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We study the new conservation forms of the nonlinear fin equation inmathematical physics. In this study, first, Lie point symmetries
of the fin equation are identified and classified.Thenby using the relationship of Lie symmetry and𝜆-symmetry, new𝜆-functions are
investigated. In addition, the Jacobi LastMultiplier method and the approach, which is based on the fact 𝜆-functions are assumed to
be of linear form, are considered as different procedures for lambda symmetry analysis. Finally, the corresponding new conservation
laws and invariant solutions of the equation are presented.

1. Introduction

Fins are used in a large number of applications to increase
the heat transfer from surfaces. Typically, the fin material has
a high thermal conductivity. Due to having this property, it is
very important in terms of technology. Generally, nonlinear
heat conduction equation with fins is a mathematical model
which can be represented by nonlinear differential equation.
Pakdemirli and Sahin [1] obtained scaling, translational,
and spiral group symmetries of the fin equation considered
as a partial differential equation in which heat conduction
coefficient is assumed to be function of temperature but the
heat transfer coefficient is assumed to be only function of
spatial variable. Bokhari et al. [2] investigated group theoretic
analysis that provides different exact solutions or reduced
equations specifically on traveling wave solutions and steady
state type solutions. Vaneeva et al. [3] analyzed equivalence
transformations and conditional equivalence groups and
nonclassical symmetries of the fin equations are discussed in
their study.

Lie point transformations are used for analyzing of
differential equationsmostly.These transformations leave the
equation invariant which acts on the space of the dependent
and independent variables. Revealing the symmetries of
the equation by Lie group method perhaps enables us to
obtain new solutions directly or from the known ones or via

similarity reductions. In addition, the group classification of
the differential equation based on the Lie point symmetries
can be important in understanding the possible solutions of
equations [4–12]. A part of this paper deals with Lie group
analysis (symmetries, classification, and invariant solutions)
of fin equation. Here, we analyze the special forms of thermal
conductivity coeffcient𝐾(𝑦) and the heat transfer coefficient
𝐻(𝑦).

For any second order ordinary differential equation by
using different approaches 𝜆-symmetries can be obtained
directly. First studies based on this idea have been introduced
by Muriel and Romero [13–16]. They have proved that
under the invariance criteria obtained Lie symmetries enable
deriving 𝜆-symmetries in a direct way [13]. Moreover, they
have demonstrated that integrating factors and first integrals
can be determined algorithmically by making use of 𝜆-
symmetries. Another way obtaining 𝜆-symmetry, for the sake
of simplicity 𝜆-function can be assumed in a linear form.
As a result of this assumption the determining equation can
be solved easily. In addition, in this study, we present the
connection between Lie point symmetry and 𝜆-symmetry to
find nontrival 𝜆-functions, corresponding integrating factors
and first integrals.

The last approach to find 𝜆-symmetry is based on the
Jacobi last multiplier method which is presented by Nucci
and Levi [17]. 𝜆-symmetries and corresponding invariant
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solutions can be obtained by using the Jacobi last multiplier
directly. This new method admits the new determining
equation which includes 𝜆-function that can be obtained
from the divergence of the ordinary differential equation. 𝜆-
symmetries can be found from a new form of the prolonga-
tion formula which includes three unknown variables; there-
fore, the determining equations cannot be reduced to a sim-
pler form. Despite this difficulty, we can reduce 𝜆-function to
two; the number of unknown functions by using the Jacobi
last multiplier approach and the obtaining new functions
called as infinitesimals functions can be evaluated simply.
When all these reasons are taken into consideration, we
examine 𝜆-symmetries of the fin equation for different cases.

This study is organized as follows. In Section 2 we give
some preliminaries on relationship for Lie symmetries and 𝜆-
symmetries. In Section 3we introduce nonlinear fin equation
and the corresponding determining equations. In Section 4,
we present Lie symmetries of fin equation for different heat
transfer coefficient and thermal conductivity. 𝜆-symmetries,
conservation laws and new reduced form of fin equation
are obtained by using these Lie symmetries. In Section 5 𝜆-
symmetries in linear form are obtained and 𝜆-symmetries
based on Jacobi Last Multiplier method are considered as an
alternative approach. Finally, In Section 6 we discuss some
important results in the study.

2. Relationship between Lie Point
Symmetries and 𝜆-Symmetries

Let us consider the second order differential equation of the
form

Δ (𝑥, 𝑦
(2)

) = 0, (1)

with (𝑥, 𝑦) ∈ 𝑀, for some open subset𝑀 ⊂ 𝑋 × 𝑌 ≅ R2. We
denote by𝑀(𝑘) the corresponding 𝑘-𝑗𝑒𝑡 space𝑀(𝑘) ⊂ 𝑋×𝑌

(𝑘),
for 𝑘 ∈ N. Their elements are (𝑥, 𝑦

(𝑘)
) = (𝑥, 𝑦, 𝑦1, . . . , 𝑦𝑘),

where, for 1 ≤ 𝑖 ≤ 𝑘, 𝑦𝑖 denotes the derivative of order 𝑖

of 𝑦 with respect to 𝑥. We assume that the implicit function
theorem can be applied to (1), and, as a consequence, that this
equation can locally be written in the explicit form

𝑦

= 𝜙 (𝑥, 𝑦, 𝑦


) , (2)

and let vector field of (2) be in the form of

𝐴 = 𝜕𝑥 + 𝑦

𝜕𝑦 + 𝜙 (𝑥, 𝑦, 𝑦


) 𝜕𝑦 . (3)

Definition 1 (generalized prolongation formula). Let 𝑋 =

𝜉(𝑥, 𝑦)𝜕𝑥 + 𝜂(𝑥, 𝑦)𝜕𝑦 be a vector field defined on 𝑀, and let
𝜆 ∈ 𝐶

∞
(𝑀
(1)

) be an arbitrary function. The 𝜆-prolongation
of second order of 𝑋 denoted by 𝑋

[𝜆,(2)] is the vector field
defined on𝑀

(2) by

𝑋
[𝜆,(2)]

= 𝜉 (𝑥, 𝑦)
𝜕

𝜕𝑥
+

2

∑

𝑖=0

𝜂
[𝜆,(𝑖)]

(𝑥, 𝑦
(𝑖)
)

𝜕

𝜕𝑦𝑖

, (4)

where 𝜂[𝜆,(0)] = 𝜂(𝑥, 𝑦) and

𝜂
[𝜆,(𝑖)]

(𝑥, 𝑦
(𝑖)
) = 𝐷𝑥 (𝜂

[𝜆,(𝑖−1)]
(𝑥, 𝑦
(𝑖−1)

)) − 𝐷𝑥 (𝜉 (𝑥, 𝑦)) 𝑦𝑖

+ 𝜆 (𝜂
[𝜆,(𝑖−1)]

(𝑥, 𝑦
(𝑖−1)

) − 𝜉 (𝑥, 𝑦) 𝑦𝑖) ,

(5)

for 1 ≤ 𝑖 ≤ 2 where 𝐷𝑥 denotes the total derivative operator
with respect to 𝑥.

The relationship between 𝜆-symmetries, integrating fac-
tors and first integrals of second order differential equations
is important from the mathematical point of view [13–16]. In
terms of 𝐴 a first integral of (2) is any function in the form
of 𝐼(𝑥, 𝑦, 𝑦) providing equality of 𝐴(𝐼) = 0. An integrating
factor of (2) is any function satisfying the following equation:

𝜇 [𝑦

− 𝜙 (𝑥, 𝑦, 𝑦


)] = 𝐷𝑥𝐼. (6)

Thus, 𝜆-symmetries of second order differential equation (2)
can be obtained directly by using Lie symmetries of this same
equation. Secondly, let

𝜐 = 𝜉 (𝑥, 𝑦)
𝜕

𝜕𝑥
+ 𝜂 (𝑥, 𝑦)

𝜕

𝜕𝑦
(7)

be a Lie point symmetry of (2) and then the characteristic of
𝜐 is

O̧ = 𝜂 − 𝜉𝑦

, (8)

and thus the vector field 𝜕𝑦 is called 𝜆-symmetry of (2) if the
following equality:

𝜆 =
𝐴 (O̧)

O̧
, (9)

is satisfied.
If 𝜕𝑦 is assumed to be a 𝜆-symmetry of (2) and 𝜔(𝑥, 𝑦, 𝑦


)

is a first order invariant of 𝑋
[𝜆,(1)], namely, any particular

solution of the equation

𝜔𝑦 + 𝜆 (𝑥, 𝑦, 𝑦

) 𝜔𝑦 = 0, (10)

then a first order invariant reduced equation of the form
Δ𝑅(𝑥, 𝑦, 𝑦


) = 0 is obtained by using the reduction process

associated to the 𝜆-symmetry. Thus the general solution is
found such as an equation of the implicit form:

𝐺 (𝑥, 𝜔) = 𝐶, 𝐶 ∈ R. (11)

It is clear that𝐷𝑥(𝐺(𝑥, 𝜔(𝑥, 𝑦, 𝑦

))) = 0 is an equivalent form

of (2). Consequently,

𝜇 (𝑥, 𝑦, 𝑦

) = 𝐺𝜔 (𝑥, 𝑦, 𝜔 (𝑥, 𝑦, 𝑦


)) ⋅ 𝜔𝑥 (𝑥, 𝑦, 𝑦


) (12)

is an integrating factor of (2).

Theorem 2. Let 𝑦(2) = 𝜙(𝑥, 𝑦
(1)

) be a second order ordinary
differential equation, where 𝜙 is an analytic function of its
arguments. There exists a function 𝜆(𝑥, 𝑦

(𝑘)
), for some 𝑘 < 2,

such that the vector field 𝜕𝑦 is a 𝜆-symmetry of the equation
[15].
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3. Determining Equations for
the Infinitesimal Symmetries

The differential equation describing the nonlinear fin prob-
lem has been derived as follows:

𝑦

+

𝐾

(𝑦)

𝐾 (𝑦)
(𝑦

)
2
−

𝐻 (𝑦)

𝐾 (𝑦)
= 0, (13)

where 𝐾(𝑦) and 𝐻(𝑦) are thermal conductivity and heat
transfer coefficient, respectively, which are considered as
functions of temperature and 𝑦 = 𝑦(𝑥) is the temperature
function and 𝑥 is dimensional spatial variable [12].

