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This paper considers the problem of recovering low-rank matrices which are heavily corrupted by outliers or large errors. To
improve the robustness of existing recoverymethods, the problem is solved by formulating it as a generalized nonsmoothnonconvex
minimization functional via exploiting the Schatten 𝑝-norm (0 < 𝑝 ≤ 1) and 𝐿

𝑞
(0 < 𝑞 ≤ 1) seminorm. Two numerical algorithms

are provided based on the augmented Lagrange multiplier (ALM) and accelerated proximal gradient (APG) methods as well as
efficient root-finder strategies. Experimental results demonstrate that the proposed generalized approach is more inclusive and
effective compared with state-of-the-art methods, either convex or nonconvex.

1. Introduction

In many practical applications, such as removing shadows
and specularities from face images, separating foregrounds
and backgrounds from monitored videos, ranking, and col-
laborative filtering, the observed data matrix 𝐶 can naturally
be decomposed into a low-rank matrix 𝐴 and a corrupted
matrix 𝐵. That is, 𝐶 = 𝐴 + 𝐵, where 𝐵 can be arbitrarily
large and is usually assumed to be sparse and unknown.
The problem is whether it is possible to recover the low-
rank matrix 𝐴 from the observed 𝐶. Recently, it has been
shown that the answer is affirmative as long as the corrupted
matrix 𝐵 is sufficiently sparse and the rank of the low-rank
matrix 𝐴 is sufficiently low [1, 2]. That is to say, under
certain conditions one can exactly recover from 𝐶 the low-
rank matrix 𝐴 with high probability by solving the following
convex optimization problem, that is, the idealization of
robust principal component analysis (RPCA):

min
𝐴,𝐵

‖𝐴‖∗ + 𝜆‖𝐵‖1,

s.t. 𝐶 = 𝐴 + 𝐵,

(1)

where ‖𝐴‖∗ denotes the nuclear norm of the low-rankmatrix
𝐴, that is, the sum of the singular values of 𝐴, ‖𝐵‖1 denotes
the 𝐿1 norm of the matrix 𝐵 when seen as a vector, and 𝜆 is
a positive tuning parameter. Recently, there has been a lot of
research focusing on solving the RPCAproblem, for example,
[3–6].

In spite of the great theoretical success and wide practical
applications of RPCA (1), its major limitation should be
claimed due to the use of nuclear and 𝐿1 norms as regulariz-
ers. Specifically, compared with the intrinsic rank constraint,
that is, rank (𝐴) < 𝑟0, the nuclear norm regularizer will
not only do more harm to the large singular values of 𝐴 but
also lead to weaker shrinkage of the disturbed small singular
values. It is not hard to make a similar analysis with the case
of the 𝐿1 norm regularizer. Then, the performance of RPCA
(1) in dimensionality reduction and outlier separationwill not
be as good as expected in some scenarios. In Section 3, it has
been empirically demonstrated that RPCA (1) is not robust to
the case that either the matrix 𝐴 is not sufficiently low-rank
or the matrix 𝐵 is more grossly corrupted.

To improve the robustness of RPCA [3–6], this paper
proposes a generalized nonsmooth nonconvex minimization
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framework for low-rank matrix recovery by exploiting the
Schatten 𝑝-norm (0 < 𝑝 ≤ 1) and 𝐿𝑞(0 < 𝑞 ≤

1) seminorm. And two numerical algorithms are deduced
based on the augmented Lagrange multiplier (ALM) and
accelerated proximal gradient (APG) methods as well as
efficient root-finder strategies. Experimental results show
that the proposed generalized approach is more inclusive
and effective compared with state-of-the-art methods [3–6].
Notice that much recently a nonconvex relaxation approach
for low-rank matrix recovery [7] is proposed exploiting a
nonconvex penalty called minmax concave plus and also a
nonconvex loss function. However, our approach is different
from [7] and is better in the terms of recovery accuracy
and robustness than [7] as well as the other two nonconvex
methods [8, 9]. The paper is organized as follows. Section 2
provides the generalized nonsmooth nonconvex minimiza-
tion framework, including the problem formulation and two
numerical algorithms based on the ALM and APG methods.
Section 3 verifies the recovery performance of the proposed
method and compares it against state-of-the-art methods.
Finally, the paper is concluded in Section 4.

