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Radar high resolution range profile has attracted considerable attention in radar automatic target recognition. In practice, radar
return is usually contaminated by noise, which results in profile distortion and recognition performance degradation. To deal with
this problem, in this paper, a novel denoising method based on sparse representation is proposed to remove the Gaussian white
additive noise. The return is sparsely described in the Fourier redundant dictionary and the denoising problem is described as
a sparse representation model. Noise level of the return, which is crucial to the denoising performance but often unknown, is
estimated by performing subspace method on the sliding subsequence correlation matrix. Sliding window process enables noise
level estimation using only one observation sequence, not only guaranteeing estimation efficiency but also avoiding the influence
of profile time-shift sensitivity. Experimental results show that the proposed method can effectively improve the signal-to-noise
ratio of the return, leading to a high-quality profile.

1. Introduction

Radar high resolution range profile (HRRP) contains rich
information for target feature analysis, such as target struc-
ture and scatterer distribution, and has received considerable
attention in radar automatic target recognition (ATR) in
recent years [1–7]. HRRP feature selection and extraction
have been investigated in [1, 2]. Parametric statistical models
have been applied to HRRP ATR [3–5]. High order spectra
and complex HRRP features have been studied for target
classification [6, 7]. In these works, high signal-to-noise ratio
(SNR) is a necessary condition. However the target return
is usually contaminated by noise in practice. This results
in HRRP signature distortion and recognition performance
degradation [8].

Some methods have been proposed to handle this prob-
lem in target recognition stage. The noise-robust bispectrum
features have been extracted for target recognition [9]. Mod-
ifying the statistical model parameters according to the noise

level of test samples is developed in [10], but this method
suffers from a high computational burden.

Noise-robust imaging is another effective approach. In
[11], higher order statistics is presented for imaging at low
SNR, which however has some information loss. Recently,
noise-robust compressive sensing (CS) imaging is developed
[12, 13]. In these methods, a key problem is how to estimate
the noise level, which impacts the quality of image because of
the noise sensitivity of CS. In [12] the noise level is estimated
by computing the energy of the noise cells, which are selected
by an energy-based threshold.The estimation accuracy of this
method relies on threshold selection and number of noise
cells. In [13], the noise variance is estimated by employing
the median value of finest scale wavelet coefficients. Usually,
HRRP is obtained from one observation sequence, in which
the number of samples is limited. In this scenario, these
methods cannot guarantee the estimation accuracy of noise
level.
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Another natural choice is to remove noise in radar return.
Wavelet shrinkage was shown to be effective when SNR is
beyond a certain threshold [14, 15]. However its performance
degrades largely in the presence of severe noise contami-
nation. Combined bispectrum-filtering is used to suppress
noise in HRRP to improve recognition performance [16, 17],
but this method requires a large number of observations to
average bispectrum estimates. In addition, for some common
profiling processes, for example, dechirping for wideband
signal, the dechirped output of target return containsmultiple
frequency components, which change with observations
due to HRRP time-shift sensitivity [18]. In this case, the
requirement of a large number of observations cannot be sat-
isfied.

Sparse representation (SR) theory shows that, in sparse
and redundant dictionary, signal energy concentrates on
minority atoms, whereas noise energy spreads over almost all
the atoms, and the signal can be stably recovered from noisy
measurements [19–21]. Based on this, in this paper, we pro-
pose a sparse representation denoising method to improve
the SNR of noisy return for profiling. A Fourier redundant
dictionary is established to sparsely describe the return and
the denoising problem is described as a sparse representation
model. Noise reduced return is recovered by solving the
sparse representation problem. The noise level, which is a
key parameter for denoising by sparse representation, is esti-
mated by preforming subspace method on the subsequence
correlationmatrix. In this way, the noise level can be obtained
only using one observation sequence, not only guaranteeing
the efficiency but also avoiding the influence of HRRP time-
shift sensitivity. Simulated and real data experiments are
provided to verify the effectiveness of the proposed denoising
method.

The rest of this paper is organized as follows. The basic
theory of radar high resolution range profiling is introduced
in Section 2. Radar return denoising by sparse representation
is discussed in Section 3. The simulated and real data exper-
iments are provided to verify the denoising performance in
Section 4, followed by conclusions in Section 5.