If we consider an operator 𝑋 in the following form the
nonlinear fin equation (13):

𝑋 = 𝜉 (𝑥, 𝑦)
𝜕

𝜕𝑥
+ 𝜂 (𝑥, 𝑦)

𝜕

𝜕𝑦
, (14)

where 𝜉(𝑥, 𝑦) and 𝜂(𝑥, 𝑦) are infinitesimal functions. Here
we consider second prolongation operator of (14) as in the
following form:

𝑋
(2)

= 𝜉 (𝑥, 𝑦)
𝜕

𝜕𝑥
+ 𝜂 (𝑥, 𝑦)

𝜕

𝜕𝑦
+ 𝜂1 (𝑥, 𝑦, 𝑦1)

𝜕

𝜕𝑦1

+ 𝜂2 (𝑥, 𝑦, 𝑦1, 𝑦2)
𝜕

𝜕𝑦2

,

(15)

since the highest derivative in (13) is second order in which
𝜂1 and 𝜂2 are defined:

𝜂1 = 𝜂𝑥 + (𝜂𝑦 − 𝜉𝑥) 𝑦1 − 𝜉𝑦𝑦
2

1 , (16)

𝜂2 = 𝜂𝑥𝑥 + (2𝜂𝑥𝑦 − 𝜉𝑥𝑥) 𝑦1 + (𝜂𝑦𝑦 − 2𝜉𝑥𝑦) 𝑦
2

1

− 𝜉𝑦𝑦𝑦
3

1 + (𝜂𝑦 − 2𝜉𝑥) 𝑦2 − 3𝜉𝑦𝑦1𝑦2.

(17)

The application of (13) to (15) yields the invariance condition

𝑋
(2)

(𝑦

+

𝐾

(𝑦)

𝐾 (𝑦)
(𝑦

)
2

−
𝐻 (𝑦)

𝐾 (𝑦)
)

𝑦=−(𝐾(𝑦)/𝐾(𝑦))(𝑦)
2

+𝐻(𝑦)/𝐾(𝑦)

,

(18)

or equivalently

𝜂𝑥𝑥 + 𝑦1 (−𝜉𝑥𝑥 + 2𝜂𝑥𝑦) + 𝑦
2

1 (−2𝜉𝑥𝑦 + 𝜂𝑦𝑦) − 𝑦
3

1𝜉𝑦𝑦

+ (−
𝐾

(𝑦)

𝐾 (𝑦)
𝑦
2

1 +
𝐻 (𝑦)

𝐾 (𝑦)
) (−2𝜉𝑥 + 𝜂𝑦)

+ 𝑦1 (−
𝐾

(𝑦)

𝐾 (𝑦)
𝑦
2

1 +
𝐻 (𝑦)

𝐾 (𝑦)
) (−3𝜉𝑦)

+ 2 (𝜂𝑥 + 𝑦1 (𝜂𝑦 − 𝜉𝑥) − 𝑦
2

1𝜉𝑦)
𝐾

(𝑦)

𝐾 (𝑦)
𝑦1

+ 𝜂
𝐾

(𝑦)𝐾 (𝑦) − 𝐾


(𝑦)
2

𝐾2 (𝑦)
𝑦
2

1

+ 𝜂
𝐻 (𝑦)𝐾


(𝑦) − 𝐻


(𝑦)𝐾 (𝑦)

𝐾2 (𝑦)
= 0.

(19)

In order to obtain the determining equations, the equation
(19) can be separated with respect to 𝑦1 and its powers:

−𝜉𝑦𝑦 +
𝐾

(𝑦)

𝐾 (𝑦)
𝜉𝑦 = 0, (20)

−2𝜉𝑥𝑦 + 𝜂𝑦𝑦 +
𝐾

(𝑦)

𝐾 (𝑦)
𝜂𝑦 +

𝐾

(𝑦)𝐾 (𝑦) − 𝐾


(𝑦)
2

𝐾2 (𝑦)
𝜂 = 0,

(21)

−𝜉𝑥𝑥 + 2𝜂𝑥𝑦 − 3
𝐻 (𝑦)

𝐾 (𝑦)
𝜉𝑦 + 2

𝐾

(𝑦)

𝐾 (𝑦)
𝜂𝑥 = 0, (22)

𝜂𝑥𝑥 − 2
𝐻 (𝑦)

𝐾 (𝑦)
𝜉𝑥 +

𝐻 (𝑦)

𝐾 (𝑦)
𝜂𝑦

+
𝐻 (𝑦)𝐾


(𝑦) − 𝐻


(𝑦)𝐾 (𝑦)

𝐾2 (𝑦)
𝜂 = 0.

(23)

4. Lie Symmetries and Corresponding
𝜆 -Symmetries

In this section, the aim of our study is to get Lie point
symmetries, corresponding lambda symmetries, conserved
forms and invariant solutions by using different 𝐾(𝑦) and
𝐻(𝑦) functions. To find the infinitesimals, (20)–(23) should
be solved together. First the equation (20) is integrated:

𝜉 (𝑥, 𝑦) = 𝑎 (𝑥) ∫𝐾 (𝑦) 𝑑𝑦 + 𝑏 (𝑥) , (24)

and integrating (21) with respect to 𝑦 and solving for 𝜂 we
have

𝜂 (𝑥, 𝑦) = ((2𝑏

(𝑥) + 𝑐


(𝑥)) ∫𝐾 (𝑦) 𝑑𝑦

+ 𝑎

(𝑥) ∫𝐾 (𝑦) (∫𝐾 (𝑦) 𝑑𝑦) 𝑑𝑦)

× (𝐾 (𝑦))
−1

+
𝑑 (𝑥)

𝐾 (𝑦)
.

(25)
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The infinitesimals 𝜉 and 𝜂 are inserted into (22), and the heat
transfer coefficient is calculated in the following form:

ℎ (𝑦) =
𝑎

(𝑥) ∫𝐾 (𝑦) 𝑑𝑦 + 3𝑏


(𝑥) + 2𝑐


(𝑥)

3𝑎 (𝑥)
, (26)

in which the equation (26) leads to that heat transfer coeffi-
cient 𝐻(𝑦) can be obtained by examining different cases of
thermal conductivity𝐾(𝑦).

4.1. Constant Thermal Conductivity: 𝐾(𝑦) = 𝑘0. Firstly
we consider a constant thermal conductivity. Substituting
𝐾(𝑦) = 𝑘0 in (26) we can write

ℎ (𝑦) =
𝑘0𝑎

(𝑥)

3𝑎 (𝑥)
𝑦 +

3𝑏

(𝑥) + 2𝑐


(𝑥)

3𝑎 (𝑥)
, (27)

and in (16) we see that the heat transfer coefficient𝐻(𝑦) is in
the linear form. By defining 𝜏1 and 𝜏2 such that

𝜏1 =
𝑘0𝑎

(𝑥)

3𝑎 (𝑥)
, 𝜏2 =

3𝑏

(𝑥) + 2𝑐


(𝑥)

3𝑎 (𝑥)
, (28)

then, rewriting (16) with (17) the relation

𝐻(𝑦) = 𝜏1𝑦 + 𝜏2, (29)

is obtained in which 𝜏1 and 𝜏2 are constants. To classify the
results systematically, we consider the following subcases:
(i) 𝜏1 = 𝜏2 = 0, (ii) 𝜏1 = 0, 𝜏2 ̸= 0, (iii) 𝜏1 ̸= 0, 𝜏2 = 0,
and (iv) 𝜏1 ̸= 0, 𝜏2 ̸= 0.

Case 1 (if 𝜏1 = 0, 𝜏2 = 0). The fin equation (13) is

𝑦

= 0. (30)

For this case (20)–(23) finally yield

𝜉 (𝑥, 𝑦) = 𝑐6 + 𝑥 (𝑐7 + 𝑐8𝑥) + (𝑐4 + 𝑐5𝑥) 𝑦,

𝜂 (𝑥, 𝑦) = 𝑐1 + 𝑦 (𝑐3 + 𝑐5𝑦) + 𝑥 (𝑐2 + 𝑐8𝑦) ,

(31)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants. The algebra consists of an
eight-parameter finite Lie group of transformations [4].

If parameter 𝑐5 is selected and the remaining ones are set
to be zero, the infinitesimals 𝜉 and 𝜂 are

𝜉 = 𝑥𝑦, 𝜂 = 𝑦
2
. (32)

Therefore, the characteristic is written:

O̧ = 𝑦
2
− 𝑥𝑦𝑦


. (33)

By using (9), we obtain the 𝜆-symmetry

𝜆 =
𝑦


𝑦
. (34)

A solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦


𝑦
, (35)

and we can write 𝑤 = 𝑦

/𝑦; then to obtain fin equation in

terms of {𝑥, 𝑤, 𝑤

} one can write

𝑦

= 𝑤𝑦, 𝑦


= 𝑤
2
𝑦 + 𝑦𝑤


. (36)

By using these equalities (36) we find the following equation:

𝑤

(𝑥) + 𝑤

2
(𝑥) = 0, (37)

in which the general solution is

𝑤 (𝑥) =
1

𝑥 − 𝐺
, 𝐺 ∈ R, (38)

and then the integrating factor becomes

𝜇 =
𝑦

𝑦
2
. (39)

Conservation law is

𝐷𝑥 (𝑥 −
𝑦 (𝑥)

𝑦 (𝑥)
) = 0, (40)

and the invariant solution is

𝑦 (𝑥) = 𝛼𝑥, (41)

where 𝛼 is a constant.

Case 2 (𝜏1 = 0, 𝜏2 ̸= 0). The fin equation becomes

𝑦

𝑘0 − 𝜏2 = 0, (42)

and the solutions of (20)–(23) yield an eight-parameter Lie
group of transformations:

𝜉 (𝑥, 𝑦) = (𝑘0 (2 (𝑐1 − 𝑐7 − 4𝑐8𝑥) 𝑦𝑘0

+ (𝑐3 + 𝑐5 + (𝑐2 + 2𝑐6) 𝑥

+ (𝑐1 + 3𝑐7) 𝑥
2
+ 4𝑐8𝑥

3
) 𝜏2)) × (2𝜏

2

2)
−1
,

𝜂 (𝑥, 𝑦) = (− 4𝑐8𝑦
2
𝑘
2

0 + (𝑐2 + 2𝑐1𝑥) 𝑦𝑘0𝜏2

+ (𝑐4 + 𝑥 (𝑐5 + 𝑥 (𝑐6 + 𝑥 (𝑐7 + 𝑐8𝑥)))) 𝜏
2

2)

× (𝜏
2

2)
−1
,

(43)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants.
For the selection of parameter 𝑐5, the infinitesimals are

𝜉 =
𝑘0

2𝜏2

, 𝜂 = 𝑥. (44)

By using (9), the 𝜆-symmetry yields

𝜆 =
𝜏2

2𝑥𝜏2 − 𝑦𝑘0

. (45)



Advances in Mathematical Physics 5

A solution of (10) is equal to

𝑤(𝑥, 𝑦, 𝑦

) =

𝜏2

2𝑥𝜏2 − 𝑦𝑘0

, (46)

and reduced form becomes

𝑤

(𝑥) + 𝑤

2
(𝑥) = 0, (47)

in which the general solution is

𝑤 (𝑥) =
1

𝑥 − 𝐺
, 𝐺 ∈ R, (48)

and the integrating factor is

𝜇 =
𝑘0

𝜏2

. (49)

Conservation law is found as

𝐷𝑥 (
𝑦

(𝑥) 𝑘0

𝜏2

− 𝑥) = 0, (50)

and the invariant solution is

𝑦 (𝑥) = 𝛼 +
𝛽𝑥𝜏2

𝑘0

+
𝑥
2
𝜏2

2𝑘0

, (51)

where 𝛼 and 𝛽 are constants.

