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By using the fixed point theorem and constructing a Lyapunov functional, we establish some sufficient conditions on the existence,
uniqueness, and exponential stability of equilibrium point for a class of fuzzy BAM neural networks with infinitely distributed
delays and impulses on time scales. We also present a numerical example to show the feasibility of obtained results. Our example
also shows that the described time and continuous neural time networks have the same dynamic behaviours for the stability.

1. Introduction

The bidirectional associative memory (BAM) neural network
models were first introduced by Kosko (see [1]). BAM neural
network is a special class of recurrent neural networks that
can store bipolar vector pairs. It is composed of neurons
arranged in two layers, the X-layer and Y-layer. This class
of networks possesses good applications prospects in areas of
pattern recognition, signal and image process, and automatic
control. Such applications heavily depend on the dynamical
behaviors of neural networks. Thus, the analysis of the
dynamical behaviors is a necessary step for practical design
neural networks. In particular, many researchers have studied
the dynamics of BAM neural networks with or without delays
including stability and existence of periodic solutions or
almost periodic solutions. For the results on BAM neural
networks, the reader may see [2-11] and reference therein.

In mathematical modeling of real world problems, we will
encounter some inconveniences, for example, the complexity
and the uncertainty or vagueness. For the sake of taking
vagueness into consideration, fuzzy theory is considered as
a suitable method. Yang et al. proposed fuzzy cellular neural
network, which integrates fuzzy logic into the structure
of traditional cellular neural networks and maintains local
connectedness among cells [12]. Fuzzy neural network has

fuzzy logic between its template input and/or output besides
the sum of product operation. Studies have been revealed that
fuzzy neural network has its potential in imagine processing
and pattern recognition and some results have reported
on the stability and periodicity of fuzzy neural networks.
Besides, in reality, time delays often occur due to finite switch-
ing speeds of the amplifiers and communication time and
can destroy a stable network or cause sustained oscillations,
bifurcation, or chaos. Hence, it is important to consider both
the fuzzy logic and delay effect on dynamical behaviors of
neural networks. There have been many results on the fuzzy
neural networks with time delays [13-21]. For example, in
[22], under the assumption that the activation function f ]-(u)
is a second differentiable bounded function, j = 1,2,...,n,
the authors proved the exponential stability and obtained the
domain of robust attraction of the equilibrium point of the
following interval fuzzy neural network:
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In fact, both continuous and discrete systems are very
important in implementation and applications. To avoid the
troublesomeness of studying the dynamical properties for
continuous and discrete systems, respectively, it is meaningful
to study that on time scales, which was initiated by Stefan
Hilger in his Ph.D. thesis in order to unify continuous and
discrete analysis. Lots of scholars have studied neural net-
works on time scales and obtained many good results [23-29].
For example, in [30], the authors considered the existence and
global exponential stability of an equilibrium point for a class
of fuzzy BAM neural networks with time-varying delays
in leakage terms on time scales. Moreover, many systems
also undergo abrupt changes at certain moments due to
instantaneous perturbations, which lead to impulsive effects.
Therefore, it is significant to study the dynamics of impulsive
systems. For example, in [31], the authors studied the expo-
nential stability of the following impulsive system on time
scales:

X} (1) = —apx; (1) + jibﬁfj (y;®)
+ Jibﬁfj (i (t-05)) + Z\I“ﬁf;‘ (3 (t-0))
+ ]\Zﬁjifj (i (t=0;))+ Z\ITﬁP‘j
+\m/Hj,-yj +I, t#t, teT, i=1,2,...,n
1

Ax; (t) =L (x; (), i=12,....,n, k=1,2,...,

2)

where T" = T n (0,400) and T is a time scale, and in
[32], authors studied a class of fuzzy BAM neural networks
with finite distributed delays and impulses, by using fixed
point theorem and differential inequality techniques; they
established the existence and global exponential stability of
unique equilibrium point to the networks.

However, to the best of our knowledge, few papers were
published on the exponential stability of fuzzy BAM neural
networks with distributed delays and impulses on time scales.
Motivated by the above, in this paper, we study the following
fuzzy BAM neural networks with infinitely distributed delays
and impulses on time scales:

X () = —ax; () + chi LOO kj; (s) f; (;Vj (t- 5)) As
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+ \/ﬁji L kj,» (s) fj (yj (t - s)) As
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m m
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t#t, teT', i=12,...,n
Ax; (t) =P (x;(t)), i=12,...,n, k=1,2,...,

)’J-A (t)=-bjy; )+ Zdij Jo hij (s) g; (x; (t —s)) As
i=1
+ /\pij L hij () g; (%; (t = 5)) As
i=1
+ tij .[0 hi; (s) g; (x; (t = 5)) As
i=1

n n
+ /\F,.jv,- + \/G,-jvi +7],
i=1 i=1
t#t, teT, j=1,2,...,m,

Ay;(t) = Qe (7 (t)), j=L2....m k=12,...,
3)

where T is a time scale that is closed under addition; n, m
are the numbers of neurons in layers; x;(t) and ;(t) denote
the activations of the ith neuron and the jth neuron at time
t; a; > 0and b; > 0 represent the rate with which the
ith neuron and the jth neuron will reset their potential to
the resting state in isolation when they are disconnected
from the network and the external inputs; f;, g; are the
input-output functions (the activation functions); ¢;;, d;; are
elements of feedback templates; aj;, p;; denote elements of
fuzzy feedback MIN templates and f3;;, g;; are elements of
fuzzy feedback MAX templates; T;, F;; are fuzzy feed-forward
MIN templates and Hj;, G;; are fuzzy feed-forward MAX
templates; 44, »; denote the input of the ith neuron and the
jth neuron; the delayed feedback kj,»(s) and h,»j(s) are real
valued nonnegative continuous functions defined on T* with
jooo kji(s)As < kj; and IOOO hij(s)As < h;;, where kj; and h;; are
nonnegative constants; I;, J; denote biases of the ith neuron
and the jth neuron,i = 1,2,...,n,j = 1,2,...,m; Aand V
denote the fuzzy AND and fuzzy OR operations, respectively;
the impulsive moments ¢, satisfy 0 < ¢, < t; <, <--- and
lim _, t; = co.