2. Proposed Model and Algorithms

2.1. Problem Formulation. Taking into account both the
recovery robustness and computational efficiency, the Schat-
ten 𝑝-norm is used to better approximate the intrinsic rank
constraint rank(𝐴) < 𝑟0; similarly, the 𝐿𝑞 seminorm is
exploited to replace the 𝐿1 norm of a matrix when seen as
a vector. It is now intuitive to generalize RPCA as follows:

min
𝐴,𝐵

‖𝐴‖
𝑝

𝑆𝑝
+ 𝜆‖𝐵‖

𝑞

𝐿𝑞
,

s.t. 𝐶 = 𝐴 + 𝐵,

(2)

where 0 < 𝑝, 𝑞 ≤ 1, ‖𝐴‖𝑆𝑝, and ‖𝐵‖𝐿𝑞 are defined, respectively,
in the following. Assume 𝐴, 𝐵, 𝐶 ∈ R𝑚×𝑛; then the 𝐿𝑞
seminorm of a matrix 𝐵when seen as a vector can be defined
as

‖𝐵‖
𝐿𝑞
= (

𝑚,𝑛

∑

𝑘=1, 𝑙=1

󵄨󵄨󵄨󵄨𝐵𝑘,𝑙
󵄨󵄨󵄨󵄨
𝑞
)

1/𝑞

, (3)

where 𝐵𝑘,𝑙 is the 𝑘,𝑙th element of 𝐵; and the Schatten 𝑝-norm
of a matrix 𝐴 can be defined as

‖𝐴‖𝑆𝑝 = (

min{𝑚,𝑛}
∑

𝑗=1

𝜎
𝑝

𝑗
)

1/𝑝

, (4)

where 𝜎𝑗 is the 𝑗th singular value of 𝐴 and the singular value
decomposition (SVD) of 𝐴 is 𝐴 = 𝑈Σ𝑉

𝑇. Clearly, as 𝑝 =

𝑞 = 1, (2) reduces to convex RPCA in (1); as 0 < 𝑝, 𝑞 < 1,
(2) corresponds to a constrained nonsmooth and nonconvex
minimization problem. Now, it comes to study the numerical
iteration schemes of (2).

In recent several years, communities of signal process-
ing and computational mathematics show more and more
interests in developing efficient algorithms for nonlinear

nonsmooth optimization problems [10], such as iterative soft
thresholding, split Bregman iteration, accelerated proximal
gradient, augmented Lagrange multiplier, and so on, which
have significantly simplified sparse optimization problems
including RPCA (1). In a similar spirit to [1, 3, 4, 7], this
paper exploits the accelerated proximal gradient (APG) and
augmented Lagrange multiplier (ALM) methods to solve the
generalized minimization problem (2), considering the fact
that APG and ALM are the two most popular numerical
algorithms currently. As for ALM, it has been shown [11] that
under certain general conditions, ALM converges 𝑄 linearly
to the optimal solution. As for APG, though little is known
about the actual convergence of its produced sequences, the
𝑂(1/𝑘

2
) rate of convergence of the objective function that

they achieve is optimal [10]. However, we should note that the
abovementioned convergence results are not applicable to the
new problem (2) because of its nonsmooth and nonconvex
properties. In spite of that, empirical studies in Section 3
demonstrate that the twodeduced algorithms in the following
can both solve (2) verywell, with empirically fast convergence
rate.

2.2. ALM-Based Algorithm. This subsection exploits ALM to
solve problem (2), which is a nonconvex extension of [3]. First
of all, define functions 𝑓(𝐴, 𝐵) and ℎ(𝐴, 𝐵) as

𝑓 (𝐴, 𝐵) = ‖𝐴‖
𝑝

𝑆𝑝
+ 𝜆‖𝐵‖

𝑞

𝐿𝑞
,

ℎ (𝐴, 𝐵) = 𝐶 − 𝐴 − 𝐵.