Case 3 (if 𝜏1 ̸= 0, 𝜏2 = 0). Equation (13) is equal to

𝑦

𝑘0 − 𝑦𝜏1 = 0, (52)

and the infinitesimals for this equation are

𝜉 (𝑥, 𝑦) = 𝑒
−2𝑥√𝜏1/√𝑘0 (𝑐7 + 𝑒

4𝑥√𝜏1/√𝑘0𝑐8 + 𝑒
𝑥√𝜏1/√𝑘0𝑐1𝑦

+ 𝑒
3𝑥√𝜏1/√𝑘0𝑐2𝑦) +

𝑐6𝑘0

2𝜏1

,

𝜂 (𝑥, 𝑦) =
1

2√𝑘0

𝑒
−2𝑥√𝜏1/√𝑘0

× (𝑒
𝑥√𝜏1/√𝑘0 (2𝑐3 + 2𝑒

2𝑥√𝜏1/√𝑘0𝑐4

+ 𝑒
𝑥√𝜏1/√𝑘0𝑐5𝑦)√𝑘0

+ 2𝑦 (−𝑐7 + 𝑒
4𝑥√𝜏1/√𝑘0𝑐8 − 𝑒

𝑥√𝜏1/√𝑘0𝑐1𝑦

+ 𝑒
3𝑥√𝜏1/√𝑘0𝑐2𝑦)√𝜏1) ,

(53)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants.
For selection of parameter 𝑐1 infinitesimals are found:

𝜉 = 𝑒
𝑥√𝜏1/√𝑘0𝑦, 𝜂 = −

𝑒
𝑥√𝜏1/√𝑘0𝑦

2
𝜏1

√𝑘0

. (54)

By using (9) we obtain the 𝜆-symmetry

𝜆 =
𝑦


𝑦
. (55)

A solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦


𝑦
, (56)

and reduced form is

𝑤

(𝑥) + 𝑤

2
(𝑥) −

𝜏1

𝑘0

= 0, (57)

in which the general solution is

𝑤 (𝑥) = √
𝜏1

𝑘0

tanh(√
𝜏1

𝑘0

(𝑥 − 𝐺𝑘0)) , 𝐺 ∈ R, (58)

and then the integrating factor becomes

𝜇 =
𝑦

𝑦
2
𝑘0 − 𝑦2𝜏1

. (59)

Conservation law is

𝐷𝑥 (
1

𝑘0√𝜏1

(𝑥√𝜏1 − arctanh(
𝑘0

√𝜏1

𝑦

(𝑥)

𝑦 (𝑥)
))) = 0, (60)

and the invariant solution is

𝑦 (𝑥) = 𝛼 cosh(√
𝜏1

𝑘0

(𝑥 − 𝛽𝑘0)) , (61)

where 𝛼 and 𝛽 are constants.

Case 4 (𝜏1 ̸= 0, 𝜏2 ̸= 0). In this case we obtain (13)

𝑘0𝑦

− 𝜏1𝑦 − 𝜏2 = 0. (62)

Infinitesimals are found as follows:

𝜉 (𝑥, 𝑦)=
1

3√𝜏1

(𝑒
−2𝑥√𝜏1/√𝑘0 (𝑐3 − 𝑐4𝑒

4𝑥√𝜏1/√𝑘0)

×√𝑘0 + 𝑐1√𝜏1) ,

𝜂 (𝑥, 𝑦)=
1

3𝑘0𝜏1

𝑒
−2𝑥√𝜏1/√𝑘0

× (6𝜏1𝑒
𝑥√𝜏1/√𝑘0

× (𝑐5 + 𝑐6𝑒
2𝑥√𝜏1/√𝑘0) − 𝑘0 (𝜏1𝑦 + 𝜏2)

× (2𝑐3 − 9𝑐2𝑒
−2𝑥√𝜏1/√𝑘0 + 2𝑐4𝑒

−2𝑥√𝜏1/√𝑘0)) ,

(63)

where 𝑐𝑖, 𝑖 = 1, . . . , 6 are constants.
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For selection of parameter 𝑐1 infinitesimals are found:

𝜉 =
𝑒
−2𝑥√𝜏1/√𝑘0√𝑘0

3√𝜏1

, 𝜂 = 𝑒
−2𝑥√𝜏1/√𝑘0

(𝜏1𝑦 + 𝜏2)

3𝜏1

. (64)

By using (9) we obtain the 𝜆-symmetry

𝜆 = −√
𝜏1

𝑘0

. (65)

A solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) = 𝑦

+ 𝑦

𝜏1

𝑘0

, (66)

and reduced form is equal to

𝑤

(𝑥) + 𝑤 (𝑥)√

𝜏1

𝑘0

−
𝜏2

𝑘0

= 0, (67)

in which the general solution is

𝑤 (𝑥) = 𝑒
𝑥√𝜏1/√𝑘0𝐺 −

𝜏2

√𝑘0𝜏1

, 𝐺 ∈ R, (68)

and the integrating factor yields

𝜇 = 𝑒
−𝑥√𝜏1/√𝑘0 . (69)

Conservation law is

𝐷𝑥(
𝑒
−𝑥√𝜏1/√𝑘0

√𝑘0𝜏1

(𝑦

(𝑥)√𝑘0𝜏1 + 𝑦 (𝑥) 𝜏1 + 𝜏2)) = 0, (70)

and the invariant solution is

𝑦 (𝑥) = 𝛼𝑒
−𝑥√𝜏1/√𝑘0 +

𝑒
𝑥√𝜏1/√𝑘0𝛽√𝑘0

√𝜏1

−
𝜏2

𝜏1

, (71)

where 𝛼 and 𝛽 are constants.

4.2. Linear Thermal Conductivity 𝐾(𝑦) = 𝑘0𝑦. If 𝐾(𝑦) =

𝑘0𝑦 inserted into (26), and then the heat transfer coefficient
is obtained in the following form:

𝐻(𝑦) =
𝑘0𝑎

(𝑥)

6𝑎 (𝑥)
𝑦
2
+

3𝑏

(𝑥) + 2𝑐


(𝑥)

3𝑎 (𝑥)
. (72)

Let us consider the form of 𝜏1 and 𝜏2 such as is

𝜏1 =
𝑘0𝑎

(𝑥)

6𝑎 (𝑥)
, 𝜏2 =

3𝑏

(𝑥) + 2𝑐


(𝑥)

3𝑎 (𝑥)
. (73)

Then,

𝐻(𝑦) = 𝜏1𝑦
2
+ 𝜏2. (74)

To classify the results systematically, we consider the follow-
ing subcases: (i) 𝜏1 = 𝜏2 = 0, (ii) 𝜏1 = 0, 𝜏2 ̸= 0, (iii) 𝜏1 ̸=

0, 𝜏2 = 0, and (iv) 𝜏1 ̸= 0, 𝜏2 ̸= 0.

Case 1 (if 𝜏1 = 0, 𝜏2 = 0). Then the equation is

𝑦

𝑦 + 𝑦
2

= 0, (75)

and the solution of (20)–(23) gives to the infinitesimals

𝜉 (𝑥, 𝑦) =
1

2
𝑦
2
𝑐1 + 𝑐2 + 𝑐3𝑥 −

2

3
(𝑐4𝑥 + 𝑐5𝑥

2
) ,

𝜂 (𝑥, 𝑦) =
1

6
(6𝑐3 − 𝑐4 − 2𝑐5𝑥) 𝑦,

(76)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants.
If parameter 𝑐5 is selected and the remaining ones are set

to be zero, the infinitesimals 𝜉 and 𝜂 are

𝜉 = −
2

3
𝑥
2
, 𝜂 = −

𝑥𝑦

3
. (77)

By using (9) we obtain the 𝜆-symmetry

𝜆 =
𝑦 − 𝑦


𝑥𝑦
. (78)

A solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦 (2𝑥𝑦𝑦

− 𝑦)

2𝑥
, (79)

and reduced form is found as below:

𝑤

(𝑥) 𝑥 + 𝑤 (𝑥) = 0, (80)

in which the general solution is

𝑤 (𝑥) =
𝐺

𝑥
, 𝐺 ∈ R, (81)

and the integrating factor becomes as the form

𝜇 = 𝑥𝑦. (82)

Conservation law is

𝐷𝑥 (−
1

2
𝑦 (𝑥) (𝑦 (𝑥) − 2𝑥𝑦


(𝑥))) = 0, (83)

and the invariant solution is

𝑦 (𝑥) = −√𝑒2𝛼𝑥 − 2𝛽, (84)

where 𝛼 and 𝛽 are constants.

