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Memristor and memcapacitor are new nonlinear devices with memory. We present a novel memcapacitor model that has the
capability of capturing the behavior of a memcapacitor. Based on this model we also design a chaotic oscillator circuit that contains
a HP memristor and the memcapacitor model for generating good pseudorandom sequences. Its dynamic behaviors, including
equilibrium points, stability, and bifurcation characteristics, are analyzed in detail. It is found that the proposed oscillator can
exhibit some complex phenomena, such as chaos, hyperchaos, coexisting attractors, abrupt chaos, and some novel bifurcations.
Moreover, a scheme for digitally realizing this oscillator is provided by using the digital signal processor (DSP) technology. Then
the random characteristics of the chaotic binary sequences generated from the oscillator are tested via the test suit of National
Institute of Standards and Technology (NIST). The tested randomness definitely reaches the standards of NIST and is better than

that of the well-known Lorenz system.

1. Introduction

In 1971, Chua deduced the existence of memristor by the
completeness of basic circuit elements [1]. In 2008, Strukov
et al. from HP labs successfully realized a memristor using
TiO, material and nanotechnology [2]. Memristor and its
applications in nonlinear circuits have attracted immense
worldwide interest from both academia and industry.

Memcapacitor is member of a large family of new cir-
cuit elements postulated by Chua in the late seventies and
presented as one of 4 guest lectures at the 1978 European
Conference on Circuit Theory and Design (ECCTD) [3].
Memcapacitor is formally defined by Chua in 2003 [4]. More
recently, memcapacitor and meminductor were presented at
the keynote lecture of the First Symposium on Memristors,
held in Berkeley, California, in 2008 [5]. The nanoscale circuit
elements, that is, memristor, memcapacitor, and memin-
ductor, have memorial properties and can store informa-
tion without power supplies. Hence, memorial nanodevices
became a hot point of research in electronics and material
science.

With the realization of nanoscale memristor, the
memristor-based chaotic circuit is widely studied. In the
proposed memristor-based oscillators, at present, most
models of memristors are piecewise linear or quadratic or
cubic smooth functions [6, 7]. Based on the piecewise linear
model, a simplest chaotic circuit was presented, which has
only three elements in series: a linear capacitor, a linear
inductor, and a memristor [8]. In [9], a chaotic circuit based
on the realistic model of the HP memristor is introduced.
The circuit makes use of two HP memristors in antiparallel.

On the contrary to memristor, there are fewer research
reports on the circuit that contains memcapacitor or the
combination of memcapacitor and memristor.

Although actual solid-state memcapacitor has not been
yet realized so far, it is important to design effective
memcapacitor models and make prospective studies for its
applications [10]. In 2009, a piecewise linear memcapacitor
model was first presented in [5]. Then a memcapacitor-based
chaotic oscillator was constructed by using the memcapacitor
model with the piecewise linear ¢-o characteristic [11]. Some
other memcapacitor models were established. Reference
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FIGURE I: Physical model of HP memristor.

[12] presented a mutator for transforming memristor into
memecapacitor, and [13]designed a memcapacitor emulator
based on a memristor. For convenience [10] described a float-
ing memcapacitor emulator that can be practically applied
in electronic circuits. For simplicity, a new memecapacitor
emulator without using any memristor was proposed in [14],
and different behavioral memcapacitor models [15-17] were
successively proposed.

Meanwhile, in order to explore the circuit characteris-
tics of memristor, memcapacitor, and meminductor, some
chaotic oscillators based on these memory elements were
designed [18-22], and some special phenomena were found,
such as coexistence attractors, hidden attractors, and extreme
multistability.

Reference [23] introduced an emulator of floating mem-
capacitor and meminductor by using current conveyors.
Reference [24] describes a novel 5-component chaotic circuit
based on a charge-controlled memcapacitor; it provides a
thorough theoretical analysis of the circuit and extensive
simulation results accurately.