(5)

According to ALM, the Lagrange function for (2) is given as

𝐿 (𝐴, 𝐵,𝑋, 𝜇) = 𝑓 (𝐴, 𝐵) + ⟨𝑋, ℎ (𝐴, 𝐵)⟩ +
𝜇

2
‖ℎ (𝐴, 𝐵)‖

2

𝐿2
,

(6)

where 𝑋 is a matrix of Lagrange multipliers and 𝜇 ≥ 0 is
the augmented Lagrange penalty parameter. It is seen that
𝐴, 𝐵 can be solved iteratively by alternating minimization
of 𝐿(𝐴, 𝐵,𝑋, 𝜇). In the meanwhile, a continuation strategy
is applied to 𝜇 ≥ 0 in order to improve both the accuracy
and efficiency of low-rank matrix recovery. Specifically, the
iteration process is described in Algorithm 1.

In the following, 𝐴𝑘+1, 𝐵𝑘+1 are solved, respectively, by

min
𝐴

𝜇
𝑘

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐶 − 𝐵
𝑘
+
𝑋
𝑘

𝜇𝑘
) − 𝐴

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ ‖𝐴‖
𝑝

𝑆𝑝
, (7)

min
𝐵

𝜇
𝑘

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐶 − 𝐴
𝑘+1

+
𝑋
𝑘

𝜇𝑘
) − 𝐵

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝜆‖𝐵‖
𝑞

𝐿𝑞
. (8)

As for (7), suppose that 𝐶 − 𝐵
𝑘
+ 𝑋
𝑘
/𝜇
𝑘
= Φ
𝑘
Ω
𝑘
(Ψ
𝑘
)
𝑇; then

(7) can be rewritten as

min
Σ≥0

𝜇
𝑘

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Φ
𝑘
Ω
𝑘
(Ψ
𝑘
)
𝑇

− 𝑈Σ𝑉
𝑇
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ trace (Σ𝑝) . (9)
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Set 1 < 𝜌 < 2, 𝜆, 𝜇, 𝜀 and 𝐾. Initialize 𝑘 = 0, 𝐵
0
, 𝑋
0
, 𝜇
0

while Residual error =
󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐴

𝑘+1
− 𝐵
𝑘+1󵄩󵄩󵄩󵄩󵄩𝐿2

max {‖𝐶‖∞/𝜆, ‖𝐶‖2}
> 𝜀

𝐴
𝑘+1

= argmin
𝐴

𝐿(𝐴, 𝐵
𝑘
, 𝑋
𝑘
, 𝜇
𝑘
);

𝐵
𝑘+1

= argmin
𝐵

𝐿(𝐴
𝑘+1

, 𝐵, 𝑋
𝑘
, 𝜇
𝑘
);

𝑋
𝑘+1

= 𝑋
𝑘
+ 𝜇
𝑘
(𝐶 − 𝐴

𝑘+1
− 𝐵
𝑘+1

);
𝜇
𝑘+1

= min{𝜌𝜇𝑘, 𝜇};
𝑘 = 𝑘 + 1;
if 𝑘 > 𝐾 break; end

end

Algorithm 1

According to vonNeumann’s theoremon singular values [12],
we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Φ
𝑘
Ω
𝑘
(Ψ
𝑘
)
𝑇

− 𝑈Σ𝑉
𝑇
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

= trace((Ω𝑘)
𝑇

Ω
𝑘
) + trace (Σ𝑇Σ)

− 2trace(Φ𝑘Ω𝑘(Ψ𝑘)
𝑇

𝑈Σ𝑉
𝑇
)

≥ trace((Ω𝑘)
𝑇

Ω
𝑘
) + trace (Σ𝑇Σ) − 2trace((Ψ𝑘)

𝑇

Σ)

=
󵄩󵄩󵄩󵄩󵄩
Ω
𝑘
− Σ

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

.

