑧 ∈ [ℎ, 1] ,

0, otherwise.

(16)

(3) 𝑓𝑓
𝑖
is the pairwise interaction term that produces a

closer relation between individual 𝑖 and its most correlated
neighbor 𝑓

𝑖
, which is used to guide the motion preference of

individual 𝑖. Specifically, we employ an attractive force and
velocity feedback approach to generate 𝑓𝑓

𝑖
as

𝑓
𝑓

𝑖
= −𝑘
1
∇
𝑝𝑓𝑖
𝑈
𝑓𝑖
− 𝑘
2
(𝑞
𝑖
− 𝑞
𝑓𝑖
) , (17)

where 𝑘
1
, 𝑘
2
> 0 are the constant feedback gains and 𝑈

𝑓𝑖
=

(1/2)(𝑝
𝑖
− 𝑝
𝑓𝑖
)
2 is the potential energy of its most correlated

neighbor. This term guarantees the velocity convergence of
individual 𝑖 to its most correlated neighbor 𝑓

𝑖
and ultimately

induces the fission behavior.

Remark 4. The specifically designed pairwise attractive/re-
pulsive artificial potential 𝜓

𝛼
and adjacent matrix 𝑎

𝑖𝑗
here are

to guarantee the smoothness of the potential function and
Laplacian matrix, which will facilitate the theoretical anal-
ysis with the traditional Lyapunov-based stability analysis
method.

Remark 5. Note that, in our fission control algorithm (9), the
most correlated neighbor of individual 𝑖 is chosen according
to (7), and it is dynamically updating during the fission
process of the flock, which realizes the implicit stimulus
information transfer among members in the flock. Thus,
there is an essential difference between our work and the
researches of [14–16], as the latter assume the leader or target
of each member is predefined and fixed during the fission
process.

Remark 6. From (7) we can also see that if 𝑐
𝑖𝑗
< 𝑐
∗, the most

correlated neighbor of individual 𝑖 does not exist. In this case,
the fission control algorithm (9) degrades into

𝑢
𝑖
= − ∑

𝑗∈N𝑖(𝑡)

∇
𝑝𝑖
𝜓
𝑖𝑗
(

𝑝
𝑖
− 𝑝
𝑗

𝜎
)

− ∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗
(𝑞
𝑖
− 𝑞
𝑗
) + 𝑔
𝑖
𝑓
𝑒

𝑖

(18)

which is equivalent to the first flocking control law proposed
in [7]. This situation occurs when the differences of motion
preference between individuals are relatively small and hence
the fission behavior does not occur.Therefore, algorithm (18)
in [7] can be seen as a special case of ours.However, algorithm
(18) is not able to achieve the spontaneous fission behavior
due to its average consensus property. A detailed comparative
simulation and analysis is demonstrated in part 5.

Here, we define the sum of the total artificial potential
energy and the total relative kinetic energy between all
individuals and the external stimuli as follows:

𝑄 (𝑝, 𝑞) =
1

2

𝑁

∑

𝑖=1

(𝑈
𝑖
(𝑝) + (𝑞

𝑖
− 𝑞
𝑓𝑖
)
T
(𝑞
𝑖
− 𝑞
𝑓𝑖
)) , (19)

where

𝑈
𝑖
(𝑝) = 𝑉

𝑖
(𝑝) + 𝑘

1
(𝑝
𝑖
− 𝑝
𝑓𝑖
)
T
(𝑝
𝑖
− 𝑝
𝑓𝑖
)

= ∑

𝑗∈N𝑖(𝑡)

𝜓
𝑖𝑗
(

𝑝
𝑖𝑗
− 𝑝
𝑓𝑖𝑗

𝜎
)

+ 𝑘
1
(𝑝
𝑖
− 𝑝
𝑓𝑖
)
T
(𝑝
𝑖
− 𝑝
𝑓𝑖
)

+ 𝑔
𝑖
(𝑝
𝑖
− 𝑝
𝑒

𝑖
)
T
(𝑝
𝑖
− 𝑝
𝑒

𝑖
) .

(20)

Obviously, 𝑄 is a positive semidefinite function. We have the
following result.

Theorem 7. Consider a flocking system consisting of 𝑁
individuals with dynamics (1). Supposing the initial energy
𝑄
0
(𝑄
0
= 𝑄(𝑝(0), 𝑞(0))) of the flock is finite and the initial

graph G is connected before the fission process, when conflict
external stimuli cause the rapid maneuvering of individuals
that lie on the edge of the flock, under the fission control law
(9), a cohesive flocking system will segregate into clustered
subgroups due to the differences of information coupling degree
between individuals. Then, the following statements hold.