For z = (X1, Xg, - - o> Xy V1> Var -+ +» Vi) € R™™, we define
the norm as |z| = YL, Ix;]| + 2311 ly;|. For the sake of
convenience, we denote the T-interval [a,b]; as [a,b]y =
{t € T | a <t < b}. The initial condition of (3) is of the
form

x;(s) =¢;(s), se€(-00,0]y, i=1,2,...,n,
(4)
i (s) = 1z (s), se(-00,0]y, j=1,2,...,m,
where ¢;(-), Wj(.) denote positive real-valued continuous
functions on (-0, 0].
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Throughout this paper, we make the following assump-
tions:

(H) fort,seT,t+seT;

(H,) fj, g; € C(R, R) and there exist positive constants LJ; ,
L? such that

|f; @) = ;)| < L ju -1,

|gi (u) - g; (v)| < Ll’f lu—7v]|,

©)

forallu,veR,i=1,2,...,n j=12,...,m;

(H;) there exists a positive constant p such that for i =
L,2,...,n, j=1,2,...,m,

(o0
J e, (t+s,t) k]-i (s) As < +00,
0

J €, (t +s,1) hij (s) As < +00, ©)
0
vVt eT.

Remark 1. Tt is oblivious that if T = R or T = Z, then (H,)
holds and that (1) and (2) are all special cases of (3). Our
methods used in this paper are different from those used in
[22, 30-32].

The organization of the rest of this paper is as follows.
In Section 2, we introduce some preliminary results which
are needed in later sections. In Section 3, we establish some
sufficient conditions for the existence and uniqueness of
the equilibrium point of (3). In Section 4, we prove the
equilibrium point of (3) is exponentially stable. In Section 5,
we give an example to illustrate the feasibility of our results
obtained in previous sections.

2. Preliminaries

In this section, we state some preliminary results.

Definition 2 (see [33]). Let T be a nonempty closed subset
(time scale) of R. The forward and backward jump operators
o,p: T — T and the graininess y : T — R, are defined,
respectively, by

o()=inf{seT:s>t},
p(t)=supfseT:s<t}, (7)
u)=o() -t

Definition 3 (see [33]). A function r :
regressive if

T — R is called

L+u@)r(t) #0, (8)

for all t € T*. The set of all regressive and rd-continuous
functions7 : T — R will be denoted by %. We define the set
R ={re R :1+ult)r(t) >0, Vt € T}

Lemma 4 (see [33]). Assume that p,q : T — R are two
regressive functions; then

(i) eo(t,s) = 1 and ep(t, t)=1;
(ii) ep(t, s)= l/ep(s, t) = eep(s, t);
(iii) ep(t, s)ep(s, r) = ep(t, r);
(iv) (e,(t,5))" = p(t)e, (t,s).
Definition 5 (see [33]). A function F : TF — Riscalled a

delta antiderivative of f: T — R provided F* = f holds for
all t € T, In this case we defined the integral of f by

th(S)As=F(t)—F(a), teT, 9)

and we have the following formula:

a(t)
J f)As=u(®) f(t), teT (10)

Lemma 6 (see [33]). Let f, g be A-differentiable functions on
T; then

(1) (v f +v,9)" = v, f* + v,9°, for any constants v, v,;
(i) (f9)*(6) = FA0g0) + flotg™ () = fDg"(®) +
fAg(o(@)).

Lemma 7 (see [33]). Assume that p(t) > 0 fort > s; then
ep(t, s) > 1.

Lemma 8 (see [33]). Suppose that p € R*; then

(@) ey(t,s) > 0, forallt,s € T;
(ii) if p(t) < q(t) forallt > s,t,s € T, then ep(t, s) <
e,(t, s) forallt > s.

Lemma 9 (see [33]). If p € & and a,b,c € T, then
[ep @] ==ple, ()]

b (11)
J pB)e,(c,o(t) At =e,(c,a) e, (c, b).

a

Lemma 10 (see [33]). Leta € T, b € T and assume that
f:Tx TF — R is continuous at (t,t), where t € T* with
t > a. Also assume that fA(t, -) is rd-continuous on [a, o(t)].
Suppose that for each € > 0, there exists a neighborhood U of
T € [a,0(t)] such that

[fe®,n) - fsn- )0 -9
<eglo()-s|, VseU,

(12)

where f* denotes the derivative of f with respect to the first
variable. Then
() g(t) = j: f(t, T)AT implies g*(t) = j; fAtT)AT +
flo(t),1);
(ii) h(t) = [ f(t. T)AT implies B(0) = [ FA(t7)AT -
Slo(®),1).