(10)

Hence, the minimization problem (7) can be approximated
by

min
Σ≥0

𝜇
𝑘

2

󵄩󵄩󵄩󵄩󵄩
Ω
𝑘
− Σ

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ trace (Σ𝑝) . (11)

More concretely, that is,

min
𝜎𝑗≥0

𝜇
𝑘

2
(𝜎
𝑗
− 𝜔
𝑘

𝑗
)
2

+ (𝜎
𝑗
)
𝑝

. (12)

Let 𝐵𝑘 = 𝐶 − 𝐴
𝑘+1

+ 𝑋
𝑘
/𝜇
𝑘. It is not hard either to find that

the minimization problem (8) can be reduced to

min
𝐵
𝑖,𝑗

𝜇
𝑘

2𝜆
(𝐵𝑖,𝑗 − 𝐵

𝑘

𝑖,𝑗
)
2

+ (𝐵𝑖,𝑗)
𝑞

. (13)

From (12) and (13), the kernel of Algorithm 1 is the following
root-finder problem:

min
𝜍

𝛽

2
(𝜍 − 𝜉)

2
+ (𝜍)
𝛼
. (14)

Here, we borrow the numerical idea in [13] to solve (14).
For 𝛼 = 1, 1/2, 2/3, analytical solutions are used as calculated
by Algorithms 2 and 3 in [13]. For all other 𝛼 values, the
numerical root-finder method Newton-Raphson is exploited
to solve (14).

2.3. APG-Based Algorithm. This subsection exploits AGP as
well as the continuation technique to solve problem (2),
which is a nonconvex extension of [4]. First of all, a relaxed
minimization problem is produced from (2); that is,

min
𝐴,𝐵

𝐹 (𝐴, 𝐵) = min
𝐴,𝐵

]𝑓 (𝐴, 𝐵) + 𝑔 (𝐴, 𝐵) , (15)

where 𝑔(𝐴, 𝐵) = ‖ℎ(𝐴, 𝐵)‖
2

𝐿2
/2 and ] ≥ 0 is a relax-

ation parameter. Obviously, 𝐹(𝐴, 𝐵) is different from the
Lagrange function of (2) in Section 2.2. However, instead
of directly minimizing 𝐹(𝐴, 𝐵), a sequence of separable
quadratic approximations to 𝐹(𝐴, 𝐵) is minimized, denoted
as 𝑄(𝐴, 𝐵, Λ, Γ),

𝑄 (𝐴, 𝐵, Λ, Γ, ]) = 𝑔 (Λ, Γ) + ⟨∇𝑔 (Λ, Γ) , (𝐴, 𝐵) − (Λ, Γ)⟩

+
𝐿𝑔

2
‖(𝐴, 𝐵) − (Λ, Γ)‖

2

𝐿2
+ ]𝑓 (𝐴, 𝐵) ,

(16)

where (Λ, Γ) are specifically chosen points and 𝐿𝑔 = 2. Then,
𝐴, 𝐵 can be solved iteratively by alternating minimization of
𝑄(𝐴, 𝐵, Λ, Γ, ]) with reasonable choices of Λ, Γ. That is,

min
𝐴,𝐵

𝑄 (𝐴, 𝐵, Λ, Γ, ]) = min
𝐴,𝐵

]𝑓 (𝐴, 𝐵)

+
𝐿𝑔

2

󵄩󵄩󵄩󵄩(𝐴, 𝐵) − (𝐺Λ, 𝐺Γ)
󵄩󵄩󵄩󵄩
2

𝐿2
,

(17)

where

𝐺Λ = Λ −
1

2
∇𝑔 (Λ, Γ) , 𝐺Γ = Γ −

1

2
∇𝑔 (Λ, Γ) . (18)

To assure both the accuracy and efficiency of minimizing
𝑄(𝐴, 𝐵, Λ, Γ, ]), two key strategies are taken into account
deliberately. For one thing, (Λ, Γ) are determined by iterative
smoothed computation as suggested in [14]. For another, the
continuation technique is also applied to ] ≥ 0, just similar
to Algorithm 1. Moreover, the stopping criterion is identical
to the one proposed in [15] and utilized in [4]. The iteration
scheme is presented in Algorithm 2 specifically.