The above-mentioned chaotic oscillators contain mostly
only one memory device. So we knew little about the
properties of the circuit that contains multimemory devices.
And in general, the practical application circuits of the
memory devices are the hybrid circuits of memristor,
memcapacitor, and meminductor. Aiming at this prob-
lem, this paper proposes a charge-controlled memcapac-
itor model and designs a chaotic circuit using a HP
memristor and the memcapacitor model for exploring the
characteristics of nonlinear circuits containing memris-
tor and memcapacitor. We analyze the complex nonlinear
dynamic behaviors of this circuit and find some important
dynamical properties. In addition, a DSP experiment is
designed for confirming the proposed oscillator. Finally,

its random characteristics are tested by the NIST stan-
dards.

2. HP TiO, Memristor Model

In 2008, a physical device with memristor function was
realized by nanolevel TiO, thin film in HP labs. The physical
model is shown in Figure 1.

One of the layers is missing some of the oxygen atoms,
which is called doping layer (TiO,_, layer) and has stronger
electrical conductivity. The other layer is a pure TiO, layer
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without impurities, which is called a nondoped layer with
high resistance. The expression for the TiO, memristor is

M:Ron%+Roﬁ(1—%>,

€))
W i
a  Hp 't

where M is called memristance; R, and R4 are the low
resistance and high resistance for w = D and w = 0, re-
spectively; u, is the dopant mobility; i(¢) is the current
through the memristor; w is the thickness of TiO,_, layer and
D represents the total thickness of the memristor.

By Ohm’s law, we have

v(t) = Mi(t) = (Ron%(t) + Ry (1 - wT(t)»i(t). ()

Inserting (1) into (2), we can simplify it to

v(t) = <R0ff - %mRon J_t i(1) dT) i(t)
:<a—br ihﬁh)ﬂﬂ 3)

:R<Jt i(‘[)d‘[)i(t),

wherea = Ry, b = (Ryg — Ron).“vRon/Dz'

3. Memcapacitor Model Based on
HP TiO, Memristor

In 2009, Di Ventra et al. extended the concept of memory
devices from memristor to memcapacitor and meminductor,
where the memcapacitor is defined as [5]

q(t) = Cp (v, 1) v (1),

x=f(x,nt),
» (4)
v(t) =Cy (x,9.t)q (),
x=f(xqt),

where ¢(t) is the quantity of the charge at time ¢, v(t) is
the corresponding voltage across the memcapacitor, x is
an internal variable of the memcapacitor, and C,, and Cj;
are the memcapacitance and the inverse memcapacitance,
respectively. The above definition of memcapacitor can be
simplified to [5]

t
qt)=Cy [Jt v (1) dr] v(t) = Cyle] v (D),

) (5)
V(1) = ;) “ q(r)dr] 4(t) = Gyl [o1q (t)

called voltage-controlled and charge-controlled memcapaci-
tors, respectively.
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FIGURE 2: Hysteretic curve and waveform of the memcapacitor. (a) Voltage-charge hysteretic curve. (b) Waveforms of voltage and charge.

Nanoscale devices such as memristor, memcapacitor,
and meminductor are common at the nanoscale, where the
dynamical characteristics of ions and electrons are likely
to depend on the history of the system that exhibit their
memorability [5]. From the points of mathematics and
circuit, we infer that memcapacitor and memristor have the
same constitutive relation for the ¢-o of memcapacitor and
@-q of memristor, respectively.

Analogous to (3), we obtain the simplified model of a
memecapacitor as

qt) = (a —bL v (1) dT> v(t), (6)

wherea — b Lt v(t)dT is the memcapacitance Cy,[¢].

Inverse memcapacitance and memcapacitance follow the
same law except that they are reciprocal. So we can write
down the mathematical expression of inverse memcapaci-
tance according to (6):

V) = (c —d j 4@ dr) 40, %

where (c—d f: q(7)dr) is the inverse memcapacitance CR} (o]

An emulator of the memcapacitor, that is, (6) or (7), can
be realized by an equivalent analog electronic circuit, which
can implement the operations of (6) or (7).