Case 2 (𝜏1 = 0, 𝜏2 ̸= 0). For this case we obtain

𝑦

𝑦𝑘0 + 𝑦

2
𝑘0 − 𝜏2 = 0, (85)
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then the infinitesimals (24) and (25) are

𝜉 (𝑥, 𝑦) = (𝑘0 ((𝑐1 − 𝑐7 − 4𝑐8𝑥) 𝑦
2
𝑘0

+ (𝑐3 + 𝑐5 + (𝑐2 + 2𝑐6) 𝑥

+ (𝑐1 + 3𝑐7) 𝑥
2
+ 4𝑐8𝑥

3
) 𝜏2))

× (2𝜏
2

2)
−1
,

𝜂 (𝑥, 𝑦) = (−2𝑐8𝑦
4
𝑘
2

0 + (𝑐2 + 2𝑐1𝑥) 𝑦
2
𝑘0𝜏2

+ 2 (𝑐4 + 𝑥 (𝑐5 + 𝑥 (𝑐6 + 𝑥 (𝑐7 + 𝑐8𝑥)))) 𝜏
2

2)

× (2𝑦𝜏
2

2)
−1
,

(86)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants.
If parameter 𝑐3 is selected and the remaining ones are set

to be zero, the infinitesimals 𝜉 and 𝜂 are

𝜉 = −
𝑘0

2𝜏2

, 𝜂 = 0. (87)

By using (9) we obtain the 𝜆-symmetry

𝜆 =
𝜏2 − 𝑦

2
𝑘0

𝑦𝑦𝑘0

. (88)

A solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) =

1

2𝑘0

ln (𝑦
2
(𝑦
2
𝑘0 − 𝜏2)) , (89)

and reduced form is

𝑤

(𝑥) = 0, (90)

in which the general solution is

𝑤 (𝑥) = 𝐺, 𝐺 ∈ R, (91)

and then the integrating factor becomes

𝜇 =
𝑦


𝜏2 − 𝑦
2
𝑘0

. (92)

Conservation law is

𝐷𝑥 (
1

2𝑘0

ln (𝑦(𝑥)
2
(𝑦

(𝑥)
2
𝑘0 − 𝜏2))) = 0, (93)

and the invariant solution is

𝑦 (𝑥) = ∓
1

𝜏2

− √𝑒2𝛼𝑘0 + 𝛽2𝜏22 +
𝑥
2
𝜏2

𝑘0

−
2𝑥𝛽𝜏
2
2

√𝑘0

, (94)

where 𝛼 and 𝛽 are constants.

Case 3. For the choice of 𝜏1 ̸= 0, 𝜏2 = 0 the fin equation (13)
becomes

𝑦

𝑦𝑘0 + 𝑦

2
𝑘0 − 𝑦

2
𝜏1 = 0. (95)

After some manipulations equations (20)–(23) yield

𝜉 (𝑥, 𝑦) = 𝑒
−2𝑥√2𝜏

1
/√𝑘
0𝑐7 + 𝑒

2𝑥√2𝜏
1
/√𝑘
0𝑐8

+
1

2
𝑒
−𝑥√2𝜏

1
/√𝑘
0 (𝑐1 + 𝑒

2𝑥√2𝜏
1
/√𝑘
0𝑐2) 𝑦

2

+
𝑐6𝑘0

2𝜏1

,

𝜂 (𝑥, 𝑦) =
1

4𝑦√𝑘0

𝑒
−2𝑥√2𝜏

1
/√𝑘
0

× (𝑒
𝑥√2𝜏
1
/√𝑘
0 (4𝑐3 + 4𝑒

2𝑥√2𝜏
1
/√𝑘
0𝑐4

+ 𝑒
𝑥√2𝜏
1
/√𝑘
0𝑐5𝑦
2
)√𝑘0

+ √2𝑦
2
(−2𝑐7 + 2𝑒

4𝑥√2𝜏
1
/√𝑘
0𝑐8

− 𝑒
𝑥√2𝜏
1
/√𝑘
0𝑐1𝑦
2

+ 𝑒
3𝑥√2𝜏

1
/√𝑘
0𝑐2𝑦
2
)√𝜏1) ,

(96)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants.
For selection of parameter 𝑐3 infinitesimals are found:

𝜉 = 0, 𝜂 =
1

𝑦
𝑒
−𝑥√2𝜏

1
/√𝑘
0 . (97)

By using (9) we obtain the 𝜆-symmetry

𝜆 = −
𝑦

√𝑘0 + 𝑦√2𝜏1

𝑦√𝑘0

. (98)

A solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦

2√𝑘0

(2𝑦

√𝑘0 + 𝑦√2𝜏1) , (99)

and reduced form is

𝑤

(𝑥) − √

2𝜏1

𝑘0

𝑤 (𝑥) = 0, (100)

in which the general solution is

𝑤 (𝑥) = 𝑒
𝑥√2𝜏
1
/√𝑘
0𝐺, 𝐺 ∈ R, (101)

and the integrating factor becomes

𝜇 = 𝑒
−𝑥√2𝜏

1
/√𝑘
0𝑦. (102)

Conservation law is

𝐷𝑥(
𝑒
−𝑥√2𝜏

1
/√𝑘
0𝑦 (𝑥)

2√𝑘0

(2𝑦

(𝑥)√𝑘0 + √2𝜏1𝑦 (𝑥))) = 0,

(103)
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and the invariant solution is

𝑦 (𝑥) = ∓√𝑒−𝑥√2𝜏1/√𝑘0𝛼 +
𝛽√𝑘0

√2𝜏1

𝑒𝑥√2𝜏1/√𝑘0 , (104)

where 𝛼 and 𝛽 are constants.

Case 4 (𝜏1 ̸= 0, 𝜏2 ̸= 0). For this case, (13) is

𝑦

𝑦𝑘0 + 𝑦

2
𝑘0 − 𝑦

2
𝜏1 − 𝜏2 = 0, (105)

and infinitesimals are

𝜉 (𝑥, 𝑦) = 𝑐1, 𝜂 (𝑥, 𝑦) = 0, (106)

where 𝑐1 is constant. This result corresponds to principal
Lie algebra which is a one-parameter finite Lie group of
transformations.
By applying (9) we derive the 𝜆-symmetry

𝜆 =
𝑦
2
𝜏1 − 𝑦

2
𝑘0 + 𝜏2

𝑦𝑦𝑘0

. (107)

A solution of (10) can be obtained:

𝑤(𝑥, 𝑦, 𝑦

) =

2𝑦
2
𝑦
2
𝑘0 − 𝑦

4
𝜏1 − 2𝑦

2
𝜏2

2𝑘0

, (108)

and the reduced form is

𝑤

(𝑥) = 0, (109)

in which the general solution is found

𝑤 (𝑥) = 𝐺, 𝐺 ∈ R, (110)

and the integrating factor can be derived as below:

𝜇 = 2𝑦
2
𝑦

. (111)

Conservation law is

𝐷𝑥 (
1

2𝑘0

(2𝑦(𝑥)
2
𝑦

(𝑥)
2
𝑘0 − 𝑦(𝑥)

4
𝜏1 − 2𝑦(𝑥)

2
𝜏2)) = 0.

(112)

4.3. 𝐾(𝑦) = 𝑘0𝑦
𝑛, 𝑛 ≠ −1, 0. If 𝐾(𝑦) = 𝑘0𝑦

𝑛 is inserted into
(26), then we have

𝐻(𝑦) =
𝑘0𝑎

(𝑥)

3 (𝑛 + 1) 𝑎 (𝑥)
𝑦
𝑛+1

+
3𝑏

(𝑥) + 2𝑐


(𝑥)

3𝑎 (𝑥)
. (113)

By defining

𝜏1 =
𝑘0𝑎

(𝑥)

3 (𝑛 + 1) 𝑎 (𝑥)
, 𝜏2 =

3𝑏

(𝑥) + 2𝑐


(𝑥)

3𝑎 (𝑥)
, (114)

then,𝐻(𝑦) is rewritten in the form

𝐻(𝑦) = 𝜏1𝑦
𝑛+1

𝜏2. (115)

To classify the results systematically, we consider the follow-
ing subcases: (i) 𝜏1 = 𝜏2 = 0, (ii) 𝜏1 = 0, 𝜏2 ̸= 0, (iii) 𝜏1 ̸=

0, 𝜏2 = 0, and (iv) 𝜏1 ̸= 0, 𝜏2 ̸= 0.

Case 1 (𝜏1 = 0, 𝜏2 = 0). The fin equation is

𝑦

𝑦 + 𝑛𝑦

2
= 0. (116)

The solution of (20)–(23) gives to an eight-parameter Lie
group of transformations:

𝜉 (𝑥, 𝑦) = (𝑐4 (𝑛 + 1)

+ 𝑐1(𝑛 + 1)
2
𝑥
2
+ 𝑐3𝑦
(𝑛+1)

+ (𝑛 + 1) 𝑥 (𝑐5 + 𝑐8 (𝑛 + 1) 𝑦
𝑛+1

))

× (𝑛 + 1)
−1
,

𝜂 (𝑥, 𝑦) = 𝑐7𝑦 + 𝑐1𝑥𝑦 + 𝑐6𝑦
−𝑛

+ 𝑐2𝑥𝑦
−𝑛

+ 𝑐8𝑦
𝑛+2

,

(117)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants.
For selection of parameter 𝑐1 infinitesimals are found:

𝜉 = (𝑛 + 1) 𝑥
2
, 𝜂 = 𝑥𝑦. (118)

By using (9) we obtain the 𝜆-symmetry

𝜆 =
𝑦 − 𝑛𝑦



𝑥𝑦
. (119)

A solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦
𝑛

(𝑛 + 1) 𝑥
(𝑥𝑦

− 𝑦 + 𝑛𝑥𝑦


) , (120)

and reduced form is equal to

𝑥𝑤

(𝑥) + 𝑤 (𝑥) = 0, (121)

in which the general solution yields

𝑤 (𝑥) =
𝐺

𝑥
, 𝐺 ∈ R, (122)

and then the integrating factor becomes

𝜇 = 𝑦
𝑛
𝑥. (123)

Conservation law is

𝐷𝑥 (
𝑦(𝑥)
𝑛

𝑛 + 1
(𝑛𝑥𝑦

(𝑥) + 𝑥𝑦


(𝑥) − 𝑦 (𝑥))) = 0, (124)

and the invariant solution is

𝑦 (𝑥) = (−𝛼 − 𝛼𝑛 + 𝑒
𝛽(𝑛+1)

𝑥 + 𝑒
𝛽(𝑛+1)

𝑛𝑥)
1/(𝑛+1)

, (125)

where 𝛼 and 𝛽 are constants.