In the following,𝐴𝑗+1, 𝐵𝑗+1 can be solved, respectively, by

min
𝐴

𝐿𝑔

2

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝐺

𝑗

Λ

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ ]𝑗‖𝐴‖𝑝
𝑆𝑝
, (19)

min
𝐵

𝐿𝑔

2

󵄩󵄩󵄩󵄩󵄩
𝐵 − 𝐺

𝑗

Γ

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ ]𝑗𝜆‖𝐵‖𝑞
𝐿𝑞
. (20)
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Set 0 < 𝜂 < 1, 𝜆, ], 𝜏, 𝐽. Initialize 𝑗 = 1, 𝐴
0/−1

, 𝐵
0/−1

, Λ
0
, Γ
0
, ]0.

while Residual error =
󵄩󵄩󵄩󵄩󵄩
(Λ
𝑗
− 𝐴
𝑗+1
) + (𝐵

𝑗+1
− Γ
𝑗
)
󵄩󵄩󵄩󵄩󵄩𝐿2

√2max (1,√󵄩󵄩󵄩󵄩Λ𝑗
󵄩󵄩󵄩󵄩
2

𝐿2
+
󵄩󵄩󵄩󵄩Γ
𝑗󵄩󵄩󵄩󵄩
2

𝐿2
)

> 𝜏

Λ
𝑗
= 𝐴
𝑗
+
𝑡
𝑗−1

− 1

𝑡
𝑗

(𝐴
𝑗
− 𝐴
𝑗−1
) , Γ

𝑗
= 𝐵
𝑗
+
𝑡
𝑗−1

− 1

𝑡
𝑗

(𝐵
𝑗
− 𝐵
𝑗−1
);

𝐺
𝑗

Λ
= Λ
𝑗
−
1

2
(Λ
𝑗
+ Γ
𝑗
− 𝐶) , 𝐺

𝑗

Γ
= Γ
𝑗
−
1

2
(Λ
𝑗
+ Γ
𝑗
− 𝐶),

𝐴
𝑗+1

= argmin
𝐴

𝑄(𝐴, 𝐵
𝑗
, Λ
𝑗
, Γ
𝑗
, ]𝑗) ;

𝐵
𝑗+1

= argmin
𝐵

𝑄(𝐴
𝑗+1
, 𝐵, Λ
𝑗
, Γ
𝑗
, ]𝑗) ;

]𝑗+1 = max {𝜂]𝑗, ]} ;
𝑗 = 𝑗 + 1;
if𝑗 > 𝐽 break; end

end

Algorithm 2

Similar to (12) and (13) in Section 2.2, both (19) and (20)
are instances of rooter-find problems (14) and hence can be
solved efficiently by borrowing the numerical idea in [13].

3. Experimental Results

3.1. Experimental Settings. In this section, simulation experi-
ments are designed and conducted to show the validity of our
proposed approach. It firstly needs to produce available data
using 𝐶 = 𝐴

∗
+ 𝐵
∗, in which 𝐴∗ and 𝐵∗ are, respectively, the

true low-rank and sparse matrices that we wish to recover.
Without loss of generality, 𝐴∗ is generated as a product of
two 𝑚 × 𝑟 matrices whose entries are sampled i.i.d. from
Gaussian distribution𝑁(0, 1/𝑚), and the sparse matrix 𝐵∗ is
constructed by setting a proportion of entries to be ±1 and
the rest to be zeros. More specifically, if 𝑟 and spr represent,
respectively, the matrix rank and sparsity ratio, then the
MATLAB v7.0 scripts for generating 𝐴∗ and 𝐵∗ can be given
as

(i) A = 1/m∗randn(m,r)∗1/m∗randn(r,m);

(ii) B = zeros(m,m);

(iii) p = randperm(m∗m);

(iv) L = round(spr∗m∗m);

(v) B(p(1:L)) = sign(randn(L,1));

In the following experiments, set 𝑚 to 500, 𝑟 to 50, 100,
150, and 200, and spr to 5%, 10%, 15%, and 20%. To be noted,
the matrix recovery problem (2) roughly changes from easy
to hard as 𝑟 or spr changes from small to large. To assess the
accuracy of low-matrix recovery, the relative squared error
(RSE) is used, defined as

RSE =

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝐴

∗󵄩󵄩󵄩󵄩󵄩𝐿2

‖𝐴∗‖𝐿2
, (21)

where𝐴 is the recovered low-rankmatrix. And the number of
SVD’s is used to evaluate the computational efficiency, since

the running time of Algorithms 1 and 2 as well as [1, 3, 4, 7]
is dominated by the SVD in each iteration. The experiments
in this paper are conducted on a Lenovo computer equipped
with an Intel Pentium (R) Core i5-3470 CPU (3.20GHz) and
8GB of RAM.