In the practical circuit applications, common is the
charge-controlled memcapacitor. So we choose the expres-
sion described in (7) as the model of memcapacitor. The
physical parameters of TiO, memristor, where R, = 100 Q,
Ry = 160000, u, = 107 cm*s'V™!, and D = 10nm,
are equivalent to set ¢ = 16, d = 15900 in memcapac-
itor model. Assume that the input of the memcapacitor is
q(t) = sin(10007t); then the voltage-charge curve and their

O_

FIGURE 3: Parallel connection of a memcapacitor and a negative
conductor.

corresponding waveforms of the memcapacitor are shown in
Figure 2.

When a memcapacitor and a negative conductor are
in parallel, shown in Figure 3, the parallel circuit can be
equivalent to an active capacitive circuit that can provide
energy to maintain oscillation for a memcapacitor-based
oscillator. The total current and voltage of the parallel circuit
arei =i +igand v =vg = v, respectively, and then the
total charge of the parallel circuit can be described as

t t
q= L ide= [ (ic, +i)dt = e, +ae  ®
0 to

where g, denotes the charge of memcapacitor C,,,, g is the
charge of negative resistor, and

g = j ~Gvg, (1)dt = —GJ (c-doc,) ac, e
9)
=-G (Co’cm - OSdO’ém) .



FIGURE 4: Nonlinear circuit containing a memristor and a memca-
pacitor.

So the parallel circuit can be equivalent to an active capacitive
circuit, in which its voltage v and charge g are

ch = (C - dacm) qcm,
q9=4qc, +9c (10)

=qc, -G (cocm - O.Sdoém) ,

where o = _[ qc, dt, called integration variable of charge in
this paper.

4. Chaotic Circuit Based on
Memcapacitor and Memristor

We design a nonlinear circuit, as shown in Figure 4, which
contains an active memcapacitor C:n (a memcapacitor in
parallel with a negative resistor), a TiO, memristor M, a
linear inductor L, a linear capacitor C, and a linear resistor
R.

The state equations of the proposed circuit can be
obtained by Kirchhoft’s current and voltage laws:

dv, . 1
d_tC:_IL-’-E(VCm_VC)’

LdiL—v Mi

E‘ (ol L

(11)

dqi:Gv +l(v - )

dt ¢, Tr\e7 Ve, )

qu_i

e P

whereve = (c—dog )qc, .M = a-bqy,andog = chmdt.
Itweletx =vg, y=1,2=4q¢ ,w=0¢c,v=qym=1/L,
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n =1/C, j = 1/R,and k = G, (11) can be simplified to the
following equations:

%:n(j((c—dw)z—x)—y),
%zm(x—(a—bv)y),

dz .
Ezk(c—dw)z+](x—(c—dw)z), (12)
dw _,

a7

@ _

a7

where the fourth equation of (12) is an added equation
according to the relation o = j qc, dt.

Let the circuit parameters m = 7.35,n = 0.17,j = 4.8,and
k = 2.1, the memristor parameters a = 0.01 and b = 0.1, and
the memcapacitor parameters ¢ = 0.7 and d = —2.0. When
the initial value is (0.01, 0.10, 0.01, 0.01, 0.01), system (12)
possesses a chaotic attractor with the Lyapunov exponents:
L, = 00836, L, = 0.0065, Ly = 0, L, = —0.0080, and
Ly = -2.0474. The projections of the 5D chaotic attractor
on the 2D plane are shown in Figure 5. The projection of
Poincaré mapping trajectory on z = 0 cross section is shown
in Figure 6(a); and the continuous waveforms of the partial
state variables x, z, and v are shown in Figure 6(b).

5. Basic Dynamic Behaviors

5.1. Equilibrium Point Set and Stability. Letx = y =z =w =
¥ = 0; the equilibrium points of (12) can be obtained as a set:

E={(x,y,zw,v) | x=y=2=0, w=¢, v=0}. (13)

Thus every point in w-v plane is the equilibrium point of the
system, where ¢, and ¢, are arbitrary real numbers, implying
that the system has an infinite number of equilibria. The
Jacobi matrix of the system at the equilibrium set is