2. Radar High Resolution Range Profiling

Usually, HRRP is obtained by wideband signal, such as
linear frequency modulation (LFM) signal and stepped-
frequency (SF) signal. In this paper, we take the LFM signal
as an example to introduce the basic theory of radar high
resolution range profiling by dechirping process [22, 23].The
transmitted wideband LFM signal can be represented as
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denotes complex signal envelope, 𝑓𝑐 denotes carrier fre-
quency, 𝑇𝑝 is the pulse width, and 𝛾 is the frequency mod-
ulation slope.

Given reference range 𝑅ref, the dechirping reference sig-
nal can be represented as

𝑠ref (𝑡) = rect(
𝑡 − 2𝑅ref/𝑐

𝑇ref
)

× exp{𝑗2𝜋[𝑓𝑐 (𝑡 −
2𝑅ref
𝑐

) +

1

2

𝛾(𝑡 −

2𝑅ref
𝑐

)

2

]} ,

(3)

where𝑇ref is the pulse width of reference signal, usually larger
than 𝑇𝑝. Assuming a scatterer locating at range 𝑅𝑡, the return
from the scatterer is
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where𝐴 denotes the return amplitude.The dechirping output
is

𝑠𝑖𝑓 (𝑡) = 𝑠𝑟 (𝑡) ⋅ 𝑠
∗

ref (𝑡) , (5)

where ∗ stands for complex conjugate. Let 𝑅Δ = 𝑅𝑡−𝑅ref, and
after some manipulations, (5) can be rewritten as
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The later three phase terms in (6) are constants, with no
contribution to HRRP. Denoting the sum of the later three
phase terms by 𝜑, (6) can be rewritten as

𝑠𝑖𝑓 (𝑡) = 𝐴 ⋅ rect(
𝑡 − 2𝑅𝑡/𝑐

𝑇𝑝

) exp (−𝑗4𝜋
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= 𝐴 ⋅ rect(
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(7)

where 𝑓𝑑 = 2𝛾𝑅Δ/𝑐. Formula (7) shows that the dechirped
output of the return from one scatterer is a complex sinu-
soidal signal with a frequency proportional to its relative
range.
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3. Denoising by Sparse Representation

In this section, we start the presentation of the proposed
denoising method by first discussing how redundant dic-
tionary is established for sparsely describing the dechirped
return. Once the sparse representation model is established,
the noise level is estimated by subspace method, followed
with the reconstruction of the denoised signal by solving
sparse representation.

3.1. Dechirped Return Sparse Representation. In noisy cir-
cumstance, assume a target contains 𝐾 scatterers locating at
different ranges and there are𝑀 sampling points in a single
pulse. According to (7), the time domain sampling sequence
of the dechirping output pulse can be represented as

𝑦 (𝑚) = 𝑠 (𝑚) + 𝑛 (𝑚)

=

𝐾

∑

𝑘=1

𝐴𝑘 ⋅ exp (−𝑗2𝜋𝑓𝑘𝑚 + 𝑗𝜑𝑘) + 𝑛 (𝑚) ,

𝑚 = 0, 1, . . . ,𝑀 − 1,

(8)

where 𝐴𝑘, 𝑓𝑘, and 𝜑𝑘 are the amplitude, relative frequency
normalized by sampling rate, and constant phase of the return
from the 𝑘th scatterer, respectively. 𝑠(𝑚) and 𝑛(𝑚) denote
signal and the Gaussian white noise sampling sequences,
respectively. Let y = [𝑦(0), 𝑦(1), . . . , 𝑦(𝑀 − 1)]

𝑇, s =

[𝑠(0), 𝑠(1), . . . , 𝑠(𝑀−1)]
𝑇, andn = [𝑛(0), 𝑛(1), . . . , 𝑛(𝑀−1)]

𝑇;
then (8) can be rewritten as

y = s + n =
𝐾

∑

𝑘=1

𝑢𝑘 ⋅ k𝑘 + n, (9)

where 𝑢𝑘 = 𝐴𝑘 exp(𝑗𝜑𝑘) and k𝑘 = [1, exp(−𝑗2𝜋𝑓𝑘), . . . ,
exp{−𝑗2𝜋𝑓𝑘(𝑀 − 1)}]