Definition 11 (see [33]). For each t € T, let N be a neighbor-
hood of t; then we define the generalized derivative (or Dini

derivative), D*u(t), to mean that, given € > 0, there exists a
right neighborhood N(e) ¢ N of ¢ such that

u(o(t) —u(s)

+ A
o) —s <Du"(t) +e, (13)

for each s € N(e), s > t. In case t is right-scattered and u(t)
is continuous at t, this reduces to

t)) —u(t)

Db (1) = WD) Zu®) 14
w0y = (14)
Definition 12 (see [33]). If a € T,supT = oo, and f is rd-
continuous on [g, 00), then we define the improper integral
by

0 b
J f@)at= lim J f () At, (15)

provided this limit exists, and we say that the improper
integral converges in this case. If this limit does not exist, then
we say that the improper integral diverges.

Definition 13 (see [33]). Ifa € T,inf T = —co0, and f is rd-
continuous on (—00, a), then we define the improper integral
by

r FO A= lim j £ AL (16)
—00 b—-o00 Jp

provided this limit exists, and we say that the improper
integral converges in this case. If this limit does not exist, then
we say that the improper integral diverges.

Lemma 14 (see [33]). Let f,g,h € C,4([a,b]1,R) and 1/p +
1/q = 1 with p > 1; then

b
[ m@llf @9l ax
b p /s b 1/q
s(j |h(x>||f(x>|PAx) (j |h(x)||g(x)|qAx) ,

(17)
Definition 15. A point z* = (x},x5,..., x5 y5 v . yo)T €
R™™ is said to be an equilibrium point of (3) if z(t) = z* is a

solution of (3).

Lemma 16 (see [19]). Let f]- be definedonR, j =1,2,...,m
Then for any a;; € R, i = 1,2,...,n,j = 1,2,...,m, we have
the following estimations:

_/:\laijfj(”) /\a’lfl
’JfJ( ) \/alJf]

Z'“w”ff )|
Z'aUHfJ )|

(18)

whereu;,v; € R, j=1,2,...,m
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Definition 17. Let z* = (x}, %}, ..., x5 y5, y5s e yi)”
be an equilibrium point of (3). If there exists a positive
constant A with —A € %7 such that, for ¢, € (-00,0],
there exists M > 1 such that for an arbitrary solution
2(8) = (e, (8, 5 (0), .., %,(6), 3, (0), Y5(8)s ., 9 (E)T Of (3)
with initial value ¢(s) = (¢,(5), 9,(5), ..., 9,(s), ¥, (s), ¥, (s),
0, (s)T satisfies

|z(®) = 27], < Mg~ 2"l eap (10)

t € [ty,00)y t 2t

(19)

where |z(t) - 2*|, = Y0, Ix(t) - x7|° + Yy - y;flz,
lp = 21 = I s, I - X
Z;’Ll supse(foo’oh{le(s) - y;.‘|2}}. Then the equilibrium
point z* is said to be exponentially stable.

3. Existence and Uniqueness of

the Equilibrium Point
In this section, we discuss the existence and uniqueness of the
equilibrium point of (3).

Without loss of generality, we assume that the impulsive
jump vectors P and Q satisfy

P(x") = (B (x]). P (%) s By (x))) =
Q) = (Q (). Q) Qu () =

(20)

That is, if (x],%5,..., x5 ¥ ¥5,..., y5)" is an equilibrium
point of the following nonimpulsive system

xiA )= —ax; (t) + Zcﬁ LOO kji (s) f; (yj (t - s)) As
j=1
+ /\“ﬂ J kji (s) f; (y] (- ))
' \//3], [ 91, (3, - 9) s
+ NTji + \[Hyp + 1,
j=1 j=1
teT', i=12,...,n,
Vo) = —by, () + Zdu [ 1y 99,6 - 9) s

+ /\le [ 1y 99,6 0 - 9) s

" \/q,] j iy (5) g (x; (¢ - 5)) As
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n n
+ /\Fijv,- + \/G,-jvi + ],
i=1 i=1

teT', j=12,....,m,

(21)
then it is also the equilibrium point of impulsive system (3).

Theorem 18. Let (H,) and (H,) hold. Suppose further that
(Hy) 0 < 1, where

6 = max {llzljei)r(n {;a{lLJ;kﬁ (|Cji' + |06ji| + |ﬂ]l|)} >
(22)
m
12in 125}1L?hfj (el + ] + la) 5
sisn |
then (3) has one unique equilibrium point.

Proof. 1fz* = (x,%5,.... x5 ¥, ¥5,. .., yi)T is an equilib-

rium point of (3), then we have

ax; = ) i Loo ki (9.5 () s
j=1

+ N\ L ki () 15 (5 ) As

j=1

+\//3ji Jo kji (s) fj (J’;)AS
j=1

+ \Titty + \ Hp + 1
=1 j=1

bjy;.‘ = Zl:dij L hi;i (s) gi (x7)As

+ /\Pij L hij (s) g; (x7) As
i=1

+ \/‘L’j L hij (s) g; (x7) As
i=1

n n
+ /\Fijvi + \/Gijv,- + ],
i=1 i=1
(23)

where i = 1,2,...,n, j = 1,2,...,m. To finish the proof,
it suffices to prove that (23) has a unique solution. Define a
mapping @ : R™™ — R"" as follows:

D (X1, X505 X Y15 2o+ +5 Vi)
= (@) (x1), Dy (%x3) 5.5 D, (%) 5 (24)