[—-jn -n  jnC, 0 0]
m -mM 0 00
Jacobi = | j 0 rC, 00], (14)
0 0 1 00
| 0 1 0 0 0]

where C,, = c—dc;, M = a—bc,,and r = k— j. Taking circuit
parameters as m = 7.35,n = 0.17, j = 4.8, k = 2.1,a = 0.01,
b =0.1,c =07 andd = -2.0, we get the characteristic
equation of equilibrium point set as

AP +plegrl =0, (15)
where
p=jn-rC, +mM,
q=n(m-jC,, (j—r)+ jmM)—-mrMC,, (16)

I=-n(mr+ jM (mr + j))C,,.
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FIGURE 5: Chaotic attractors of the oscillator. (a) x-y phase plane. (b) y-z phase plane. (c) z-w phase plane. (d) w-v phase plane. (e) v-x phase
plane. (f) z-w-v phase space.
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FIGURE 6: (a) Projection of Poincaré mapping. (b) Continuous waveforms of state variables x, z, and v.

Equation (15) demonstrates that (12) has two zero characteris-
tic roots and three nonzero characteristic roots, and the coef-
ficients of A are all nonzero real numbers. By Routh-Hurwitz
stability conditions, we can get the coeflicient determinant:

a, a 0 0 0| |p1000
a; a, a; a; 0 Il gp1lo0
As=las a, a; a, a;|=|0 0 [ q p|. 17)

a, as as a, as| |0 0 0 0 I
ag dg a; dg 0ds 00000O0

If a, > 0, the necessary and sufficient condition for the
stability of the system is that principal minors of each order
are greater than zero; thus

ALAy A AL > 0. (18)

Now the real parts of the three nonzero characteristic
roots are all negative, implying that the system is stable. If
principal minors of each order are not all positive, that is, at
least one is less than or equal to zero, the system is unstable.
When circuit parameters are m = 7.35,n = 0.17, j = 4.8,
k=21,a=001,b=0.1,c =0.7,d = -2.0,¢, = 0.1,¢, = 0.1,
and a,, = 1, the principal minors of each order are

A, = p= 3246,

A, = pq—1=-112126,

A, =lpq—I* = —34.0449, 19)
Ay=0,

As=0.

So, the system is unstable, which fulfills the condition to
produce chaos.

5.2. Influence of Parameter b on Dynamic Characteristics.
Whena =0.01,¢ =0.7,d = -0.8,m = 7.35,n = 0.17, j = 4.8,
and k = 2.1, the bifurcation diagram and Lyapunov exponent
spectrum of the system along with the change of parameter b
are shown in Figure 7. For clarity, the fifth Lyapunov exponent
curve is not drawn in Figure 7(b). In this paper, the maximum
value method is used to draw the bifurcation diagram and the
Jacobi method is used to calculate the Lyapunov exponents.

From Figure 7(a), it can be seen that system (12) enters
chaotic state via an irregular period bifurcation and a period-
doubling bifurcation and then evolves eventually into a
periodic orbit via an inverse period-doubling bifurcation
process.

Obviously, there are many periodic windows in chaotic
regions of the system. For example, when b is in the range
[-0.5, —0.028], the system is in the irregular periodic orbit
while when b is in [-0.028, —0.016], the system is in period-
doubling orbit; when bis in [0.016, 0.021] and [0.09, 0.13], the
system enters the period-doubling orbit and inverse period-
doubling orbits from chaotic states, respectively. Figure 8
shows several periodic and chaotic orbits.

5.3. Influence of Parameter d on Dynamic Characteristics.
When parameter d of the memcapacitor changes, using the
Matlab, the corresponding bifurcation diagram and Lya-
punov exponent spectrum about the state variable x are
shown in Figure 9, where the parameter b = 0.01 and other
parameters remain unchanged.

With the varying of d, the system undergoes a com-
plex bifurcation process. When d is in [-5.5,—-2.52], the
system is in periodic orbit. Then the system enters chaotic
state from the periodic orbit in the region [-2.52,1.05], in
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FIGURE 7: Bifurcation and Lyapunov exponents of x versus b. (a) Bifurcation diagram. (b) Lyapunov exponent spectrum.
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which the system exhibits three obvious periodic windows:
[-1.496,-1.326], [-0.617,-0.4595], and [-0.1575,0.3149].