Case 2 (𝑛 ̸= −1 𝜆1 = 0, 𝜆2 ̸= 0). For this case (13) equals

𝑦

𝑦
𝑛+1

𝑘0 + 𝑛𝑦
𝑛
𝑦
2
𝑘0 − 𝑦𝜏2 = 0,

𝜉 (𝑥, 𝑦) =
1

6 (𝑛 + 1)
(6𝑐1𝑦
𝑛+1

𝑘0 + (𝑛 + 1)

× (6𝑐3 + 6𝑐2𝑥 + 3𝑐1𝑥
2
𝜏2)) ,

𝜂 (𝑥, 𝑦) =
2𝑦

𝑛 + 1
(𝑐2 + 𝑐1𝑥𝜏2) ,

(126)

where 𝑐𝑖, 𝑖 = 1, . . . , 4 are constants.
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For selection of parameter 𝑐3 infinitesimals are found:

𝜉 = 1, 𝜂 = 0. (127)

By using (9) we obtain the 𝜆-symmetry

𝜆 =
𝑦
(1−𝑛)

𝜏2 − 𝑛𝑦
2
𝑘0

𝑦𝑦𝑘0

. (128)

A solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦
𝑛
(𝑦
𝑛
𝑦
2
𝑘0 (𝑛 + 1) − 2𝑦𝜏2)

(𝑛 + 1) 𝑘0

, (129)

and reduced form is

𝑤

(𝑥) = 0, (130)

in which the general solution is

𝑤 (𝑥) = 𝐺, 𝐺 ∈ R, (131)

and then the integrating factor becomes

𝜇 = 2𝑦
2𝑛
𝑦

. (132)

Conservation law is

𝐷𝑥(
𝑦(𝑥)
𝑛
(𝑦(𝑥)

𝑛
𝑦

(𝑥)
2
𝑘0 (𝑛 + 1) − 2𝑦 (𝑥) 𝜏2)

(𝑛 + 1) 𝑘0

) = 0.

(133)

Case 3 (𝜏1 ̸= 0, 𝜏2 = 0). In this case fin equation becomes

𝑦

𝑦
𝑛+1

𝑘0 + 𝑛𝑦
𝑛
𝑦
2
𝑘0 − 𝜏1 = 0, (134)

and infinitesimals functions are found as below

𝜉 (𝑥, 𝑦) = 𝑐1 +
𝑒
−2𝑥√(𝑛+1)𝜏

1
/√𝑘
0√𝑘0

3√(𝑛 + 1) 𝜏1

× (𝑐3 − 𝑐4𝑒
4𝑥√(𝑛+1)𝜏

1
/√𝑘
0) ,

𝜂 (𝑥, 𝑦) =
𝑦

6 (𝑛 + 1)
(9𝑐2 − 2𝑒

−2𝑥√(𝑛+1)𝜏
1
/√𝑘
0

× (𝑐3 + 𝑐4𝑒
4𝑥√(𝑛+1)𝜏

1
/√𝑘
0)) ,

(135)

where 𝑐𝑖, 𝑖 = 1, . . . , 2 are constants.
For selection of parameter 𝑐2 infinitesimals are found

𝜉 = 0, 𝜂 =
3𝑦

2 (𝑛 + 1)
, (136)

equation (9) gives the 𝜆-symmetry

𝜆 =
𝑦


𝑦
. (137)

For this case the solution of (10) is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦


𝑦
, (138)

and reduced form can be written as

(𝑤

(𝑥) + (𝑛 + 1)𝑤(𝑥)

2
) 𝑘0 − 𝜏1 = 0, (139)

in which the general solution is

𝑤 (𝑥) =
𝜏1 tanh

√(𝑛 + 1) 𝑘0

(𝑥√
𝜏1 (𝑛 + 1)

𝑘0

− 𝐺√𝜏1 (𝑛 + 1) 𝑘0) ,

𝐺 ∈ R,

(140)

and the integrating factor is found as below:

𝜇 =
𝑦

(𝑛 + 1) 𝑦
2
𝑘0 − 𝑦2𝜏1

. (141)

Conservation law is

𝐷𝑥(
𝑥

𝑘0

−
1

√(𝑛 + 1) 𝑘0𝜏1

arctanh(
𝑦


𝑦
√

(𝑛 + 1) 𝑘0

𝜏1

)) = 0,

(142)

and the invariant solution is

𝑦 (𝑥) = 𝛼 cosh(√
(𝑛 + 1) 𝜏1

𝑘0

(𝑥 − 𝛽𝑘0))

1/(𝑛+1)

. (143)

Case 4 (𝜏1 ̸= 0, 𝜏2 ̸= 0). For the last case, (13) can be rewrit-
ten:

𝑦

𝑦
𝑛+1

+ 𝑛𝑦
𝑛
𝑦
2
𝑘0 − 𝑦

𝑛
𝜏1 − 𝑦𝜏2 = 0, (144)

and infinitesimals are

𝜉 (𝑥, 𝑦) = 𝑐1, 𝜂 (𝑥, 𝑦) = 0, (145)

where 𝑐1 is a constant.
For selection of parameter 𝑐1 infinitesimals are found:

𝜉 = 1, 𝜂 = 0. (146)

By using (9) we obtain the 𝜆-symmetry

𝜆 =
𝑦
2
𝜏1 − 𝑦

1−𝑛
𝜏2 − 𝑘0𝑦

2

𝑦𝑦𝑘0

. (147)

A solution of (10) is equal to

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦
𝑛

(𝑛 + 1) 𝑘0

(𝑦
𝑛
𝑦
2
𝑘0 (𝑛 + 1) − 𝑦

𝑛+2
𝜏12𝑦𝜏2) ,

(148)

and reduced form is found as

𝑤

(𝑥) = 0, (149)
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in which the general solution is

𝑤 (𝑥) = 𝐺, 𝐺 ∈ R, (150)

and the integrating factor can be written as

𝜇 = 2𝑦
𝑛+1

𝑦

. (151)

Conservation law is

𝐷𝑥 (
𝑦(𝑥)
𝑛

𝑘0 (𝑛 + 1)
(𝑦

(𝑥) 𝑦(𝑥)

𝑛
𝑘0 (𝑛 + 1) − 𝑦(𝑥)

𝑛+2
𝜏1

− 2𝑦 (𝑥) 𝜏2) ) = 0.

(152)

5. Alternative Approaches for 𝜆-Symmetries

5.1. Assuming Linear Form of 𝜆(𝑥,𝑦,𝑦). Let us consider an
𝑛th-order ODE:

𝑦

= 𝜙 (𝑥, 𝑦, 𝑦


) . (153)

Thus the invariance criteria [14] of (153) is

𝑋
[𝜆,(𝑛)]

(𝑦
(𝑛)

− 𝑓(𝑥, 𝑦, 𝑦

, 𝑦

, . . . , 𝑦

(𝑛−1)
)
𝑦(𝑛)=𝑓

) = 0. (154)

The expansion of relation (154) for 𝑛 = 2 gives the
determining equation related to fin equation, which are the
systemof partial differential equations.This system is difficult
to solve in terms of lambda function because it is highly
nonlinear. For the sake of simplicity 𝜆 can be assumed to be
in a linear form [13–15] such that

𝜆 (𝑥, 𝑦, 𝑦

) = 𝜆1 (𝑥, 𝑦) 𝑦


+ 𝜆2 (𝑥, 𝑦) . (155)

When V = 𝜕𝑦, V is 𝜆-symmetry of (1), if and only if

𝜙𝑦 + 𝜆𝜙𝑦 = 𝐴 (𝜆) + 𝜆
2 (156)

is satisfied. Applying (2) and (155) to (156) gives

𝜆𝑥 + 𝑦

𝜆𝑦 + 𝜙


𝜆𝑦 + 𝜆

2
− 𝜙𝑦 − 𝜆𝜙𝑦 = 0. (157)

𝜙 and 𝜆 are defined in equation (1). If the equation (155) is
substituted in to equation (157), then we obtain determining
equation and we find the functions 𝜆1 and 𝜆2 from the
coefficients of this determining equation. We emphasize that
𝜆 is a particular solution of (157). If we consider 𝜙 in terms of
fin equation and it is substituted into (157), the prolongation
formula for the fin equation can be written as

1

𝐾(𝑦)
2
(−𝑦
2
𝐾

(𝑦)
2
+ 𝐻 (𝑦) (𝐾 (𝑦) 𝜆1 + 𝐾


(𝑦))

+ 𝐾 (𝑦) (−𝐻

(𝑦) + 𝑦


(𝑦

𝜆1𝐾

(𝑦) + 2𝜆2𝐾


(𝑦)

+ 𝑦

𝐾

(𝑦)))

+ 𝐾(𝑦)
2
(𝑦
2
𝜆
2

1 + 2𝑦

𝜆1𝜆2 + 𝜆

2

2 + 𝑦
2
𝜆1
𝑦

+ 𝑦

𝜆2
𝑦

+ 𝑦

𝜆1
𝑥

+ 𝜆2
𝑥

))

= 0.

(158)

By analyzing (158) the coefficient of 𝑦2 gives first determin-
ing equation such that

𝐾(𝑦)
2
𝜆
2

1 + 𝐾 (𝑦) 𝜆1𝐾

(𝑦) − 𝐾


(𝑦)
2

+ 𝐾 (𝑦)𝐾

(𝑦) + 𝐾(𝑦)

2
𝜆1
𝑦

= 0.

(159)

A particular solution of this equation gives 𝜆1 like this,

𝜆1 (𝑥, 𝑦) = −
𝐾

(𝑦)

𝐾 (𝑦)
. (160)

Then if we consider coefficient of 𝑦
, we obtain second

determining equation as the form

𝐾(𝑦)
2
𝜆2
𝑦

+ 𝐾(𝑦)
2
𝜆1
𝑥

= 0, (161)

by applying (160) to (161), the general solution of this equation
gives 𝜆2 such that

𝜆2 = 𝛽 (𝑥) . (162)

The last determining equation becomes

𝐾(𝑦)
2
(𝛽(𝑥)

2
+ 𝛽

(𝑥)) − 𝐾 (𝑦)𝐻


(𝑦) = 0. (163)

To obtain a simpler form of (163) one can rewrite this
equation in the form:

𝛽(𝑥)
2
+ 𝛽

(𝑥) −

𝐻

(𝑦)

𝐾 (𝑦)
= 0. (164)

In (164), we assume𝐻(𝑦)/𝐾(𝑦) = 𝑎 in which 𝑎 is a constant
and we write our assumption in (164); we obtain the ordinary
differential equation with respect to 𝛽 and so solution of this
equation is equal to

𝛽 (𝑥) = √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1) . (165)

From the above relation, we find 𝐻

(𝑦)/𝐾(𝑦) − 𝑎 = 0 and

if we solve this equation we obtain equation which defines
relationship between 𝐾(𝑦) and𝐻(𝑦) :

𝐾 (𝑦) =
𝐻

(𝑦)

𝑎
. (166)

Nowwe investigate 𝜆-symmetries of fin equation for different
cases of𝐻(𝑦).