3.2. Comparison between Algorithm 1 and RPCA [3]. In the
literature, although several different numerical algorithms
solvingRPCAhave been reported [3–6], theALMmethod [3]
is shown possessing the best performance in both accuracy
and efficiency. Hence, this subsection compares Algorithm 1
with its convex and reduced version, that is, RPCA [3].
As implementing Algorithm 1, the parameters 𝜌, 𝜆, 𝜀, 𝐾 are
uniformly set as 𝜌 = 1.5, 𝜆 = 1/√500, 𝜀 = 1𝑒−7,𝐾 = 100, and
the parameter𝜇 is set as𝜇 = 𝜇

0
⋅1𝑒−7, where𝜇0 is set as 1.25/�̃�

and �̃� is the largest singular value of𝐶. Besides,𝐵0, 𝑋0are both
set as zero matrices. As for value choices of 𝑝 and 𝑞, we set
them as 0.85 based on empirical studies, despite the fact that
it may produce more accurate recovery with choices adaptive
to different 𝑟 and spr.

Experimental results of Algorithm 1 and [3] are provided
in Tables 1, 2, 3, and 4 corresponding to different settings.
As the sparsity ratio spr equals 5%, it is obviously observed
that Algorithm 1 performs perfectly in recovering the true
rank of 𝐴∗ and is better than [3] in the term of RSE.
It is also noticed that, as the sparsity ratio spr becomes
larger, the recovery accuracy of both Algorithm 1 and [3]
reduces, too. But it is still the case that Algorithm 1 behaves
better than [3] no matter in the term of RSE or true rank
recovery.

One more point should be claimed which is that slightly
lower RSE’s can be achieved by Algorithm 1 as setting 𝐾 =

200. However, since the improvement in recovery accuracy
is very limited, we just choose 𝐾 = 100 for computational
efficiency.

3.3. Comparison between Algorithm 2 and RPCA [4]. As
running Algorithm 2, the parameters 𝜂, 𝜆, 𝜏, 𝐽 are uniformly
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Table 1: Low-rank recovery with Algorithm 1 and [3] (spr = 5%).

rank(𝐴∗)
𝑟

RSE # SVD Rank (𝐴)
[3] Algorithm 1 [3] Algorithm 1 [3] Algorithm 1

50 6.21𝑒 − 6 4.68e − 6 20 30 48 50
100 8.31𝑒 − 6 5.99e − 6 30 30 100 100
150 2.00𝑒 − 3 3.49e − 5 30 100 270 150
200 7.03𝑒 − 3 3.85e − 5 30 100 306 200

Table 2: Low-rank recovery with Algorithm 1 and [3] (spr = 10%).

rank(𝐴∗)
𝑟

RSE # SVD Rank (𝐴)
[3] Algorithm 1 [3] Algorithm 1 [3] Algorithm 1

50 7.55e − 6 9.22𝑒 − 6 30 30 50 50
100 3.32𝑒 − 4 2.81e − 5 30 100 192 100
150 4.70𝑒 − 3 4.56e − 5 30 100 309 150
200 9.30𝑒 − 3 1.30e − 3 30 100 325 361

Table 3: Low-rank recovery with Algorithm 1 and [3] (spr = 15%).

rank(𝐴∗)
r

RSE # SVD Rank (𝐴)
[3] Algorithm 1 [3] Algorithm 1 [3] Algorithm 1

50 1.75𝑒 − 5 1.52e − 5 30 30 50 50
100 2.50𝑒 − 3 3.87e − 5 30 100 287 100
150 7.90𝑒 − 3 6.01e − 5 30 100 328 151
200 1.23𝑒 − 2 3.60e − 3 30 100 334 398

Table 4: Low-rank recovery with Algorithm 1 and [3] (spr = 20%).