𝑇. Formula (9) indicates that the
dechirped output sequence contains multiple complex
sinusoidal components superposed with noise. Usually,
the number of the main scatterers of a target is much less
than that of the range cells in the pulse. Thus s is sparse in
frequency domain and can be sparsely represented by the
complex Fourier redundant dictionary, which is constructed
as
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1
,𝜙
2
, . . . ,𝜙

𝑁
} ∈ C
𝑀×𝑁

, (10)

where

𝜙
𝑖
= exp {−𝑗2𝜋 ⋅ f𝑁 (𝑖) ⋅m} , 𝑖 = 1, . . . , 𝑁, (11)

m = [0, 1, . . . ,𝑀 − 1]
𝑇, and 𝑁 > 𝑀. In (11), f𝑁 = [0, 1/𝑁,

. . . , (𝑁 − 1)/𝑁] is the normalized frequency. Then (9) can be
represented as

y = Ax + n, (12)

where x is a sparse vector, composed of the decomposition
coefficients of signal s in A. Sparse representation theory
shows that if x satisfies ‖x‖0 < (1/2)spark(A), x can be stably
solved by the following 𝑙0 optimization problem [21]:

x̂ = argmin ‖x‖0 s.t. 

y − Ax

2
≤ 𝛿, (13)

where ‖ ⋅ ‖0 stands for the 𝑙0 normof a vector (i.e., the number
of its nonzero elements), spark(A) denotes the minimum
number of linearly dependent columns of A, and 𝛿 is the
noise level. It is hard to solve (13). Approximated solution can
be acquired by greedy algorithms, for example, orthogonal
matching pursuit (OMP) [24]. In this paper, OMP is utilized
to solve (13) because of its simplicity and efficiency. When
obtaining x̂ from (13), the denoised signal can be acquired by
ŝ = Ax̂.

3.2. Estimation of Noise Level. In solving (13) by OMP, the
noise level 𝛿 is a crucial parameter, which is the iteration
terminal condition of OMP. However, in most cases, 𝛿 is
unknown and thus needs to be estimated. An underestimated
𝛿will introduce extra noise components in the recovered sig-
nal, and the overestimated one will cause some scatterer
information loss. Hence precise estimation of noise level is
necessary.

Subspace method combined with minimum description
length (MDL) criterion is an effective method for detect-
ing the number of signals and estimating the signal-to-
interference ratio (SIR) [25–27]. To guarantee the estima-
tion performance, a number of observations are needed to
evaluate sample covariance matrix; meanwhile the signal
frequencies should not change during these observations.
However, the frequency components in the dechirped radar
return vary significantly with observations due to the HRRP
time-shift sensitivity [18]. As a result, it is hard to incorporate
multiple consecutive observations to estimate noise power as
[27]. On the other hand, collecting multiple observations to
estimate noise power impairs the efficiency. In this paper, the
noise level is estimated by subspace method with only one
observation sequence rather than multiple observations.

In general, the number of sampling points within a single
pulse is much more than that of the target scatterers and the
dechirped return can be assumed to be a stationary signal.
Sliding window process can be adopted to obtain subse-
quences, which are used to construct subsequence correlation
matrix. According to (8), assuming one observation sequence
of the dechirped signal is 𝑦(𝑚), 𝑚 = 0, 1, . . . ,𝑀 − 1, subse-
quences are constructed as

y𝑖 = [𝑦(𝑖), 𝑦(𝑖 + 1), . . . , 𝑦(𝑖 + 𝐿 − 1)]
𝑇
= s𝑖 + n𝑖 = A𝛼𝑖 + n𝑖,
𝑖 = 0, 1, . . . ,𝑀 − 𝐿,

(14)

where A = [A1,A2, . . . ,A𝐾] denotes subsequence represen-
tation basis matrix,A𝑘 = [1, exp(−𝑗2𝜋𝑓𝑘), exp(−𝑗2𝜋2𝑓𝑘), . . . ,
exp(−𝑗2𝜋(𝐿−1)𝑓𝑘)]

𝑇, 𝑘 = 1, 2, . . . , 𝐾 is the 𝑘th basis ofmatrix
A, and 𝛼𝑖 = [𝐴1 exp(−𝑗2𝜋𝑖𝑓1 + 𝑗𝜑1), 𝐴2 exp(−𝑗2𝜋𝑖𝑓2 + 𝑗𝜑2),
. . . , 𝐴𝐾 exp(−𝑗2𝜋𝑖𝑓𝐾+𝑗𝜑𝐾)]