(i) The distance between individuals in the same subgroup
is not larger than 𝛿, where 𝛿 = (𝑁

𝑖
− 1)√2𝑄

0
/𝑘
1
and

𝑁
𝑖
is the number of individuals in the subgroup.

(ii) The velocities of individuals in the same subgroup will
asymptotically converge to the same value.

(iii) The distance between different subgroups is larger than
𝑅 as time goes by.

Proof. We take a cluster of 𝑁
𝑖
individuals in the neighbor-

hood of individual 𝑖 into consideration and assume that graph
G
𝑁𝑖

is connected in the small sampling time interval from 𝑡

to 𝑡
1
.
(i) Let 𝑝𝑒

𝑖
= 𝑝
𝑖
− 𝑝
𝑒

𝑖
be the position difference vector

between individual 𝑖 and the external stimuli, and let𝑝
𝑖
= 𝑝
𝑖
−

𝑝
𝑓𝑖
, 𝑞
𝑖
= 𝑞
𝑖
−𝑞
𝑓𝑖
be the position difference vector and velocity

difference vector between individual 𝑖 and its most correlated
neighbor 𝑓

𝑖
, respectively. Then the following equations hold:

𝑝
𝑖𝑗
− 𝑝
𝑓𝑖𝑗
= 𝑝
𝑖
− 𝑝
𝑗
= 𝑝
𝑖𝑗
,

𝑞
𝑖𝑗
− 𝑞
𝑓𝑖𝑗
= 𝑞
𝑖
− 𝑞
𝑗
= 𝑞
𝑖𝑗
.

(21)

The control input 𝑢
𝑖
can then be rewritten as

𝑢
𝑖
= − ∑

𝑗∈N𝑖(𝑡)

∇
𝑝𝑖
𝜓
𝑖𝑗
(

𝑝
𝑖
− 𝑝
𝑗

𝜎
)

− ∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗
(𝑞
𝑖
− 𝑞
𝑗
)

− 𝑘
1
𝑝
𝑖
− 𝑘
2
𝑞
𝑖
− 𝑔
𝑖
𝑝
𝑒

𝑖
.

(22)
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Substituting (21) into (19) yields

𝑄 =
1

2

𝑁𝑖

∑

𝑖=1

( ∑

𝑗∈N𝑖(𝑡)

𝜓
𝑖𝑗
(

𝑝
𝑖𝑗

𝜎
) + 𝑞

T
𝑖
𝑞
𝑖

+ 𝑘
1
𝑝
T
𝑖
𝑝
𝑖
+ 𝑔
𝑖
(𝑝
𝑒

𝑖
)
T
𝑝
𝑒

𝑖
) .

(23)

Due to the symmetry of the artificial potential function
𝜓
𝑖𝑗
and adjacency matrixA, we have

𝜕𝜓
𝑖𝑗
(

𝑝
𝑖𝑗

𝜎
)

𝜕𝑝
𝑖𝑗

=

𝜕𝜓
𝑖𝑗
(

𝑝
𝑖𝑗

𝜎
)

𝜕𝑝
𝑖

= −

𝜕𝜓
𝑖𝑗
(

𝑝
𝑖𝑗

𝜎
)

𝜕𝑝
𝑗

. (24)

Taking the derivative of 𝑄, we can obtain

�̇� =
1

2

𝑁𝑖

∑

𝑖=1

( ∑

𝑗∈N𝑖(𝑡)

�̇�
𝑖𝑗
(

𝑝
𝑖
− 𝑝
𝑗

𝜎
)

+ 2𝑘
1
𝑞
T
𝑖
𝑝
𝑖
+ 2𝑞

T
𝑖
𝑢
𝑖
+ 2𝑔
𝑖
(
̇̃
𝑝
𝑒

𝑖
)

T
𝑝
𝑒

𝑖
)

=
1

2

𝑁𝑖

∑

𝑖=1

( ∑

𝑗∈N𝑖(𝑡)

̇̃
𝑝
T
𝑖
∇
𝑝𝑖
𝜓
𝑖𝑗
(

𝑝
𝑖
− 𝑝
𝑗

𝜎
)

− ∑

𝑗∈N𝑖(𝑡)

̇̃
𝑝
T
𝑗
∇
𝑝𝑗
𝜓
𝑖𝑗
(

𝑝
𝑖
− 𝑝
𝑗

𝜎
) + 2𝑘

1
𝑞
T
𝑖
𝑝
𝑖

+ 2𝑞
T
𝑖
(− ∑

𝑗∈N𝑖

∇
𝑝𝑖
𝜓
𝑖𝑗
(

𝑝
𝑖
− 𝑝
𝑗

𝜎
)

− ∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗
(𝑞
𝑖
− 𝑞
𝑗
) − 𝑘
1
𝑝
𝑖
− 𝑘
2
𝑞
𝑖
− 𝑔
𝑖
𝑝
𝑒

𝑖
)

+ 2𝑔
𝑖
𝑞
T
𝑖
𝑝
𝑒

𝑖
)

=

𝑁𝑖

∑

𝑖=1

𝑞
T
𝑖
(− ∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗
(𝑞
𝑖
− 𝑞
𝑗
) − 𝑘
2
𝑞
𝑖
)

= −𝑞
T
[(L (𝑝) + 𝑘

2
𝐼
𝑁𝑖
) ⊗ 𝐼
𝑛
] 𝑞,

(25)

where L(𝑝) is the Laplacian matrix of graph G(𝑝), 𝑝 =

col(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑁𝑖
) ∈ R𝑁𝑖×𝑛, 𝑞 = col(𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑁𝑖
) ∈ R𝑁𝑖×𝑛,

and 𝐼
𝑁𝑖

is the𝑁
𝑖
dimensional identity matrix.

As L(𝑝) is positive semidefinite, �̇� < 0, hence 𝑄 is
a nonincreasing function. As the initial energy 𝑄

0
of the

subgroup is finite, for any sampling time interval 𝑡 ∼ 𝑡
1
, 𝑄 <

𝑄
0
. Form (23), we have 𝑘

1
𝑝
T
𝑖
𝑝
𝑖
≤ 2𝑄
0
. Accordingly, the dis-

tance between individual 𝑖 and its most correlated neighbor
is not greater than √2𝑄

0
/𝑘
1
. Due to the connectivity of the

subgroup, there exists a joint connected path from individual

𝑖 to𝑁
𝑖
in the small time internal 𝑡 ∼ 𝑡

1
; therefore the distance

between any two individuals is less than 𝛿 = (𝑁
𝑖
−1)√2𝑄

0
/𝑘
1

in the same subgroup.
(ii) From above, 𝑄 < 𝑄

0
, the set {𝑝, 𝑞} is closed and

bounded. Therefore, the set

Ω = {[𝑝
T
, 𝑞

T
] ∈ R2𝑁𝑖×𝑛 | 𝑄 ≤ 𝑄

0
} (26)

is a compact invariant set. According to LaSalle’s invariant
set principle, all the trajectories of individuals that start from
Ω will converge to the largest invariant set inside the region
Ω = {[𝑝

T
, 𝑞

T
] ∈ R2𝑁𝑖×𝑛 | �̇� = 0}. Therefore, the velocity

of individual 𝑖 will converge to that of its most correlated
neighbor 𝑓

𝑖
; that is,

𝑞
𝑖
= 𝑞
𝑓𝑖
. (27)

Without loss of generality, we assume the𝑁
𝑖
th individual

in the subgroup is the only one that senses the external
stimulus and it responses with fast maneuvering. According
to (4), 𝑁

𝑖
is the most correlated neighbor with largest

information coupling degree. In the small time internal 𝑡 ∼ 𝑡
1
,

there exists a joint connected path from individual 𝑖 to𝑁
𝑖
; the

velocities of all the individuals in the subgroup will converge
to that of the𝑁

𝑖
th individual asymptotically. Hence, we have

𝑞
1
= 𝑞
2
= ⋅ ⋅ ⋅ = 𝑞

𝑁𝑖−1
= 𝑞
𝑁𝑖
, (28)

where 𝑞
𝑁𝑖

is the velocity of individual 𝑁
𝑖
that senses the

external stimuli.
(iii) For individuals 𝑖 and 𝑗 in different subgroups, as has

been illustrated in (i) and (ii), their motion is substantially
determined by their most correlated neighbors. Therefore, if
the most correlated neighbors of individuals 𝑖 and 𝑗 move
in opposite directions under different external stimuli, the
motion of the two individuals will diverge as time goes by.
Hence, we will ultimately have

lim
𝑡→∞

𝐷 > 𝑅, (29)

where 𝐷 = ‖𝑝
𝑖
− 𝑝
𝑗
‖ is the relative distance between

individuals 𝑖 and 𝑗.
From the above proof, we can conclude that, under the

fission control algorithm (9), the subgroups are gradually
moving out of the sensing range of each other. Meanwhile,
the subgroup itself will keep a cohesive whole and move in
formation separately.