It is different from a general memristor-based system on
the two side regions of the third periodic window, where the
phase diagram of the running trajectory changes abruptly, as
illustrated in Figure 10. When d < 0, the chaotic attractor
and limit cycle lie under part of the phase diagrams and are
depicted as blue. When d > 0, the chaotic attractor and limit
cycle lie in the upper part of the phase diagrams and are
depicted as red.

5.4. Influence of Parameters m and n on Dynamic Charac-
teristics. When other parameters remain unchanged and if
the parameter m is changed within the range [6.95,8.15],
the bifurcation diagram and Lyapunov exponent spectrum of
state variable x are shown in Figure 11, where the parameter

m is the reciprocal of the inductance L. The routes leading to
chaos are generally from period or quasi-period bifurcations.
However, the circuit has no solutions as m < 6.95, but at
m = 6.95 it suddenly turns into chaos without bifurcations,
which is called abrupt chaos. In this case, we observe weak
hyperchaos near the parameter region m = 7.1, which has
two positive Lyapunov exponents. Bifurcation and Lyapunov
exponent spectrum of state variable x versus parameter 7 are
similar to those versus parameter m, as shown in Figure 12, in
which we also observe weak hyperchaos near the parameter
region m € [0.12,0.18].

Furthermore, if other parameters are fixed and the
parameters m and » are changed simultaneously, the 2D
bifurcation, that is, the dynamic map, can be given as in
Figure 13, which shows the Lyapunov exponents of the chaotic
system versus two parameters. In the dynamical map, the
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yellow parts labeled by Y represent the periodic domains,
while the light blue parts and the dark blue parts which are
labeled by B represent chaotic and hyperchaotic domains,
respectively.

The blue region B, which is interspersed with some finely
banded yellow areas, shows that there are multiple periodic
windows in the chaotic domain. In addition, there are some
irregularly distributed dark blue spots in the blue region,
indicating there are some hyperchaotic states in the chaotic
domain. On the other hand, there is a dividing line between
the yellow and the blue in the middle of the map. The dividing
line is a straight line with a negative slope, and the bottom
left of the line is a chaotic region while the upper right part
is a periodic orbit region. It indicates that the system will be
gradually evolved into periodic orbit at the boundary from
chaotic orbit.

5.5. Influence of Initial Conditions on Dynamic Characteristics-
Coexistent Oscillation. In general, chaotic orbit has high

sensitivity to initial values but chaotic state is irrelevant to
the initial values in its attractive basin. Furthermore, periodic
orbit and periodic state are all not sensitive to system initial
conditions. However, system (12) can enter different states in
different initial conditions; that is, the state of this system
has high sensitive to its initial values, not only for chaotic
state but also for periodic state, which is called coexistent
oscillation.

Figure 14 shows the bifurcation diagram and the Lya-
punov exponent spectrum of the system with the changes
of initial conditions x(0) and y(0). The variation ranges of
x(0) and y(0) are [-0.1,0.024] and [0.06, 0.4], and the other
initial conditions are all 0.01, where the system parameters are
a=001,b=001,c=07d=-08m=735n=0.16,
j=48,and k =2.1.

From Figure 15, we can see when x(0) changes, the
evolution of the state of system (12) is opposite to that of
y(0). With the increase of x(0), the system enters chaotic orbit
via a period-doubling orbit and evolves eventually a chaotic



Mathematical Problems in Engineering 1

0.4 2 . : :
0.35
1L l
03
ol l
s
€025 M
_1 L 4
02
0.15 “2r ° ]
0.1 _ . . .
20.02 ~0.01 0 0.01 0.02 ’1s 1 Z05 0 05
x(0) w
(a) (b)
3 : : : 3 : : : :

(e) ()

FIGURE 15: Coexisting attractors with the same parameters but different initial values. (a) Basin of attraction versus x(0) and y(0). (b)
Coexisting limit cycle and point attractor. (c) Two coexisting limit cycles. (d) Coexisting chaotic attractor and point attractor. (e) Coexisting
chaotic attractor and limit cycle. (f) Two coexisting chaotic attractors.