𝑇 is the representation coefficient
vector of y𝑖. The subsequence correlation matrix is given by

̂R =

1

𝑀 − 𝐿 + 1

𝑀−𝐿

∑

𝑖=0

y𝑖y
𝐻

𝑖
, (15)

where𝐻 denotes conjugate transpose. Let 𝐿 > 𝐾. The expec-
tation of ̂R is

̂R𝐸 = ̂R𝑆 + ̂R𝑛 = ̂R𝑆 + 𝜎
2
Ι, (16)
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where R̂𝑛 = 𝜎
2Ι denotes the noise correlation matrix, 𝜎2 is a

scalar constant denoting noise power, Ι is the identify matrix,
and

̂R𝑆 =
1

𝑀 − 𝐿 + 1

𝑀−𝐿

∑

𝑖=0

s𝑖s
𝐻

𝑖
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𝑀−𝐿

∑

𝑖=0

A𝛼𝑖𝛼
𝐻

𝑖
A𝐻 = 1

𝑀 − 𝐿 + 1

AΡA𝐻
(17)

with P = ∑
𝑀−𝐿

𝑖=0
𝛼𝑖𝛼
𝐻

𝑖
= 𝛽𝛽𝐻, 𝛽 = [𝛼0,𝛼1, . . . ,𝛼𝑀−𝐿]. ̂R𝑆

stands for the signal correlationmatrix. Let𝑀−𝐿+1 > 𝐿 > 𝐾.
Thematrix 𝛽 is row linearly independent; namely, the rank of
𝛽 is 𝐾. It follows that the rank of R̂𝑆 is 𝐾; equivalently, the
𝐿−𝐾 smallest eigenvalues of ̂R𝑆 are all equal to zero.Thus ̂R𝑆
can be diagonalized by

U𝐻̂R𝑆U = Λ𝑆, (18)

where U is an orthogonal matrix and Λ𝑆 = diag[𝜆1, 𝜆2, . . . ,
𝜆𝐾, 0, . . . , 0], 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝐾. In the same way, ̂R𝐸 can be
diagonalized as

U𝐻̂R𝐸U = Λ𝑌 = Λ𝑆 + 𝜎
2
Ι, (19)

where Λ𝑌 = diag[𝜆1 + 𝜎
2
, 𝜆2 + 𝜎

2
, . . . , 𝜆𝐾 + 𝜎

2
, 𝜎
2
, . . . , 𝜎

2
]

is the eigenvalue matrix of R̂𝐸. It seems that the noise power
can be estimated by observing the rest of the smallest 𝐿 − 𝐾
eigenvalues of ̂R𝐸. However, in practice, because of the finite
length of sampling sequence, the smallest 𝐿 − 𝐾 eigenvalues
are usually not equal to each other. In this case, we can utilize
minimum description length (MDL) criterion to detect the
noise components and the noise power can be estimated by
averaging the rest of the smallest 𝐿 − 𝐾 eigenvalues [27].

According to the above analysis, for a 𝑀 × 1 noisy
sequence y, the procedure of estimating noise level 𝛿 can be
summarized as follows.

(1) Estimate the subsequence correlation matrix by (15).
(2) Perform eigenvector decomposition of the correlation

matrix as ̂R = UΛU𝐻, where

Λ = diag (𝑙𝑖) , 𝑖 = 1, 2, . . . , 𝐿, 𝑙1 ≥ 𝑙2 ≥ ⋅ ⋅ ⋅ ≥ 𝑙𝐿. (20)

(3) For 𝑝 = 0, 1, . . . , 𝐿 − 1, compute the MDL function:

MDL (𝑝)

= − (𝑀 − 𝐿 + 1) (𝐿 − 𝑝) log(
∏
𝐿

𝑖=𝑝+1
𝑙
1/(𝐿−𝑝)

𝑖

(1/ (𝐿 − 𝑝))∑
𝐿

𝑖=𝑝+1
𝑙𝑖

)

+ 0.5𝑝 (2𝐿 − 𝑝) log (𝑀 − 𝐿 + 1) .

(21)

(4) Find the index �̂� that minimizes the MDL function;
that is,

�̂� = argmin
𝑝=0,1,...,𝐿−1

MDL (𝑝) . (22)
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Figure 1: Noiseless HRRP of simulated target.