T
q)nJrl(yl)’ creo (Dn+m(ym)) >

where

D, (x)=a; |:ch1' LOO kit () f; () As }

m

va | N\ L ki (5) £ (3;) s

j=1

+ai_1 \/ﬁjiJ kji(S)fj()’j)AS
L=t

[ m m
-1
+a /\Tﬁyj+\/Hﬁyj+Ii] R
| j=1 j=1

q)n+j (,‘V]') = bj‘l [;dij Jo hij (s) g; (xi) AS]

+ bjﬁl ./_\lpij L hi; () g; (x;) As]

+bj_1 Z,Pij L hij(s)gi(xi)As]

[ n m
—1
+ bj /\Fijv,- + \/G,»jv,- + Bj ,
i=1 j=1

(25)

where i = 1,2,...,n, j = 1,2,...,m. Obviously, we
need to show that @ is a contraction mapping on R"™™.
In falct, for_any 9 = (hyhy, . by, vy, vy,
(hy, hy, .. S, V1L, .., 7,) € R™, we have

V) and ¥ =

|(Di () - @; (Ez)'

2 [$a [ b0l 56D

- V\“ﬁ [ 0 (1 () 5, (W)As}

j=1
ol
a;

m
-1 f _
<a;' Y Uik (Jeg] + [ocsi| + Bl [v; 74|
=

<z

Bii Loo ki ) (£ (v) = £ (7)) AS}

1

.
I

i=12,...,n,



|(Dn+j (VJ) D (‘_’1)'

i=1 0

5! [ Aps LOO i (s) (g; () - g (R)) AS]

i=1

-1

hij (s) (gi (h) - g; (Ez)) A5:|

[\/%j hi; () (g1 (hy) - 91(1))As]

= bj_lg,L?hij (|dij| + |pij| + |%’j') 'hi —Ei' ,
j=12,...,m.
(26)

Therefore, we have

[o® -2 ()]

n m
-1 -_—
< Yoo YLk (leil + ol +[Bl) vy = 7]

IZLghlJ |d,]|+|p,]|+|q,]' | '

J:1

< mas {5 sl ol ol + )
Xg'vj‘vﬂ

T {g“flL?hij (|| + |py] + |‘1ij|)]’
<Xl

o($h-il+ -5

i=1 j=1
ofo-3.
(27)
By (H,), we obtain that @ : R™ — R™™ is a contraction

mapping. By the fixed point theorem of Banach space, there
exists a unique fixed point of ®, which is a solution of (21).
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Therefore, (3) has exactly one equilibrium point. The proof of
Theorem 18 is completed. O

4. Exponential Stability of Equilibrium Point

In this section, we consider the impulsive fuzzy BAM neural
networks of the following type:

Xt (t) = —ax; (1)

+ chi J'oo kji (s) f; (yj (t - s)) As
+ /\ocji JOO kﬁ (s) fj (yj (t - s)) As
+ \/ﬁji J-OO kj; (s) f; (J’j (t- S)) As
+ /\Tji/"j + \/HjiMj + 1

=1 j=1

teT, i=1,2,...,n,

Ax; (te) = —yae (o (1) —

byy; () + Zd,] [0 01 - )

x'), k=1,2,...,i=12,...,n,

yi () =-
+ /\Pij L hi; (s) g; (x; (t = 5)) As

i=1
+\/quj hi;i (s) g; (x; (£ = 5)) As

n n
+ /\Fijvi + \/Gijvi +7
i=1

i=1

teT’, j=12,....m

Ay;(t) = Vi ()’j (te) - }’J*)

k=1,2,..., j=1,2,...,m,

(28)
where a;, b], Cii» Bji» %jis Aij> Pij> dij» kji» hij f> g; are defined
as those in (3). The initial conditions associated with (28)
are given by (4). In the following, we study the exponential

stability of the unique equilibrium point for (28) on time
scales by using Lyapunov method.

Theorem 19. Let (H,)-(H,) hold. Suppose further that (H,)
there exists a constant p > 0 such that

p+(1+pu)

(s el 15
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+ ib‘f(l + pi)
=1
% (|dy] + [y + |a| + anuLin; (d + b + 45))
X Jooep (t+s,t)hij(s)As <0, i=12,...,n,
0

p+(1+pu)
x <4b?”‘2bj+;b?hij(|dif| + [yl + '%‘D)
+ ZLJJ( (1+ pu)
i=1

| |+|(x |+|/3],|+4m[4Lk (c +¢x] + ],))

xj (t+s,t)kji(s)A5<O, j=12,...,m
0
(29)

where p = sup,.yu(t) < oo.

(Hs) 0 < yp < 2and 0 < ?jk <2i=12..,nj=
L,2,...,m k=1,2,...
Then the equilibrium point z° = (X{,X;,..., X0, Vy»

Vv yi)T of (28) is exponentially stable.