Case 1 (𝐻(𝑦) = 𝑦). It is easy to see that from (166) thermal
conductivity𝐾(𝑦) yields

𝐾(𝑦) =
1

𝑎
. (167)

For this case if 𝐾(𝑦) and 𝐻(𝑦) are substituted into (160) and
(162), respectively, then we find

𝜆1 = 0, 𝜆2 = √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1) , (168)
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where 𝑐1 is a constant. And 𝜆 is obtained by (155)

𝜆 (𝑥, 𝑦, 𝑦

) = √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1) . (169)

In order to obtain an integrating factor associated to 𝜆 we
must find a first order invariant𝑤(𝑥, 𝑦, 𝑦


) of V𝜆1 . And so it is

clear that the solution of (10) gives

𝑤(𝑥, 𝑦, 𝑦

) = 𝑐1 (𝑥) (𝑦


− √𝑎𝑦 tanh (√𝑎𝑥 + √𝑎𝑐1)) . (170)

If we take 𝑐1(𝑥) = 1 and to write (13) in terms of {𝑥, 𝑤, 𝑤

} we

can express the following equality using (170):

𝑦

= 𝑤 (𝑥) + √𝑎𝑦 (𝑥) tanh (√𝑎𝑥 + √𝑎𝑐1) . (171)

Taking derivative of (171) with respect to 𝑥 gives

𝑦

= √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1) 𝑤 (𝑥) + 𝑎𝑦 (𝑥) + 𝑤


(𝑥) , (172)

and by using 𝑦
 and 𝑦

 (13) becomes

𝑤

(𝑥) + √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1) 𝑤 (𝑥) = 0, (173)

and, solving this equation we have

𝑤 (𝑥) = 𝐺 sech (√𝑎 (𝑐1 + 𝑥)) , 𝐺 ∈ R. (174)

To find the integrating factor one can write above equation in
terms of 𝐺:

𝐺 = cosh (√𝑎 (𝑐1 + 𝑥))𝑤. (175)

It is clear that from (12), 𝜇 is obtained in the following form:

𝜇 = cosh (√𝑎 (𝑐1 + 𝑥)) . (176)

The conserved form of this equation is given by

𝐷𝑥 (𝑦

(𝑥) − √𝑎𝑦 (𝑥) tanh (√𝑎 (𝑥 + 𝑐1)) cosh (√𝑎 (𝑐1 + 𝑥)))

= 0,

(177)

which gives the original fin equation. Thus the reduced
equation is

𝑦

(𝑥) − √𝑎𝑦 (𝑥) tanh (√𝑎 (𝑥 + 𝑐1)) − 𝑐3 = 0, (178)

where 𝑐3 is a constant. Integrating above equation we obtain
the solution that satisfies the original equation:

𝑦 (𝑥) = 𝑐2 cosh (√𝑎 (𝑐1 + 𝑥)) +
𝑐3 sinh (√𝑎 (𝑐1 + 𝑥))

√𝑎
,

(179)

where 𝑐2 is a constant.

Case 2 (𝐻(𝑦) = 𝑒
𝑦). From (166) thermal conductivity 𝐾(𝑦)

can be written as

𝐾(𝑦) =
𝑒
𝑦

𝑎
. (180)

By inserting 𝐾(𝑦) and 𝐻(𝑦) to (161) and (162), respectively,
we have

𝜆1 = −1, 𝜆2 = √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1) , (181)

where 𝑐1 is a constant. From (155) 𝜆 is equal to

𝜆 (𝑥, 𝑦, 𝑦

) = −𝑦


+ √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1) . (182)

The general solution of (10) for this case is given by

𝑤(𝑥, 𝑦, 𝑦

) = 𝑐1 (𝑥) 𝑒

𝑦
(𝑦

− √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1)) .

(183)

Now we again use the assumption 𝑐1(𝑥) = 1 and to express
(13) in terms of {𝑥, 𝑤, 𝑤


} we can write the following equality

using (183):

𝑦

= 𝑒
−𝑦

(𝑤 (𝑥) + √𝑎𝑒
𝑦 tanh (√𝑎𝑥 + √𝑎𝑐1)) . (184)

Differentiating (184), we obtain 𝑦


𝑦

= 𝑒
−2𝑦

(−√𝑎𝑒
𝑦 tanh (√𝑎𝑥 + √𝑎𝑐1) 𝑤 (𝑥)

− 𝑤(𝑥)
2
+ 𝑒
𝑦
(𝑎𝑒
𝑦sech(√𝑎 (𝑥 + 𝑐1))

2

+ 𝑤

(𝑥) )) .

(185)

If we write 𝑦

, 𝑦

, 𝐻(𝑦), 𝐾(𝑦) in original fin equation (13)

then we obtain the same equation (173) such as

𝑤

(𝑥) + √𝑎 tanh (√𝑎𝑥 + √𝑎𝑐1) 𝑤 (𝑥) = 0, (186)

and the solution of this equation is given by

𝑤 (𝑥) = 𝐺 sech (√𝑎 (𝑐1 + 𝑥)) , 𝐺 ∈ R. (187)

To obtain the integrating factor one can write above equation
in terms of 𝐺:

𝐺 = cosh (√𝑎 (𝑐1 + 𝑥))𝑤. (188)

It is clear that from (12) that 𝜇 can be derived as

𝜇 = 𝑒
𝑦
(cosh (√𝑎 (𝑐1 + 𝑥))) . (189)

The conserved form of fin equation for this case is

𝐷𝑥 (𝑦

− √𝑎 tanh (√𝑎 (𝑥 + 𝑐1))) = 0, (190)

which gives the original fin equation. Thus the reduced
equation is

𝑦

(𝑥) − √𝑎 tanh (√𝑎 (𝑥 + 𝑐1)) − 𝑐3 = 0, (191)

where 𝑐3 is a constant. Solution of this reduced equation
which can be called a invariant solution of (13) is

𝑦 (𝑥) = ln(
1

2
𝑐2 cosh (√𝑎 (𝑐1 + 𝑥))

+
𝑐3 sinh (√𝑎 (𝑐1 + 𝑥))

√𝑎
) ,

(192)

where 𝑐2 is a constant.
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Case 3 (𝐻(𝑦) = 1/(𝑚𝑦+𝑛)). For this selection of𝐻(𝑦), from
(166) thermal conductivity𝐾(𝑦) is written by

𝐾(𝑦) = −
𝑚

𝑎(𝑛 + 𝑚𝑦)
2
. (193)

By using (160) and (162), we obtain

𝜆1 =
2𝑚

(𝑛 + 𝑚𝑦)
, 𝜆2 = √𝑎 tanh (√𝑎 (𝑥 + 𝑐1)) , (194)

where 𝑐1 is a constant. And 𝜆 is obtained by (155):

𝜆 (𝑥, 𝑦, 𝑦

) = 𝜆1 (𝑥, 𝑦) 𝑦


+ 𝜆2 (𝑥, 𝑦)

=
2𝑚𝑦


(𝑛 + 𝑚𝑦)
+ √𝑎 tanh (√𝑎 (𝑥 + 𝑐1)) .

(195)

The general solution of (10) for this case is

𝑤(𝑥, 𝑦, 𝑦

) = 𝑐1 (𝑥)

× ( (𝑚𝑦

+ √𝑎𝑛 tanh (√𝑎 (𝑥 + 𝑐1))

+ √𝑎𝑚𝑦 tanh (√𝑎 (𝑥 + 𝑐1)) )

× (𝑚(𝑛 + 𝑚𝑦)
2
)
−1
) .

(196)

We have a same assumption 𝑐1(𝑥) = 1 and to define (13) in
terms of {𝑥, 𝑤, 𝑤


} we can use following equation:

𝑦

= (𝑛 + 𝑚𝑦) (𝑚𝑛𝑤 + 𝑚

2
𝑤𝑦 − √𝑎 tanh (√𝑎 (𝑥 + 𝑐1))) .

(197)

Differentiation of 𝑦 gives 𝑦 such that

𝑦

=

1

𝑚
(𝑛 + 𝑚𝑦)

× (𝑎 (−sech(√𝑎 (𝑥 + 𝑐1))
2
)

+ tanh (√𝑎 (𝑥 + 𝑐1))
2
)

− 3√𝑎𝑚 tanh (√𝑎 (𝑥 + 𝑐1)) 𝑤 (𝑥) (𝑛+ 𝑚𝑦)

+ 2𝑚
2
𝑤(𝑥)
2
(𝑛 + 𝑚𝑦)

2

+ 𝑚 (𝑛 + 𝑚𝑦)𝑤(𝑥)

.

(198)

If we substitute 𝑦

, 𝑦

, 𝐻(𝑦), 𝐾(𝑦) in original fin equation

(13), we find the following equation:

sech (√𝑎 (𝑥 + 𝑐1)) (𝑛 + 𝑚𝑦)
2

× (√𝑎 sinh (√𝑎 (𝑥 + 𝑐1)) 𝑤 (𝑥)

+ cosh (√𝑎 (𝑥 + 𝑐1)) 𝑤

(𝑥)) = 0,

(199)

and general solution of (199) yields

𝑤 (𝑥) = 𝐺 sech (√𝑎 (𝑐1 + 𝑥)) , 𝐺 ∈ R. (200)

It is clear that from (12) that 𝜇 is obtained in the following
form:

𝜇 =
cosh (√𝑎 (𝑐1 + 𝑥))

(𝑛 + 𝑚𝑦)
2

. (201)

The conserved form of fin equation (13) is given by

𝐷𝑥 (((𝑚𝑦

+ √𝑎𝑛 tanh (√𝑎 (𝑥 + 𝑐1))

+ √𝑎𝑚𝑦 tanh (√𝑎 (𝑥 + 𝑐1))) cosh (√𝑎 (𝑐1 + 𝑥)))

× (𝑚(𝑛 + 𝑚𝑦)
2
)
−1
) = 0.

(202)

And so we can derive the invariant solution of (13) such as

𝑦 (𝑥)

= ( ( (−√𝑎𝑒
2√𝑎𝑥

+ 2𝑎𝑐2) cosh (√𝑎 (𝑐1 + 𝑥))

+ (𝑒
2√𝑎𝑥

+ 2√𝑎𝑐2)

× (−𝑐𝑚𝑛 + √𝑎 sinh (√𝑎 (𝑐1 + 𝑥)) ) ) )

× (𝑐𝑚
2
(𝑒
2√𝑎𝑥

+ 2√𝑎𝑐2))
−1

,

(203)

where 𝑐2 is a constant.