12

state, corresponding to a chaotic attractor. Figure 15 shows
the variations of the attractors versus initial values x(0) and
9(0). Figure 15(a) is the basin of attraction, indicating that
the different attractors appear under the changes of the two
initial values at the same time. When x(0) is in the range
[-0.02,0.024] and y(0) is in the range [0.1,0.4], the system
exhibits different limiting cycles (as shown in the orange
region and green region of Figure 15(a)) and chaotic attractors
(as shown in the blue and red regions of Figure 15(a)).

When initial condition is set by point in the orange
region O, for example, let initial condition (x(0), ¥(0)) =
(0.02,0.4) (other initial conditions: (z(0),w(0),v(0)) =
(0.01,0.01,0.01)), the system is attracted in a periodic orbit
colored orange in Figure 15(b); but when (x(0), y(0)) =
(0.3,0.1) and other initial conditions remain unchanged, the
system has a point attractor shown by a black point.

When initial condition is set by the point in the green
region G, the system has another kind of limiting cycle,
which is shown as green cycle in Figure 15(c), where
the initial condition is (0, 02, 0.25, 0.01, 0.01, 0.01). Fig-
ure 15(d) shows the chaotic attractor and point attractor,
where the blue orbit represents the chaotic attractor for
initial condition of (-0.02,0.1,0.01,0.01,0.01). Figure 15(e)
represents the chaotic attractor (red) and limiting cycle
(green) belonging to initial conditions of (0.024, 0.1, 0.01,
0.01, 0.01) and (0.02, 0.3, 0.01, 0.01, 0.01), respectively. Finally
Figure 15(f) shows two different chaotic orbits with two
different initial values (-0.02,0.1,0.01,0.01,0.01) (blue) and
(0.024,0.1,0.01,0.01,0.01) (red).

6. DSP Experiment

The digitization of chaotic system can generate PN sequence,
which can be used in secure communications. Based on
DSP’s powerful data processing capability and high speed,
it is a good choice to achieve high precision and high
efficient iterative algorithm of a complex chaotic system
by using DSP technology. DSP hardware system is using
ICETEK-VC5502-AE evaluation board with the CCStudio-
v3.3 software platform. In order to digitize the chaotic system
with memristor and memecapacitor, continuous differential
equation (12) is needed to be discretized using Euler method
[25]. The Euler method is mainly based on the definition of
the derivative, which is defined as

x(t,+At) —x(t -
£ ) = tim XA =2 W) K = (g
At—0 At At—0 At

When At tends 0, (20) can be approximated as

(21)

! ~xn+1_xn_x(n+1)_x(n)
flo~=g—= At '
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According to (21), the chaotic system can be discretized
as

= xp—l
tn (j ((C - dwp—l) Zp-17 xp—l) - yp—l) >

Yp = Yp1 t 1M (xp—l - (“ - b"p—l) yp—l)’

p

2, =2, + 7k (c- dwp,l) Zp (22)
+j (xp_l - (c - dwp_l) zp_l) ,
Wy =W,y +TZ, 1,

Vo =V + T

wherea = 0.01,b =0.1,¢ = 0.7,d = -2,n = 0.17, j = 4.8,
m = 7.35, and k = 2.1; initial condition is (0.01, 0.1, 0.01,
0.01, 0.01); and quantization precision is T = 0.01. A discrete
sequence can be obtained by iterating (22).

There are many quantization methods of chaotic
sequences. For simplicity, the threshold method [25, 26] is
adopted in this paper. Let the chaotic mapping be

f(p)=x, p=123,.... (23)

The digitized chaotic sequence is set as u,, and the
quantization method is described as

1, if x,>q,
u, = P (24)
0, else,

where g denotes the quantization threshold.

According to (22) and (24), we can write the discrete
and digitized programs in the CCS environment and then
download the prepared programs to DSP evaluation board.
The experimental binary sequences observed by an oscillo-
scope are shown in Figure 16(a). The binary sequences can be
transforming the continuous chaotic waveforms or attractors
by a D/A convertor, which is shown in Figures 16(b)-16(f).