Proof. By Theorem 18, (28) has one unique equilibrium point
AN S S L ,y:;l)T. Let z(t) = (x,(t), x, (1),

co X, (1), y1(8), yo(8), ... ,ym(t))T be an arbitrary solution of
(28). Denote u;(t) = x;(t) — x/, vi(t) = y;(t) - y;.‘, i =
L,2,...,n, j = 1,2,...,m. Then from (28), we have the
following:

ut () = —au; (t)
+ )6 L ki () (£ (7 (€= 9)) = £;(5])) s
+ [\ L ki ) (f; (3 = 9) = £;(57)) s

+\/ﬁﬂj kji (s) (fJ (yJ (- )_fj (y;))As,

teTH i=1,2,...,n,
Au; (t) = =y (w; (1)), k=1,2,...

v () = —b; (1)

,i=1,2,...,n,

3 [y 90 0= 9) -, () s

+ /\pz] J hl] (s) (gl (x (t- S)) ( 1*)) As

7
Vay [}y 661G 6= 9) - ) s
teT, j=12,....m

Avi(t) =¥y (v (), k=12, j=12...,m

(30)

For p > 0, construct Lyapunov functional V' (¢) = V;(¢) +
V,(t) + V5(t) + V,(t), where

= iuf (t)
i=1

Vo (6)= Y v (e, (1,0),
j=1

e, (t,0),

Vi(t) =Y 31 (1+ py)

i=1j=1
% (Je] + I%I +|Bs
it (G + i+ )
o0 t
X J- J-H €, (r +s,0) kj,» (s) v? (r) Ar As,

0

Vo)=Y Y LI (1+ pu)

j=li=1
X (|dij' + |pij| + |qu"
+dnuLlh;; (d,zj + szj + qlzj))

+ 4myL i

o t
X J J e, (r+s,0) h]-,- (s) u? (r) Ar As.
t—s

0
(31)

Calculating the A-derivative VA(t) of V(t) along the solution
of (30), we have

n

VEW =Y [e, (01,0 (1 )"+ (1) (1,0)]

i=1

[e, (@(0),0) (20 () () + e (1) (u 1))

i=1

B

+pul (De, (1, 0)]

{ep (a0 (t),0)

X [Zui (t)

X <— a;u; (t)

+chij kj,-(s)
=1 70

™=

Il
—

1



x(f; (9t =9)=1;(57)) As
+ /rrl\aji j-ooo kj,» (s)
j=1
x(f; (9t =9)=1;(57)) bs
+ Vﬁji JOOO kj; (s) (f] (J’j (t- S))
j=1
= (57)) 8)
+u(t) <_aiui )+ icji
=
x LOO kji (s)
< (f; (7 =9) = £;(57)) As
e
j=1

X LOO ki (s)
x(f; (7 =)
~f;(57)) s
+ \'"//3ji
j=1
X LOO ki (s)

x(f;(y;t=-9) 2
—ﬂ@»“)]

+pu; (t)e, (t,0) }

<y <|pep (t,0) 1] (t) +e, (0 (t),0)

i=1

X [— 2aiui2 ®)

+ZZI (Jes] + fexs] + |Ba]) £
e
X LOO kji (s) |vj (t - s)| |u; ()] As

+u(t) (4611.214142 (t)

m
4 (Z i L
=

Journal of Applied Mathematics
2
X L ki (s) 'vj (t-— s)| As>

+ 4< |ocji'LJ;
j=1

2
X L ki (s) 'vj (t- s)| As>

3

m
+4 <Z [
=1

X LOO kji (s)

» |v,.(t_s)|m)2>”

{ pe, (t,0)1; (t) +e, (0o (t),0)

M=

<

1

Il
—

X l:— Zaiuiz ) + Z ('cﬁ| + |ocj,-' + |ﬁj,')LJ;
=1
X Loo ki (5) (v (£ =) + 14} () As
+u(t) ( 45‘;'2”1‘2 ) + 4m§cﬁ.(L§)2
=1
(o) 2
x (L Ky ) |, (t—s)|As>
+ 4mio¢§i(ﬂ;)2
=1
00 2
X (L kjl- (s) 'vj (t - s). As)

ramY (1)
j=1

X (Loo kjl- (s) 'vj (t - s)| As>2>] }

< { pe, (£:0)1; (t) +e, (0 (t),0)

1

BN

Il
—

X |i— 2a,~ui2 )
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ot
+ l|+l%l+|ﬁﬂl j

(o]

X
0

4a u ()

/\-__

f
+ 4m2c (L ) L kjl- (s) As
X J kj; (s) v? (t—s)As
0

m 5 [0
+ 4mj;(x]2.i(LJ;) L kj; (s) As
X JOOO kj; (s) v? (t—1s)As
am B3(11)

=1

X J kj; (s) As
0

X J’OOO kji (s) v? (t-s) AS)]}

<y {pep (t,0)1; (t) + (1 + pu () e, (£,0)

i=1

X [— Zaiui2 ®)

§

+z . |+|(x1"+'ﬁjl' Lfk]tu; (t)
j=1

.t
+ 2 (el + o] + |B5]) 25
j=1

§

(o)

X k~(s)v§(t—s)As

e

0
+4a u () u () + 4mp (t)

X

(6 v+ B )k,

s

j=1

X LOO ki (s) v? (t-ys) As:| }

Ze (t,0)
i=1

X{p+0+pyw)

X [4611-2‘[/{ (t) - 2q;

k (s) v (t- s)+u (t))As+y(t)

+ iLJ;kﬁ
j=1

<(sl+lol+ s |

xu; (£) +e, (50) )Y (1+ pu(t))

i=1 j=1
x 1 (Jei| + fos| + [B3])
+ 4my (t) (LJ;)Zkﬁ (c]z, + oc?i + /3?1)]

X J:O ki (s) v? (t—s)As

< Ye,(t,0)
i=1
X{p+0+pw
X [4@2# - 2a;

¢ Stk ol + ol ) ”

X u? (t) +e, (t,O)ZZ (1+ pu)

i=1 j=1
12 (el + g+ 8,]) + amu(L])
ks (¢ + o+ )]

X Loo ki (s) v? (t-ys) As}.