5.2. 𝜆-Symmetries and Jacobi Last Multiplier Approach. The
𝜆-prolongation of𝑋 (4) is

pr𝑋 = 𝜉 (𝑥, 𝑦) 𝜕𝑥 + 𝜂 (𝑥, 𝑦) 𝜕𝑦 + 𝜂
(1)

(𝑥, 𝑦, 𝑦

, 𝑦

, . . . , 𝑦

(𝑛−1)
)

× 𝜕𝑦 + 𝜂
(2)

(𝑥, 𝑦, 𝑦

, 𝑦

, . . . , 𝑦

(𝑛−1)
) 𝜕𝑦 ,

(204)

with

𝜂
(𝑛+1)

= [(𝐷𝑥 + 𝜆) 𝜂
(𝑛)

− 𝑦

(𝐷𝑥 + 𝜆) 𝜉] , (205)

where 𝐷𝑥 is total derivative operator with respect to 𝑥 such
that

𝐷𝑥 = 𝜕𝑥 +

𝑛

∑

𝑘=0

𝑦
(𝑘+1)

𝜕𝑦(𝑘) , 𝑦
(0)

≡ 𝑦, 𝜂
(0)

≡ 𝜂. (206)

In this section we analyze 𝜆-symmetries of fin equation by
using Jacobi Last Multiplier as another approach. First (153)
can be written by using system of first order equations, which
is equivalent to the expression

𝑤


𝑖 = 𝑊𝑖 (𝑡, 𝑤1, . . . , 𝑤𝑛) , (207)

the Jacobi Last Multiplier of (207)𝑀 is found

𝑑 log (𝑀)

𝑑𝑡
+

𝑛

∑

𝑖=1

𝜕𝑊𝑖

𝜕𝑤𝑖

= 0, (208)
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where, namely,𝑀 is

𝑀 = exp(−∫

𝑛

∑

𝑖=1

𝜕𝑊𝑖

𝜕𝑤𝑖

𝑑𝑡) . (209)

The nonlocal approach [17] to 𝜆-symmetries is analyzed to
seek 𝜆-symmetries such that

𝑤

= 𝜆 =

𝑛

∑

𝑖=1

𝜕𝑊𝑖

𝜕𝑤𝑖

. (210)

With this approach the function is considered in the form
such as 𝑤 = log(1/𝑀). However it is a fact that the relation
(207) cannot be used if the divergence of (207) Div ≡

∑
𝑛

𝑖=1(𝜕𝑊𝑖/𝜕𝑤𝑖) is equal to zero. Therefore 𝑤 has to be chosen
in this form because any Jacobi Last Multiplier is a first
integral of (207). In this subsection we consider some cases,
which we discussed in Section 3 for functions 𝐾(𝑦) and
𝐻(𝑦) in order to compare 𝜆-symmetries in terms of different
approaches:

5.2.1.𝐾(𝑦)=𝑘0,𝐻(𝑦)=𝜏1𝑦+𝜏2. For this case the divergence of
the fin equation (13) yields

𝜆𝑗 = 0. (211)

Substituting 𝜆𝑗 into (204) then from the solution of the
determining equations (154) we obtain eight-parameter 𝜆-
infinitesimals:

𝜉
(𝜆)

=
1

2𝜏1

𝑒
−2𝑥√𝜏

1
/𝑘
0

× ((𝑐4 + 𝑐5𝑒
4𝑥√𝜏
1
/𝑘
0) + 2𝑒

𝑥√𝜏
1
/𝑘
0

× ((𝑐3𝑒
𝑥√𝜏
1
/𝑘
0 + 𝑐1𝑦 + 𝑐2𝑒

2𝑥√𝜏
1
/𝑘
0) 𝜏1

+ (𝑐1 + 𝑐2𝑒
2𝑥√𝜏
1
/𝑘
0) 𝜏2)) ,

𝜂
(𝜆)

=
1

2√𝑘0

𝜏
3/2

1 𝑒
−2𝑥√𝜏

1
/𝑘
0

× ((−𝑐4 + 𝑐5𝑒
4𝑥√𝜏
1
/𝑘
0) 𝑘0 (𝑦𝜏1 + 𝜏2)

+ 2𝑒
𝑥√𝜏
1
/𝑘
0 (−𝑐1 + 𝑐2𝑒

2𝑥√𝜏
1
/𝑘
0) 𝑦𝜏1

× (𝑦𝜏1 + 2𝜏2) + 2𝑒
𝑥√𝜏
1
/𝑘
0√𝜏1𝑘0

× ((𝑐7 + 𝑐8𝑒
2𝑥√𝜏
1
/𝑘
0 + 𝑐8𝑒

𝑥√𝜏
1
/𝑘
0) 𝜏1

+ 𝑐6𝑒
𝑥√𝜏
1
/𝑘
0)) ,

(212)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants. The generators can be
written as

𝑋
(𝜆)

1 =
𝑒
−𝑥√𝜏

1
/𝑘
0 (𝜏1𝑦 + 𝜏2)

𝜏1

𝜕𝑥 −
𝑒
−𝑥√𝜏

1
/𝑘
0𝑦 (𝜏1𝑦 + 𝜏2)

√𝜏1𝑘0

𝜕𝑦,

𝑋
(𝜆)

2 =
𝑒
𝑥√𝜏
1
/𝑘
0 (𝜏1𝑦 + 𝜏2)

𝜏1

𝜕𝑥 +
𝑒
𝑥√𝜏
1
/𝑘
0𝑦 (𝜏1𝑦 + 𝜏2)

√𝜏1𝑘0

𝜕𝑦,

𝑋
(𝜆)

3 = 𝜕𝑥,

𝑋
(𝜆)

4 =
𝑒
−2𝑥√𝜏

1
/𝑘
0𝑘0

2𝜏1

𝜕𝑥 −
𝑒
−2𝑥√𝜏

1
/𝑘
0√𝑘0 (𝜏1𝑦 + 𝜏2)

2𝜏1
3/2

𝜕𝑦,

𝑋
(𝜆)

5 =
𝑒
2𝑥√𝜏
1
/𝑘
0𝑘0

2𝜏1

𝜕𝑥 +
𝑒
2𝑥√𝜏
1
/𝑘
0√𝑘0 (𝜏1𝑦 + 𝜏2)

2𝜏1
3/2

𝜕𝑦,

𝑋
(𝜆)

6 = (𝑦 +
𝜏2

𝜏1

) 𝜕𝑦, 𝑋
(𝜆)

7 = 𝑒
−𝑥√𝜏

1
/𝑘
0𝜕𝑦,

𝑋
(𝜆)

8 = 𝑒
𝑥√𝜏
1
/𝑘
0𝜕𝑦,

(213)

which corresponds to the classical Lie point symmetries since
𝜆𝑗 is equal to zero.

5.2.2. 𝐾(𝑦) = 𝑘0𝑦, 𝐻(𝑦) = 𝜏1𝑦
2
+𝜏2. Another special

form we consider here is 𝐾(𝑦) = 𝑘0𝑦, 𝐻(𝑦) = 𝜏1𝑦
2
+ 𝜏2.

For this case we obtain the divergence of (13) in the form

𝜆𝑗 =
2𝑦


𝑦
, (214)

and, by substituting 𝜆𝑗 into the prolongation formula, the 𝜆-
infinitesimals can be found as follows:

𝜉
(𝜆)

=
1

2𝜏1

𝑒
−2𝑥√2𝜏

1
/𝑘
0𝑦
2

× ((𝑐4 + 𝑐5𝑒
4𝑥√2𝜏

1
/𝑘
0) 𝑘0

+ 2𝑒
𝑥√2𝜏
1
/𝑘
0 ((𝑐3𝑒

𝑥√2𝜏
1
/𝑘
0

× (𝑐1 + 𝑐2𝑒
2𝑥√2𝜏

1
/𝑘
0) 𝑦
2
) 𝜏1

+ (𝑐1 + 𝑐2𝑒
2√2𝑥√2𝜏

1
/𝑘
0) 𝜏2)) ,

(215)
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𝜂
(𝜆)

=
1

4√𝑘0

𝜏
3/2

1 𝑒
−2𝑥√2𝜏

1
/𝑘
0

× (−√2 (𝑐4 − 𝑐5𝑒
4𝑥√2𝜏

1
/𝑘
0) 𝑘0

× (𝑦
2
𝜏1 + 𝜏2)

× 2√2𝑒
𝑥√2𝜏
1
/𝑘
0 (𝑐2𝑒
2𝑥√2𝜏

1
/𝑘
0 − 𝑐1) 𝑦

2
𝜏1

× (𝑦
2
𝜏1 + 2𝜏2) × 4𝑒

𝑥√2𝜏
1
/𝑘
0√𝑘0𝜏1

× ((𝑐7 + 𝑐8𝑒
2𝑥√2𝜏

1
/𝑘
0 + 𝑐6𝑒

𝑥√2𝜏
1
/𝑘
0𝑦
2
)

× 𝜏1 + 𝑐6𝑒
𝑥√2𝜏
1
/𝑘
0)) ,

(216)

where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants. And the generators are
found as the following form:

𝑋
(𝜆)

1 =
𝑒
−𝑥√2𝜏

1
/𝑘
0𝑦
2
(𝜏1𝑦
2
+ 𝜏2)

𝜏1

𝜕𝑥

−
𝑒
−𝑥√2(𝜏

1
/𝑘
0
)
𝑦
3
(𝜏1𝑦
2
+ 2𝜏2)

√2𝜏1𝑘0

𝜕𝑦,

𝑋
(𝜆)

2 =
𝑒
𝑥√2𝜏
1
/𝑘
0𝑦
2
(𝜏1𝑦
2
+ 𝜏2)

𝜏1

𝜕𝑥

+
𝑒
𝑥√2𝜏
1
/𝑘
0𝑦
3
(𝜏1𝑦
2
+ 2𝜏2)

√2𝜏1𝑘0

𝜕𝑦,

𝑋
(𝜆)

3 = 𝑦
2
𝜕𝑥,

𝑋
(𝜆)

4 =
𝑒
−2𝑥√2𝜏

1
/𝑘
0𝑦
2
𝑘0

2𝜏1

𝜕𝑥

−
𝑒
−2𝑥√𝜏

1
/𝑘
0𝑦√𝑘0 (𝜏1𝑦

2
+ 𝜏2)

2𝜏1
3/2

𝜕𝑦,

𝑋
(𝜆)

5 =
𝑒
2𝑥√2(𝜏

1
/𝑘
0
)
𝑦
2
𝑘0

2𝜏1

𝜕𝑥

+
𝑒
2𝑥√𝜏
1
/𝑘
0𝑦√𝑘0 (𝜏1𝑦

2
+ 𝜏2)

2√2𝜏1
3/2

𝜕𝑦,

𝑋
(𝜆)

6 = (𝑦
3
+

𝑦𝜏2

𝜏1

) 𝜕𝑦,

𝑋
(𝜆)

7 = 𝑒
−𝑥√2𝜏

1
/𝑘
0𝑦𝜕𝑦,

𝑋
(𝜆)

8 = 𝑒
𝑥√2𝜏
1
/𝑘
0𝑦𝜕𝑦.