7. PN Sequence and Its NIST Test

According to the proposed chaotic system, digital pseudo-
random sequences can be generated by using the DSP tech-
nology. In order to understand the random characteristics of
the sequences, the test software package STS [27], which was
introduced by National Institute of Standard and Technology
(NIST) of America, was used to test the generated sequen-
ces.

The NIST test suit, the most authoritative tool for pseu-
dorandom testing currently, is a statistical software package
consisting of 15 tests, which is developed to test the 757
randomness of binary sequences produced by pseudorandom
signal generators. The 2.0 version of the test suite package is
used in the experiment.

NIST provides two criteria for evaluating the perfor-
mance of a sequence, that is, passing rate of the sequences
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FIGURE 16: Experimental results observed from oscillator. (a) Binary sequence. (b) Continuous waveforms. (c) Phase diagram of x-y. (d)
Phase diagram of y-z. (e) Phase diagram of w-v. (f) Phase diagram of v-x.

and uniform distribution of P values. A final analysis report
is obtained from the test suite package with relevant tested
values, including test statistics (proportion) and P value for
each test.

Now, we evaluate the randomness of the proposed system
by testing its binary sequences and using the NIST test suit
and compare the randomness with that of the well-known
Lorenz system.

For a generated binary sequence of a given length n, we
divide the sequence into m nonoverlapping parts with the
same length k (m = n/k), where n = 1,000,000,000 and m =
1000, so k =1,000,000.

The NIST test results of the proposed system are shown
in Table 1. For comparison, Table 2 shows the NIST test
results of the well-known Lorenz system, and Figure 17 shows
the histograms of P value and passing rate simultaneously.
From Tables 1 and 2 and Figure 17, we can conclude that the
stochastic performances of the proposed chaotic oscillator are
better than those of the Lorenz system.

8. Conclusion

In this paper, we design a chaotic oscillator for the prestudy
of the new PN generator using the hybrid oscillator circuit
containing memristor and memcapacitor as a seed. The
results of theory analysis and experiment show that this gen-
erator can exhibit some complex dynamical characteristics,
including chaos, hyperchaos, complex bifurcation, and coex-
isting oscillation. Furthermore, digital circuit experiment of
the oscillator is performed by a DSP evaluation board, for
verifying realization of the system. Random properties of
the PN sequences generated from the system fully meet
the NIST standards and are better than those of the well-
known Lorenz system. Therefore, the proposed memristor
and memcapacitor based oscillator can be used for designing
PN sequence generators as a new random signal seed, which
has good random properties and the potential application
value in the field of secret communication and chaotic

cryptography.
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FIGURE 17: Random performance comparison between the memristor and memcapacitor based chaotic system and the Lorenz system. (a) P
value. (b) Passing rate.

TaBLE 1: NIST test results of the proposed chaotic system. TABLE 2: NIST test results of Lorenz chaotic system.
Statistical test P-value Proportion Statistical test P-value Proportion
Frequency 0.711601 0.9940 Frequency 0.444691 0.9930
Block frequency 0.000363 0.9860 Block frequency 0.853049 0.9900
Cumulative sums 0.542228 0.9940 Cumulative sums 0.224821 0.9880
Runs 0.595549 0.9920 Runs 0.08151 0.9910
Longest run 0.172816 0.9930 Longest run 0.224821 0.9900
Rank 0.395940 0.9880 Rank 0.047785 0.9890
Fft 0.639202 0.9880 Fft 0.336111 0.9900
Nonoverlapping template 0.976878 0.9920 Nonoverlapping template 0.073417 0.9880
Overlapping template 0.161703 0.9910 Overlapping template 0.229559 0.9870
Universal 0.199045 0.9860 Universal 0.763677 0.9890
Approximate entropy 0.288249 0.9890 Approximate entropy 0.914025 0.9850
Random excursions 0.971017 0.9902 Random excursions 0.571919 0.9872
Random excursions variant 0.631999 0.9967 Random excursions variant 0.193194 0.9904
Serial 0.666245 0.9930 Serial 0.514124 0.9900
Linear complexity 0.476911 0.9890 Linear complexity 0.526105 0.9920
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