5. Simulation Study

To verify the effectiveness of the proposed fission control
algorithm, 40 individuals are chosen to perform the simula-
tion in two-dimensional plane.

5.1. Simulation Setup. Suppose the 40 individuals lie ran-
domly within the region of 20 × 20m2 and their initial
distribution is connected. The initial velocities are set with
arbitrary directions and magnitudes within the range of
[0 10]m/s. The sensing range of each individual is con-
strained to 𝑅 = 5m. The other simulation parameters are
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Figure 3: Snapshots of the trajectories of individuals during the fission process, where “∘” represents the initial position of individuals and
“∙” denotes the final position of each individual. Specifically, “red dot” are the two individuals that sense external stimuli with “red arrow”
being their desired directions.

chosen as 𝑟
𝑖𝑗
= 0.5, 𝜇

𝑖𝑗
= 5, 𝑐∗ = 0.3, Δ𝑡 = 0.005 s, 𝜖 = 0.2,

and 𝑘
1
= 𝑘
2
= 1.

In particular, we consider the case where a flock seg-
regates into two clustered subgroups by introducing two
conflict external stimuli towards different directions. Before
the fission behavior takes place, we first let individuals
aggregate and move in formation with the same velocity of
[5 0]

T m/s. Suppose that, at 𝑡 = 7 s, two individuals (e.g.,
lie on the edge of the flock, we let them be individual 1 and
individual 2) sense the two external stimuli separately, other
members are not able to sense the external stimuli, and we
have 𝑔

1
= 𝑔
2
= 1, 𝑔

𝑖
= 0, 𝑖 ̸= 1, 2. Meanwhile, the

desired positions of individual 1 and individual 2 are updating
according to (1) with speeds 𝑞𝑒

1
= [5 3]

T m/s and 𝑞𝑒
2
=

[5 − 5]
T m/s, respectively.

5.2. Simulation Results. Steered by the fission control algo-
rithm (9), a self-organized fission behavior will occur and the
simulation results are shown in Figures 3∼6.

Figure 3(a) is the snapshot of the flocking system at 𝑡 =
6 s, from which it can be seen that individuals aggregate
from random distribution and form a cohesive formation;
Figure 3(b) shows the response of the flock when individual 1
and individual 2 (denoted by red solid dots) sense the external
stimuli; individuals in the flock tend to change their move-
ments to different directions due to the pairwise interaction
rule. In Figure 3(c), the flock segregates into subgroups and
two clusters emerge. In Figure 3(d), the subgroups run out of
the sensing range of each other and the segregated subgroups
move in formation separately.

Figures 4(a) and 4(b) give the plot of the velocities of
individuals during the fission process in both 𝑥- and 𝑦-
axis, from which we can see that before two external stimuli
appear (𝑡 < 7 s), individuals move in formation and their
velocities asymptotically converge to [5 0]T m/s; at 𝑡 = 7 s,
under the fission control algorithm, fission behavior occurs
and the velocities of the two subgroups tend to that of the
individuals who sense the external stimuli. Consequently,
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Figure 4: Velocity of individuals during the fission process.
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Figure 5: Average distance of the whole group and two separated
subgroups.

the velocities of individuals in subgroup 1 converge to
[5 3]

T m/s while the velocities of individuals in subgroup 2
converge to [5 − 5]

T m/s.
In addition, we utilize the average distance of individuals

to illustrate the fission behavior in amore intuitional way.The
average distance 𝑑avg is represented by

𝑑avg =
1

𝑁
𝑖

𝑁𝑖

∑

𝑖=1

𝑁𝑖

∑

𝑗=1


𝑝
𝑖
− 𝑝
𝑗


, (30)

where𝑁
𝑖
is the number of individuals in the flock.

Figure 5 shows the average distance between individuals
during the simulation, where blue line denotes the average
distance of all the individuals while red dash line and black
dash dot line represent the average distance of individuals
in subgroup 1 and subgroup 2, respectively. We can clearly
see that the three lines tend to converge to a fixed value
before segregation (𝑡 < 7 s). When the fission behavior
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Figure 6: Information coupling degree between individual 1 and its
neighbors.

occurs, the average distance of all the individuals increases
with time, denoting the divergence of the two subgroups. On
the contrary, the average distances of the two subgroups tend
tomaintain a constant value (about 3m),which demonstrates
that the two subgroups are moving in stable formation.