Similarly, we have that

VR =Y [e, (00,0 (1) +v2 (1€ 1,0
=

[\/]§

-
I
—_

+ pvi (8) e, (t, O)]

m

=Ye,(0(t),0)

j=1

> [ @ ®).0) (20 v} O + @) (v} ©))

(32)
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X [ 2v; ()

X <— iji (1)

m

+Yd, J hy (5)
j=1
x (g; (x; (t=5)) = g; (x7)) As
+/\py
i=1

[y 901 0= 9) - g1 () s

VB [y @)

—4i (x7)) AS>

+p ()
X (—ijj () + Zn: dij
i=1
<[99 0= 9) - g1 () s
+Amjh@)
x (g; (x; (t=5)) = g; (x])) As
+\/ay
i=1
X L hij (s)
2
X (gi (x; (t—5)) —9i (xz*)) AS) ]
+ pv§ (t)e, (t,0)

< Yep(t,0) {p+ (1+pu(®)

X [4171?,4 (t) - 2b;

+Sna (o) Il |

Journal of Applied Mathematics

X v§ (t) +e, (t,0)

3 (14 pu®)

i=1is1
x (L (|dy] + |py] + |as])
+4np (t) (L‘?)2 (dlz] + pizj + qu)]

Ooh.. 2t -

XL ij () u; (t—s)As
sZep(t,O){p+(1+py)
=1

X [ 4b} - 2b;

+Stny o)l |
x5 () +e, (1,0)

x>y (1+ pu)
i=im1
x (1 ([ + 1oy + [as)
+ 4ny(L?)2hij (df] + pizj + qlzj)]
X JOO hij (s) uiz (t —s)As.
0
(33)

Besides, we can obtain that

Vi)=Y Y L (1+ pu)

i=1 j=1

% (e + e + [
+4m/,4LJ;kﬂ (c +oc +ﬁ ))

o0

€, (t+s,0) kj,» (s) v? (t) As

X
o 2

iiL 1+p(4)

i=1 j=1
* (e e+ 185

+4mnyk (c +(x +ﬁ ))

X LOO e, (t,0)kj (s) v§ (t —s)As
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V() =

||M=

i (1+ pu)

% (Jel+ ol + 851
amuLlk, (3 + o, + B2))

x e, (£,0) LOO e, (t+5,0) kj; (s) Asv; (1)

e, (£,0) (1 + p)

XZZL (s o + 185
+amLlk;, (c;+ ol + B}))

X J ki (s) v? (t —s) As,
0

S 3L (14 pu)

j=li=1
X (|d1]| + |p,'j| + |qij'
+anuLlh; (&2 + pt + %))
X IOO e, (t+5,0) by (s) 1 (1) As
0
=Y 2L (1+ pu)
j=lim1
X ('dij| + 'pij' + "1ij|
+ dnulhy; (di + pl + q;))

x LOO e, (t,0) h; () (¢ — ) As

2L (1+pu)
j=li=1
x (| + ] + |as]
+anuLhy; (& + pl + q3))
x e, (t,0) J'oo e, (t+s,t)hy; (s) Asii? (t)
0

- ep (t’ 0) (1 + pll/l)
X Z;ZIL? (s + | + |as]
J=1li=
+ 41/114L?h,-]~ (d,z] + pizj + qlzj))

X LOO hj; (s) u? (t —s)As.

(34)

Hence, we have that

VA ()

=VE@)+ VI () +VE ) + V(1)

ie (t,0)

X{p+(1+pu)

2
xui

gL

X [4613/4 - 2q

S
+ Z{ijj"
iz

(sl |

(t) +e, (500> Y (1+ p)

i=1 j=1
(le] + foci] + |B5)
+4m‘u(LJ;) k (cﬂ+(x +ﬁ )]

X J:O kji (s) v? (t—ys) As}

m
+ e, (t,0)
j=1

+e

X{p+(1+pu)

X |:4bf‘u - ij

S o)+l |} 30
i=1

5 (60) ) ) (1+ pu)

==l
x [ (Jdg] + o] + |as)

+ 4n/4(Ll’f)2h,-j (dfj + pfj + qf])]

1



12

X JOO hyj (s) uiz (t—s)As

0

S+ pu)

j=1

M:

+

I
—

* Jesl + loil + 185
+4muLlk;; (¢ + o + By)) e, (£,0)

jrit

xjme (t+st)kj (s)Asv (t) e, (t,0) (1+ pu)
0

n m f
S50+ b+l
+amLk, (c;i+a§i+ﬂ?i))

jrt

X J:O ki (s) v? (t—s)As

+ ZZL (1+pu) |du' + |p,]' + |qlJ|

j=li=1
+ 4nnghij (dlzj +pl.2j +qi2].))
xe,, (t, O)J €, (t+st)h (s)Asu (t)

— e, (t,0) (1 + pu)

x ZZLg |d11| + |p'J| + |th'

j=li=1
+ 4n‘uL‘?hl-j (dlzj + pl.zj + qlzj))

X LOO hij; (s) uiz (t—s)As

< Ye,(t0) { {p+ (1+ py)
i=1

X < 4‘11‘2/" - 2q

+Z%%

(sl 1) )|

+ LI (1+ py)