rank(𝐴∗)
𝑟

RSE # SVD Rank (𝐴)
[3] Algorithm 1 [3] Algorithm 1 [3] Algorithm 1

50 6.04𝑒 − 5 2.12e − 5 30 30 176 50
100 5.70𝑒 − 3 4.35e − 5 30 100 319 100
150 1.11𝑒 − 2 2.10e − 3 30 100 334 333
200 1.56𝑒 − 2 6.60e − 3 30 100 337 403

set as 𝜂 = 0.9 < 1, 𝜆 = 1/√500, 𝜏 = 1𝑒 − 7, and 𝐽 = 200,
and the parameter ] is set as ] = ]0 ⋅ 1𝑒 − 9, where ]0 is
set as the largest singular value of 𝐶, that is, �̃�. In addition,
𝐴
0/−1

, 𝐵
0/−1

, Λ
0, and Γ0 are all set as zero matrices. As for 𝑝

and 𝑞, similar to the above manner, they are both set as 0.9
based on intensive empirical studies.

Experimental results of Algorithm 2 and [4] are provided
in Table 5, 6, 7, and 8 corresponding to different settings. It
is also remarkable that Algorithm 2 recovers the true rank
of 𝐴∗ in almost all the scenarios, which is much superior to
Algorithm 1. Its second advantage over Algorithm 1 is that it
achieves slightly more robust recovery as 𝐵∗ is much grossly
corruptedand𝐴∗ is not sufficiently low-rank; for example,
rank(𝐴∗) is 200. In spite of that, it is observed in other
majority of cases that Algorithm 1 outperforms Algorithm 2
by 𝑂(1𝑒 − 1) in the term of RSE. Therefore, it can be
concluded that both algorithms possess their own advantages

Table 5: Low-rank recovery with Algorithm 2 and [4] (spr = 5%).

rank(𝐴∗)
𝑟

RSE # SVD Rank (𝐴)
[4] Algorithm 2 [4] Algorithm 2 [4] Algorithm 2

50 1.10𝑒 − 3 7.12e − 4 100 100 50 50
100 1.10𝑒 − 3 4.99e − 4 100 120 100 100
150 9.06𝑒 − 4 2.59e − 4 100 120 150 150
200 2.90𝑒 − 3 1.61e − 4 120 140 256 200

Table 6: Low-rank recovery with Algorithm 2 and [4] (spr = 10%).

rank(𝐴∗)
r

RSE # SVD Rank (𝐴)
[4] Algorithm 2 [4] Algorithm 2 [4] Algorithm 2

50 1.40𝑒 − 3 6.35e − 4 100 120 50 50
100 1.40𝑒 − 3 4.29e − 4 100 120 100 100
150 2.50𝑒 − 3 2.47e − 4 120 120 241 150
200 7.80𝑒 − 3 2.91e − 4 120 140 290 200

Table 7: Low-rank recovery with Algorithm 2 and [4] (spr = 15%).

rank(𝐴∗)
𝑟

RSE # SVD Rank (𝐴)
[4] Algorithm 2 [4] Algorithm 2 [4] Algorithm 2

50 1.70𝑒 − 3 5.73e − 4 100 120 50 50
100 2.10𝑒 − 3 3.36e − 4 100 120 114 100
150 6.50𝑒 − 3 2.71e − 4 100 140 283 150
200 1.21𝑒 − 2 7.00e − 4 120 100 140 210

Table 8: Low-rank recovery with Algorithm 2 and [4] (spr = 20%).

rank(𝐴∗)
r

RSE # SVD Rank (𝐴)
[4] Algorithm 2 [4] Algorithm 2 [4] Algorithm 2

50 2.00𝑒 − 3 5.28e − 4 100 120 70 50
100 4.10𝑒 − 3 3.31e − 4 120 120 259 100
150 1.11𝑒 − 2 4.36e − 4 120 140 297 150
200 1.62𝑒 − 2 2.10e − 3 120 140 305 282

and disadvantages, and on the whole, Algorithm 1 shows
better performance in terms of both recovery accuracy and
efficiency.

3.4. Comparison between Proposed Approach and [7]. In
the literature several nonconvex approaches for low-rank
matrix recovery have also been proposed, for example, [7–9].
However, only [7] announces that it outperformsALM-based
RPCA [3] in the term of recovery accuracy.