(5) Estimate the noise power by averaging the rest of the
smallest 𝐿 − �̂� eigenvalues as

�̂�
2
=

1

𝐿 − �̂�

𝐿

∑

𝑖=�̂�+1

𝑙𝑖. (23)

(6) Calculate the noise level as

̂
𝛿 = √𝑀�̂�

2
. (24)

In the above procedure, the noise level is estimated using
only one-observation data and thus this denoising method
can be used to deal with observations at any unknown SNR.
We refer to this denoising method as sparse representa-
tion denoising with noise level estimation by subsequence
(SRDN-NS).

SRDN-NS contains two stages: noise level estimation
and the sparse-representation solving. Hence its computa-
tional complexity can be divided into parts: (i) noise level
estimation, mainly solving eigenvector decomposition of
subsequence correlation matrix, requires 𝑂(𝐿3) operations;
(ii) the sparse-representation solving, if (13) is solved by
OMP, requires 𝑂(KMN) operations [24].

4. Results and Discussion

In this section, both simulated experiments and real data are
explored to verify the denoising performance of SRDN-NS.

4.1. Simulated Experiments Setup. We simulate the noisy
radar return of a target with 5 scatterers to verify the effective-
ness of SRDN-NS.The scatterer distribution and radar system
parameters are shown in Tables 1 and 2, respectively.

Under the above system parameters, every sampling
sequence of a single pulse is a 256-length vector. Assuming
the reference range for dechirping is 12010m, the noiseless
HRRP obtained by FFT is illustrated in Figure 1.

The number of scatterers is 5, much less than the 256
range cells. Thus the sampling sequence is a sparse vector
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Table 1: Scatterer distribution.

Scatterer Range (m) Amplitude of return
1 12000 0.8
2 12002.1 0.5
3 12005.3 0.4
4 12006.7 1
5 12010 0.7

Table 2: Radar system parameters.

Parameter name Value
Carrier frequency 5.52GHz
Bandwidth 400MHz
Pulse width 25 us
Reference pulse width 25.6 us
Sampling rate for dechirped return 10MHz

in frequency domain. To produce noisy return, we add the
complex Gaussian white noise (CGWN) into the noise-free
return with SNR defined as

SNROrig =
∑
𝐾

𝑘=1
𝐴
2

𝑘

𝜎
2

, (25)

where 𝐴𝑘 is the amplitude of the return from 𝑘th scatterer,
𝜎
2 is the variance of CGWN, and 𝐾 denotes the number of

scatterers.

4.2. Noise Level Estimation. Noise level estimation is a critical
problem for SRDN-NS. In the first experiment, we surveyed
the estimation accuracy of 𝛿 as discussed in Section 3.2. The
length of sliding window is 60. As a comparison, the selecting
noise cells method [12] and wavelet method [13] are also uti-
lized to estimate the noise level. In wavelet method, the “db8”
wavelet basis is chosen for its experimental superiority over
other “db”wavelet bases.Thedechirped return is decomposed
into 8 layers of wavelet. To verify the estimation performance
of these methods, the absolute estimation error |̂𝛿−𝛿|, where
̂
𝛿 is the estimation value of noise level 𝛿, is investigated by
a Monte Carlo experiment. 100 trails are performed at every
SNR, and the results with SNR varying from −10 dB to 20 dB
are shown in Figure 2. It can be seen that, in general, the
proposed sliding subsequence method has better estimation
performance than selecting noise cells and wavelet. Notice
that the estimation error of selecting noise cells method is
not stable reducing with SNR increasing. That is because,
with SNR increasing, the sidelobe of HRRP introduces much
error; besides the threshold which determines noise cells is
not easy to select.

4.3.Denoising Performance. In this subsection,we investigate
the denoising performance of SRDN-NS. The redundant
dictionary is established according to (10) with𝑀 = 256 and
𝑁 = 1024, 2048, respectively, for different experiments. OMP
is employed to solve (13) for recovering the denoised return.
For comparing denoising performance, SRDN with noise
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Figure 2: Estimation error of noise level by various methods with
SNR varying from −10 dB to 20 dB.
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level known (referring to it as SRDN-𝛿) and the traditional
DWTDNas discussed in [14, 28, 29] are also utilized to reduce
noise in the return. InDWTDN, “db8” wavelet basis is chosen
and the dechirped return is decomposed into 8 layers of
wavelet, and then the Heursure threshold is used to reject
noise. For full comparison, DWTDN with noise variance
known is also presented, and the soft threshold is selected as
𝜆 = 𝜎√2 ln𝑀.