J=1

x(Jdy| + |y + |as|

+ 4n‘uL‘?hij (dlzj + pizj + qlz]))

Journal of Applied Mathematics
X JOO e, (t+5,t) Iy (s) As} ul ()
0
+ Zep(t,o) { [p+ (1+ pp)
j=1
x <4bjy — 2b;
o S o)+ o+ )
S
< (Jel + oci| + [
+ 4m‘uLf.
xk;; (c + oc + /3 ))

© 2
X L €, (t+s,t) kj,- (s) As } Vi (t).
(35)
By (H,), we can conclude that VA(t) < 0, for t € T*, t #1,,

k =1,2,..., which implies that V() < V(0), fort € T', t #1¢,,
k=1,2,... Fort =t,,k=1,2,..., we have

V() = Vi (60) + Vo (5) + V3 (6) + Vi ()

n m
= u; (t) e, (8,0) + Y v (1) e, (8,0)
i=1 j=1

+ iiﬂ;(l + pu)

i=1 j=1
X (Je] + feci] + |85
+ 4mulL’k (cz +ao +ﬁ2))
pLKG (G T & + Py

oo (tf
X J Jis e, (r+s,0)k; (s) v? (r) Ar As

0 ty

+ ) 2L (1+ pu)
imlist
x (|| + (] + [a)
+ 4n,uL‘fhij (dlzj + pfj + qf]))

ot
X L L e, (r+s,0) hij (s) uiz (r) Ar As
=S

k
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< 3 (0 ) 1)) ep (1,0

+

((1 - 7_’jk) vj (tk))zep (t,0)

s

I
—_

J

+ iiLf(l + pu)

i=1 j=1

el + el + 83

+4m/4Lk (c +oc +ﬁ ))

[
X e, (r+s0)k;(s V2 (r) Ar As
LLMP( Ykis (5) 7 (1)

+ )L (1+ pu)
mlisl

X (|d,~j| + |p,~j| + |q1'j'
+4nuLhy (i + py; + q5;))

00 t
XJ Jk e (r+s,0)hij (s)ui2 (r) Ar As
0o Jt

k=S

n m
= 2”12 (te) ep (1, 0) + Z"? (te) e, (t, 0)
i1 i1

e YY) (fol + o] + ]

i=1j=1

+4m;4Lfk (c +oc +/3 ))

%
X . Lis e, (r+s,0) kﬁ (s) v? (r) Ar As

+ 33 ) (] o]+

j=li=1
g 2 2, 2
+ 4nptLihij (dij +pi+ qij))
[Cra
X J J e, (r+s,0) hij (s) uiz (r) Ar As
0 t—s

=V (t).

(36)

So we get V() < V(0), for all ¢ € T*. Now, we estimate the
value of V(0). We have that

V1(0) = Y u; (0)e, (0,0) = Y u; (0)
i=1 i=1

<Z sup u (),

i=1t€(=00,0]y

V5 (0) = Y v; (0)e, (0,0) = Y5 (0)
j=1 j=1

<Z sup v(t)

j= 1t€(=00,0]y

=330 )

i=1 j=1

I | + |(xﬂ' + |/3]l'
+4m#LJJCk11 (C'i + “?i * ﬁi’))

oo 0
XJ J_Sep(r+s,0)kji(s)v§(r)ArAs

<

M=
Pﬁo

L (1+ pu)

1

1j
X (Jes] +focil + |8
+4mnyk (c +oc +ﬁ ))
X JOOO J_OS e (r+s,0) kj,- (s) Ar As

X sup v (t)

te(—oo. O]T

< lrgegcn {ZLf 1+ pu)
X (el + o] + (851
+ 4myL§kj,~ (C]-i + (X?i + /3;21))

co 0
X L J_sep(r+s,0)kﬁ (s)ArAs]»

XZ sup v ®),

j=1t€(=00. Oh

Vi (0) =) LI (1+ pu)

j=li=1
X ('d’ll + 'p,]| + 'q1]|
+ dnuLlhy; (d,ZJ + Pizj + ‘1121))

oo 0
X Jo J, e, (r+s,0) hij (s) uiz (r) Ar As

HM§

Z T (1+ pu)
x(|dy| + [y + |a

+ 4n‘uLffhij (d,zj + Pizj + qzzj))

13
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(r+s,0) hij (s) Ar As

oo 0
X e
JO Jls p

X sup uiz (t)
te(—00,0]

n<1< {iiL 1+p;4

]:1 i=1
x (|dy| + [y + |as]

+ 4n[4L h;; ( fj+pi2j+qu))
oo 0
X IO j—s ep

2
XZ sup u; ().
i=1t€(=00,0]¢

(r+s,0) h]-i (s) Ar As }

(37)

It follows that

V(0)<max{1+zz LI (1+ pu)

]111
x(ldy| + || + [y

+4nyL h;; ( fj+pi2j+ql.2j))

X J’O"O JieP (r+s,0) hj,- (s) Ar As }

XZ sup “1‘2 (t)

i=1t€(-00,0]1

+ max <|1+ZLf 1+p(4)

<i<
1<j<m i

| |+|aﬂ'+'ﬁﬂ'