Table 9 presents the RSE, number of SVD, and recovered
rank achieved by [7] with sparsity ratios equal to 5% and 20%.
Making comparison among Tables 1, 4, 5, 8, and 9, we can
claim that both Algorithms 1 and 2 outperform [7] in terms
of RSE and true rank recovery when 𝐴

∗ is not sufficiently
low-rank or 𝐵∗ is much grossly corrupted. In the meanwhile,
we should also note that our method is computationally less
efficient than [7] because of slightly more SVD’s used in each
iteration, which is one of the future works to be studied.
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Figure 1: Residual error curves against iteration number for ALM-based Algorithm 1 (spr = 20%); (a) rank(𝐴∗) = 50, (b) rank(𝐴∗) = 100,
(c) rank(𝐴∗) = 150, and (d) rank (𝐴∗) = 200.

Table 9: Low-rank recovery with nonconvex approach [7].

rank(𝐴∗)
𝑟

RSE # SVD rank(𝐴)
5% 20% 5% 20% 5% 20%

50 8.29𝑒 − 7 2.91𝑒 − 6 40 60 50 50
100 9.97𝑒 − 7 1.67𝑒 − 1 68 70 100 195
150 7.39𝑒 − 5 3.94𝑒 − 1 72 73 419 259
200 1.19𝑒 − 1 5.36𝑒 − 1 73 73 471 266

3.5. Empirical Analysis on the Convergence of Algorithms 1 and
2. Asmentioned earlier, existed convergence results on ALM
and APG in [10, 11] are not applicable to problem (2) due to
the usage of nonconvex 𝐿𝑞 seminorm and Schatten 𝑝-norm,
which makes it difficult to conduct theoretical convergence
analysis of the proposed algorithms, either. In spite of that,
the empirical analysis can be made by plotting the residual

error curve against iteration number for each algorithm.
Specifically, the residual error curves are provided as the
sparsity ratio equals 20% for both Algorithms 1 and 2, as
shown, respectively, in Figures 1 and 2. It is obvious that the
two deduced algorithms are of empirically fast convergence
in each recovery scenario. Actually, this observation is also
valid to other easier recovery cases with lower sparsity ratios.
In addition, the number of iterations can be deduced from the
residual error curves for each recovery problem.

4. Conclusions and Discussions

In this paper, a generalized robust minimization framework
is proposed for low-rank matrix recovery by exploiting the
Schatten 𝑝-norm (0 < 𝑝 ≤ 1) and 𝐿𝑞 (0 < 𝑞 ≤ 1)

seminorm. And two numerical algorithms are deduced based
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Figure 2: Residual error curves against iteration number for APG-based Algorithm 2 (spr = 20%); (a) rank(𝐴∗) = 50, (b) rank(𝐴∗) = 100,
(c) rank(𝐴∗) = 150, and (d) rank(𝐴∗) = 200.

on the ALM and APG methods as well as efficient root-
finder techniques. Experimental results demonstrate that
the proposed algorithms possess their own advantages and
disadvantages and both perform more effectively than state-
of-the-art methods, either convex or nonconvex, in terms of
both RSE and true rank recovery.

Note that this paper does not consider the influence of
additive noise on the proposed algorithms, which actually
corresponds to the problem of noisy RPCA [16, 17]. As
claimed in [17], noisy RPCA is intrinsically different from
the RPCA problem, that is, the focus of this paper. Indeed,
the proposed algorithms in this paper are not quite robust
to additive noise, just the same as many existing approaches
to RPCA, for example, [1–4, 6–9]. To some degree, this
observation coincides with the investigations in [18, 19];
that is, the 𝐿𝑞 seminorm as a sparsity-enforcing penalty is
vulnerable against the influence of additive noise on the data,

as it resembles the 𝐿0 seminorm when 𝑞 approaches 0, in
spite of the fact that 𝑞 in Algorithms 1 and 2 is chosen,
respectively, as 0.85 and 0.9. Our future research topic
is to extend the proposed algorithms to the noisy RPCA
problem with applications to the field of image and vision
computing.
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