To verify the denoising performance, we define SNR of
the denoised return as

SNR𝑑 = 10 log10
‖s‖22

‖ŝ − s‖22
, (26)
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Figure 4: Profiling results of simulated return: (a) noiseless HRRP and noisy HRRP at 10 dB (I) and noisy HRRP at 1 dB (II); (b) noiseless
HRRP and HRRP with DWTDN; (c) noiseless HRRP and HRRP with SRDN-NS.

where s denotes the original noise-free return and ŝ denotes
the denoised return. ‖ŝ − s‖2

2
stands for the noise components

and information loss in the denoised return. 100Monte Carlo
trails are performed to compute SNR𝑑 at every SNR. The
denoising results of these methods with original SNR varying
from 0 dB to 20 dB are showed in Figure 3.

It can be seen from Figure 3 that SRDN presents much
better denoising performance than DWTDN.This is because
the dechirped radar return is composed of complex sinu-
soidal components. It is more sparsely represented in the
Fourier redundant dictionary than in wavelet basis; it follows
that the signal energy is more concentrated in the Fourier
redundant dictionary, thus leading to a better denoising
performance. Note that the denoising performance of SRDN
improves with 𝑁 increasing. The reason is that, with 𝑁

increasing, A gradually improves frequency resolution, and
the dechirped signal can be represented more exactly with
less atoms in A. But 𝑁 cannot increase infinitely because of
the limitation of computational cost. In addition, compared
with SRDN-𝛿, SRDN-NS provides a close performance; in
other words, the denoising performance of SRDN-NS is
approaching the performance upper bound of SRDN.

4.4. Profiling Results. In this subsection, the profiling results
by FFT after SRND-NS denoising are illustrated in Figure 4.
The experimental parameters are the same as the experiment
in Section 4.3. The original noisy HRRPs at different SNRs
are shown in Figure 4(a), 10 dB in (I) and 1 dB in (II). For
comparison, the profiling results withDWTDNare presented
in Figure 4(b), which still contain some noise components
around signal part, whereas SRDN-NS provides precise and

clear HRRPs in Figure 4(c). Notice that, in low SNR scenario,
the denoised return by SRDN-NS may lose some weakened
signal components or still contain a little strong noise (as
shown in (II) of Figure 4(c)) due to the estimation error of
noise level.

4.5. Real Data Profiling Results. We apply SRDN-NS to
denoise the real return of AN-26 plane under different
noise levels in this subsection. This dataset was previously
described and utilized in [10]. The radar system parameters
are the same as the simulated experimental parameters in
Table 2. The profiling results by FFT after denoising by
DWTDN and SRDN-NS are shown in Figure 5. The noisy
HRRPs with different noise levels are shown in Figure 5(a),
high SNR (I) and low SNR (II). Figure 5(b) shows that the
HRRPs with DWTDN still contain some noise components
around the signal part, whereas, as shown in Figure 5(c),
SRDN-NS provides much clearer HRRPs and preserves most
of the information.

5. Conclusions

This work has developed an effective denoising method,
SRDN-NS, for high resolution range profiling at low SNR.
Thedenoised return is recovered by solving a sparse represen-
tation problem. Simulation and real data results demonstrate
that SRDN-NS can greatly enhance SNRof radar return, lead-
ing to a high-qualityHRRP. In this work, we only consider the
influence of the zero-mean Gaussian white noise; however,
there are many other complicated noise environments, such
as ground clutter and sea clutter, that the radar system may



International Journal of Antennas and Propagation 7

N
or

m
al

iz
ed

 am
pl

itu
de

 (d
B)

(I)

0 50 100 150 200 250

(II)

−60

−50

−40

−30

−20

−10

0

−60

−50

−40

−30

−20

−10

0

N
or

m
al

iz
ed

 am
pl

itu
de

 (d
B)

(a)

0 50 100 150 200 250

(b)

0 50 100 150 200 250

(c)

Figure 5: Profiling results of AN-26 real return: (a) the noisyHRRPs at high SNR (I) and low SNR (II), respectively; (b)HRRPswithDWTDN;
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face, so in the future we will continue our study on these
complicated environments.
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