+4myLk ( +(x1+ ﬂ))

oo 0
X L ‘L e, (r+s,0) kj,» (s) Ar As ]»

m

X Z sup v (t).
j=1t€(=00,0]¢
(38)
Observe that
V)=V, )+ V, (1)
(39)

z%mm<2ﬁm+2ﬁm>.
i= Jj=

Journal of Applied Mathematics

So we have

& o < 2

me+zwm

i=1 =1

< Meg,, (t,0) Z sup uiz () + Z sup v ()
i=1t€(=00,0] j= 1t€(—00,0]
vt eTH,
(40)

where

+ iibﬁ’ (1+ pu)

M = max {max <|1
1<i<n <
j=li=1

x(|dy| + || + |as]

2 2 2
+ 4n(,tL?hij (di]. + i+ %j))
oo 0
XJ. J. ep(r+s,0)hj,-(s)ArAs ,
0 —-s

max {1+2Lf(1+p(4)

lsjsm i=1
| |+|oc |+'ﬁﬂ|+4m;4L k

< (g + e+ £3)

X _LOO J_Osep(r+s,0)kﬁ (s) Ar As } }

(41)
It is obvious that M > 1. Therefore, the equilibrium point

z" of (28) is exponentially stable. This completes the proof of
Theorem 19. O

5. An Example

In this section, an example is given to verify the feasibility of
our results obtained in previous sections.

Example 20. Let n = m = 2. Consider the following fuzzy
BAM neural networks without impulses on time scale T = R
orZ:

XM (1) = —ax; (1)

2 o
+chi L kﬁ (s) fj (yj (t—s)) As
j=1

2 o)
s [ 9.1, 0y 0= 9)
j=1
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+\//sj,j i (9 £ (33 (£ =) s
teT",

/\ lnuj+\/ 1"lj+1i’

biy; (1)

i=1,2,
yi(t) = -

+ ZdUJ hz] (5) g, X; (t —S))
+/\le[ hi; (s) gi (x; (t—s)) As

x; (t—s))As

2 00
+ \/th J i

i=

teT', j=1,2,

AUI+V@m+%

(42)

(0.2,0.3)7, (b, )" = (0.2,0.5)",

(Cn ‘312) _ <“11 “12) _ (/311 ﬁn) _ ( 0 0-01>
Q1 O Ay O Bar B 002 0 )’
(du d12> _ <P11 Plz) _ <‘111 %2) _ ( 0 003)
dy dy P P2 D1 9 001 o0 )’
fi@w) = f, W) =g, () = g, ()
kﬂ (5) = h’] (S) = 62 (0, S) 5

where (al,aZ)T =

=0.1|u|,

i,j=1,2.
(43)

We can easily see that L] = LY = L9 = L9 = 0.1. If T = R,

then u(t) = 0;if T = Z then u(t) = 1. Hence, we have
o L f1oR
J e, (0,8)As =42 (44)
, ifT=2Z

i = hjj = 1,4, j = 1,2. We can obtain that

So, we can take kj-
0 = 0.06 < 1. Moreover, if u(t) = 0, we can obtain that

2
~2a,+ ) ik ([ + | +[Bi])
=

2
+ 2 L (ldy] + [pog] + |ay| + ;)
j:l

=-0.17 < 0,

2
- 28y + ) Dikiy ([ea] + fecia| + B2
j:I

2
+ 2 LY (|doy] + |py| + || + 1)
=
=037 <0,

2
- 2b + ZL?hil (Ida] + paa| + g ])

in1
: f

+ ZLJ- (el + leews] + |Bui] + kai)
-1

=-0.17 <0,

2
-2b, + ZL?hiz ([dia] + [ Pia + |gi2])

i1
o f
' Z;'Lj (el + loi] + [Bai] + k2)
=
=-0.77 < 0.
If u(t) = 1, we have that

2
4ay =20, + Y Lk (Jen| + Joa] + (B ])
=1

2
+ 2 Ly ([dy| + 1] + ||
j=1

+4nLY (dfj +pfj + qu) +h1j)

=~ -0.0336 < 0,

2
43 = 20, + Y Lk ([eal + Joa] + [B])
j=1

+ ZL h21 |d21| + |p21| + |q21|
st

+4nL$ (dgj +p§j + qﬁj) +h2j)

=~ -0.0374 < 0,

2
b} - 2b, + ZL?hil (|dis| + || + |aar])
izl

2
+ ZL{kli (levi] + loews] + |Buil
i=1

+ 4mL{k1i (Clzi + o+ ﬁfz) + ku)

=~ -0.0336 < 0,

15

(45)
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2
4b; - 2b, + ZL?hm (|dia] + |Pia| + |ai2])

i=1

2
+ ZLJ;kzi (Jex] + |oai| + |

=1
+ 4mL£k2,- (622, + (X; + ﬁgz) + kZi)

~ —0.0381 < 0,
(46)

which imply that all assumptions in Theorems 18 and 19 are
satisfied. Thus, it follows from Theorems 18 and 19 that (42)
has one unique equilibrium point, which is exponentially
stable.

Remark 21. The conclusion of Example 1 cannot be obtained
by the results obtained in [22, 30-32].

6. Conclusion

In this paper, using the time scale calculus theory, the
fixed point theory, and Lyapunov functional method, some
sufficient conditions are obtained to ensure the existence and
the exponential stability of unique equilibrium point of a class
of fuzzy BAM neural networks with continuously distributed
delays and impulses on time scales. Since it is troublesome
to study the existence and stability of equilibrium points
for continuous and discrete delay systems, respectively, it
is significant to study that on time scales which can unify
the continuous and discrete time situations. The sufficient
conditions we obtained can easily be checked in practice by
simple algebraic methods.
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