Figure 6 gives the information coupling degree between
individual 1 and its neighbors during the fission process,
which clearly demonstrates that before the external stimuli
appear (𝑡 < 7 s), the ICD between individual 1 and its
neighbors converge to a constant value. This is because, in
the steady formation state, the relative position and velocity
between individual 1 and its neighbors remain stable. With
the introduction of the external stimuli, the ICD between
individual 1 and its neighbors begins to vary due to their rapid
movement variation, and the ICD between individual 1 and
its neighbors in the same subgroup converge to a steady state,
while ICD of individual 1 and other individuals in the other
subgroup quickly decreases to 0 for the loss of connection
between each other.

From the above simulation results (Figures 3∼6) we
can conclude that the proposed fission control algorithm is
capable of realizing the self-organized fission behavior when
the introduction of the external stimuli causes the motion
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Figure 7: Histogram statistics for the size ratio of the separated
subgroups.

preferences conflict in the flock. Particularly, our approach
is neither negotiation nor appointment based but mimics
the fission behavior of animal flocks, which is also more
feasible, robust, and efficient in engineering application than
the centralized approach.

5.3. Further Discussion. To better understand the size dis-
tribution of subgroups, we define the size ratio 𝑆 as a
specification to evaluate the fission behavior

𝑆 =
𝑁min
𝑁max

, (31)

where 𝑁min and 𝑁max are the size of the smallest subgroup
and biggest subgroup, respectively. Obviously, 𝑆 ∈ [0, 1]:
the bigger 𝑆 is, the smaller size difference between the two
subgroups is. Particularly, when 𝑆 = 1, the numbers of
individuals in the two subgroups is the same.

Figure 7 is the histogram of the size ratio of 40 individuals
for 100 times of simulation, fromwhich we can see that about
80%of the results show the size ratio equal to 1 and nearly 10%
are close to 1, and only a very small portion of the size ratio is
randomly located from 0 to 1. Therefore, it can be concluded
that, from a probabilistic perspective, the algorithmproposed
in this paper can realize the equal-sized fission control.

Finally, we carry out a comparative simulation using
the first algorithm (18) proposed in [7] based on “separa-
tion/alignment/repulsion” rules. At 𝑡 = 7 s, we introduce two
conflict external stimuli on individual 1 and individual 2, and
the desired positions of individual 1 and individual 2 are also
updating according to (1) with speeds 𝑞𝑒

1
= [5 3]

T m/s and
𝑞
𝑒

2
= [5 − 5]

T m/s, respectively. Then we have the following
the algorithm

𝑢
𝑖
= ∑

𝑗∈N𝑖

𝜓
𝛼
(

𝑝
𝑗
− 𝑝
𝑖

𝜎
)n
𝑖𝑗
+ ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑝) (𝑞

𝑗
− 𝑞
𝑖
)

+ 𝑔
𝑖
(𝑝
𝑖
− 𝑝
𝑒

𝑖
) , (𝑔

1
= 𝑔
2
= 1) .

(32)
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Figure 8: Trajectories of individuals under the external stimuli with
algorithm (32).

With the same simulation parameters, the moving trajec-
tories of individuals are shown in Figure 8.

From Figure 8 we can see that only two individuals that
sense the external stimuli can split from the group while
the rest move in a cohesive formation along its previous
trajectory. It can also be seen from the amplified figure that
when individual 1 and individual 2 split from the flock, the
motion of other individuals tends to fluctuate, but they finally
return to the cohesive formation state. The main reason for
the above result lies in the “average consensus” approach
adopted in (32), which counteracts the external stimuli and
leads the flock move towards the average direction of the
stimulus signal.

Therefore, the traditional “separation/alignment/cohe-
sion” based coordination rules decrease the flexibility and
maneuverability of flocking system especially in the case of
danger/obstacle avoidance or multiple objects tracking. As a
matter of fact, under algorithm (32), fission behavior only
occurs when all the individuals can directly sense external
stimuli, which is essentially different from our work.

6. Conclusion

This paper addresses the fission control problem of flock-
ing system. To overcome the shortcomings of the “average
consensus” based interaction rules that encumber the fis-
sion behavior, a new pairwise interaction rule is proposed
to implement the fission behavior. Firstly, we propose an
information coupling degree based approach to describe the
internal interaction intensity between individuals. Then, by
choosing the neighbors with largest information coupling
degree as the most correlated neighbor, we integrate the
motion information of the most correlated neighbor into
the distributed fission control algorithm to form a strong
correlated pairwise interaction, which realizes the directional
information flow of external stimuli and induces the fission
behavior of the flock in a self-organized fashion. More-
over, theoretical analysis proves that a flock will segregate



10 Journal of Robotics

into clustered subgroups when external stimuli cause the
motion information conflict in it. Finally, simulation studies
demonstrate the effectiveness of the proposed fission control
algorithm.
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