(217)

5.2.3. 𝐾(𝑦) = 𝑘0𝑦
𝑛, 𝐻(𝑦) = 𝜏2. The divergence of the fin

equation yields

𝜆𝑗 =
2𝑛𝑦


𝑦
,

𝜉
(𝜆)

=
1

2𝑘0𝑦
2𝑛

(2 (𝑐4 + 𝑐2𝑦
𝑛+1

+ 𝑥 (𝑐5 + 𝑐1𝑦
𝑛+1

+ 𝑐6𝑥)) 𝑘0

− 𝑐1 (𝑛 + 1) 𝑥
3
𝜏2 ) ,

𝜂
(𝜆)

=
1

4 (𝑛 + 1) 𝑘
2
0

𝑦
𝑛

× (2 (2𝑐1𝑦
2𝑛+2

+ 𝑦
𝑛+1

× (𝑐5 + 2𝑐3 (𝑛 + 1) + 2𝑐6𝑥)

+ 2 (𝑛 + 1) (𝑐7 + 𝑐8𝑥)) 𝑘
2

0

+ (𝑛 + 1) 𝑥 (6𝑐2𝑦
𝑛+1

+𝑥 (3𝑐5 − 2𝑐3 (𝑛 + 1) + 2𝑐6𝑥) ) 𝑘0𝜏2

− (𝑛 + 1)
2
𝑥
3
(𝑐2 + 𝑐1𝑥) 𝜏

2

2) ,

(218)
where 𝑐𝑖, 𝑖 = 1, . . . , 8 are constants. The corresponding new
𝜆-symmetries are given:

𝑋
(𝜆)

1 =
𝑒
−𝑥√2𝜏

1
/𝑘
0𝑦
2
(𝜏1𝑦
2
+ 𝜏2)

𝜏1

𝜕𝑥

−
𝑒
−𝑥√2(𝜏

1
/𝑘
0
)
𝑦
3
(𝜏1𝑦
2
+ 2𝜏2)

√2𝜏1𝑘0

𝜕𝑦,

𝑋
(𝜆)

2 =
𝑒
𝑥√2𝜏
1
/𝑘
0𝑦
2
(𝜏1𝑦
2
+ 𝜏2)

𝜏1

𝜕𝑥

+
𝑒
𝑥√2𝜏
1
/𝑘
0𝑦
3
(𝜏1𝑦
2
+ 2𝜏2)

√2𝜏1𝑘0

𝜕𝑦,

𝑋
(𝜆)

3 = 𝑦
2
𝜕𝑥,

𝑋
(𝜆)

4 =
𝑒
−2𝑥√2𝜏

1
/𝑘
0𝑦
2
𝑘0

2𝜏1

𝜕𝑥

−
𝑒
−2𝑥√𝜏

1
/𝑘
0𝑦√𝑘0 (𝜏1𝑦

2
+ 𝜏2)

2𝜏1
3/2

𝜕𝑦,

𝑋
(𝜆)

5 =
𝑒
2𝑥√2(𝜏

1
/𝑘
0
)
𝑦
2
𝑘0

2𝜏1

𝜕𝑥

+
𝑒
2𝑥√𝜏
1
/𝑘
0𝑦√𝑘0 (𝜏1𝑦

2
+ 𝜏2)

2√2𝜏1
3/2

𝜕𝑦,

𝑋
(𝜆)

6 = (𝑦
3
+

𝑦𝜏2

𝜏1

) 𝜕𝑦,

𝑋
(𝜆)

7 = 𝑒
−𝑥√2𝜏

1
/𝑘
0𝑦𝜕𝑦,

𝑋
(𝜆)

8 = 𝑒
𝑥√2𝜏
1
/𝑘
0𝑦𝜕𝑦.

(219)
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In this section we present some invariant solutions based
on Jacobi multiplier approach.

Case 1. For the case 𝐾(𝑦) = 𝑘0, 𝐻(𝑦) = 𝜏1𝑦 + 𝜏2 we can
investigate 𝑋

𝜆
6 to find the invariant solution of fin equation.

The first prolongation of𝑋𝜆6 is

pr𝑋𝜆6 = (𝑦 +
𝜏2

𝜏1

) 𝜕𝑦 + 𝑦

𝜕𝑦 , (220)

and the Lagrange equations are

𝑑𝑥

0
=

𝑑𝑦

𝑦 + 𝜏2/𝜏1

=
𝑑𝑦


𝑦
, (221)

which give the first-order invariants:

𝑥 = 𝑥, 𝑦 =
𝑦


𝜏1𝑦 + 𝜏2

. (222)

Then one can write the first-order equation in the form

(
𝑑𝑦

𝑑𝑥
+ 𝑦
2
𝜏1)𝑘0 − 1 = 0, (223)

and the solution of this equation yields

𝑥

𝑘0

−
arctanh (𝑦√𝑘0𝜏1)

√𝑘0𝜏1

= 𝑐1, (224)

and the first integral is

𝐷𝑥 (
𝑥

𝑘0

−
1

√𝑘0𝜏1

arctanh(
𝑦

(𝑥)√𝑘0𝜏1

𝜏1𝑦 (𝑥) + 𝜏2

)) = 0, (225)

and this equality gives the original fin equation (13). The
reduced form of fin equation is

𝑥

𝑘0

−
1

√𝑘0𝜏1

arctanh(
𝑦

(𝑥)√𝑘0𝜏1

𝜏1𝑦 (𝑥) + 𝜏2

) − 𝑐 = 0, (226)

in which the solution of (226) is

𝑦 (𝑥) = 𝑐1 cosh(𝑥√
𝜏1

𝑘0

) −
𝜏2

𝜏1

, (227)

where 𝑐1 and 𝑐 are constants.

Case 2. As another case 𝐾(𝑦) = 𝑘0𝑦, 𝐻(𝑦) = 𝜏1𝑦
2
+ 𝜏2

we consider 𝑋𝜆6 generator, for example, to find the invariant
solution of fin equation. The first prolongation of 𝑋

𝜆
6 is

written:

pr𝑋𝜆6 = (𝑦
3
+

𝜏2𝑦

𝜏1

) 𝜕𝑦 + ((𝑦
2
−

𝜏2

𝜏1

)𝑦

) 𝜕𝑦 , (228)

and the Lagrange equation is

𝑑𝑥

0
=

𝑑𝑦

(𝑦3 +
𝜏2𝑦

𝜏1

)

=
𝑑𝑦


(𝑦2 −
𝜏2

𝜏1

)𝑦

, (229)

and the corresponding first order invariants become

𝑥 = 𝑥, 𝑦 =
𝑦

𝑦

𝜏1𝑦
2 + 𝜏2

. (230)

Thus, the corresponding first-order equation is

(
𝑑𝑦

𝑑𝑥
+ 2𝑦
2
𝜏1)𝑘0 − 1 = 0, (231)

and the solution of (231) is

𝑥

𝑘0

−
1

√2𝑘0𝜏1

arctanh(
𝑦

(𝑥) 𝑦 (𝑥)√2𝑘0𝜏1

𝜏1𝑦(𝑥)
2
+ 𝜏2

) = 𝑐1, (232)

and the first integral is

𝐷𝑥 (
𝑥

𝑘0

−
1

√2𝑘0𝜏1

arctanh(
𝑦

(𝑥) 𝑦 (𝑥)√2𝑘0𝜏1

𝜏1𝑦(𝑥)
2
+ 𝜏2

)) = 0,

(233)

which is equal to the original fin equation (13). The new
reduced form is

𝑥

𝑘0

−
1

√2𝑘0𝜏1

arctanh(
𝑦

(𝑥) 𝑦 (𝑥)√2𝑘0𝜏1

𝜏1𝑦(𝑥)
2
+ 𝜏2

) − 𝑐 = 0,

(234)

and the solution of (234) is

𝑦 (𝑥) = ∓
1

√𝜏1

√𝑒2𝑐1𝜏1 cosh(
√2𝜏1𝑥

√𝑘0

) − 𝜏2,
(235)

where 𝑐1 and 𝑐 are constants.

6. Concluding Remarks

This study focuses on applications of different symmetry
approaches such as classical Lie point and 𝜆-symmetries
for the one-dimensional steady-state fin problem. We con-
sider both the thermal conductivity and the heat transfer
coefficient to be arbitrary functions of temperature. Firstly
we concern with determining equations of fin problem to
determine infinitesimals functions. The solutions of these
determining equations enable us determine various forms of
the heat transfer coefficient functions 𝐻(𝑦) corresponding
to different cases of thermal conductivity function 𝐾(𝑦).
And so we obtain a lot of cases to investigate in detail and
then Lie point symmetries of fin equation are examined. By
making use of these Lie point symmetries we determine 𝜆-
symmetries, conservation laws, and new reduced form of fin
equation algorithmically.

Another part of this study consists of investigation of 𝜆-
symmetries, in which 𝜆-function is assumed to be in linear
form for simplicity since the corresponding determining
equations are highly nonlinear and difficult to solve. This
approach is also provided to illustrate new forms of 𝐾(𝑦)

and𝐻(𝑦) functions for new conservation forms of nonlinear
fin equation. As a new approach to 𝜆-symmetry concept
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the Jacobi Last Multiplier method is discussed and applied in
this study. This method has some differences from previous
methods mentioned here. In this approach we can use
divergence of the equation to construct the prolongation of
the same equation and as a result new 𝜆-symmetries are
achieved. So these symmetries are compared with each other.
In particular, the comparison is made between Lie point and
𝜆-symmetry approach with Jacobi last multiplier method.
One can say that if Lie point symmetries of given equation
are trivial and then this method has advantage to obtain new
lambda symmetries. Moreover some invariant solutions can
be obtained by using this approach.
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