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This paper presents the use of fuzzy models to explicitly consider sensor uncertainty and finite resolution in solving the SLAM
(simultaneous localization and mapping) problem for autonomous mobile robots. The approach establishes fuzzy confidence
models in describing occupied obstacles and available space. The problem is transformed into an optimization task of minimizing
the alignment error between newly scanned local fuzzy maps and selected parts of a developing global fuzzy map. In aligning local
fuzzy maps into a global fuzzy map, we developed a prediction strategy to crop the most potential part from the sensed local fuzzy
maps to be overlapped with the global fuzzy map. A mobile vehicle equipped with a laser range finder, the Hokuyo URG-04LX, is
used to demonstrate the procedure of fuzzy map building. Experimental results show that the proposed architecture is effective in
generating a comprehensive global fuzzy map, which is suitable for both human comprehension and path design during real-time
navigation.

1. Introduction

An essential task of an autonomous mobile robot is to
determine its location and construct a map of its environ-
ment, usually denoted as the work of solving the SLAM
(simultaneous localization andmapping) problem [1–3]. Self-
localization is about finding the location of a robot in a map,
while mapping is about constructing a referable map when
the robot ismoving in an unknownor changing environment.

Autonomous map construction has been under extensive
research for decades [4–9]. For instance, Chong andKleeman
[5] used a sonar sensor and a positioning sensor, and Jaradat
and Langari [6] used a sonar sensor in developing the OGM
(occupancy grid map) method, where the environment is
simplified into occupied and vacant grids. Guivant et al. [7]
used encoders in cooperation with a laser range finder for
positioning.Davison andKita [8] combined an accelerometer
and two dynamic video cameras to construct irregular maps.
Tomono [9] used baselines as the basis for a video camera to
choose the characteristic points for map reconstruction.

There are various kinds of sensors developed for these
tasks, such as sonar [10, 11], laser range finders [12], and video

cameras [13]. Sonar is effective in detecting range, but only a
narrow region can be detected at one time. Laser range finders
can effectively provide 2D environmental information at high
refresh rate, up to 10 frames per sec, but may fail to sense
black objects and complex 3D obstacles. Moreover, video
cameras can emulate the capability of human eyes, but huge
computing power is required for real-time implementation.

An early work [14] proposed a fuzzy model for the sonar
sensing, but the paper lacks detailed procedures for the SLAM
problem. Inspired by the research, this paper presents the use
of a fuzzymodel to explicitly consider sensor uncertainty and
finite resolution of laser range finders in solving the SLAM
problem.

Our proposed system is realized by establishing a fuzzy
confidencemodel, which is composed of sensed obstacles and
assured space based on sensor readings. The SLAM problem
is transformed into an optimization task of minimizing the
alignment error between newly scanned local fuzzymaps and
selected parts of a developing global fuzzy map. The task is
then solved by the Cuckoo search optimization algorithm
[15, 16]. Being a nature-inspired meta-heuristic algorithm,
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Figure 1: The profile of a confidence function 𝑓
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around a given range reading 𝜌.

the algorithmcan efficiently provide a set of optimal solutions
within a reasonable number of cost function evaluations.

To ease the search, a prediction strategy is applied such
that only the most promising portions of the newly scanned
local fuzzy maps and last fuzzy maps are involved in the
registration. The search starts with adequate knowledge of
moving direction, which makes essentially no assumption
about the environment and is able to incrementally build a
global map in real time. A specific laser range finder, the
Hokuyo URG-04LX, is used to demonstrate the use of the
confidence model in the building of fuzzy maps.

2. Certainty Model of the Sensor

2.1. Characteristics of the Laser Range Finder. Most dis-
tance sensors, such as laser range finders, suffer from both
measurement error and finite resolution, which introduce
uncertainties deteriorating with distance. Knowledge about
these uncertainties may be described explicitly by fuzzy
membership functions in order to build confidence models.

To model the knowledge of measurement error in terms
of the degree of certainty, confidence level for the existence
of an obstacle can be described as a function symmetric to a
given range reading 𝜌. Assuming that 𝐾0 is a parameter cor-
responding to the maximum confidence level, the confidence
function, 𝑓𝜌, can be described as [14]

𝑓𝜌 (𝑟) =
{{
{{
{

𝐾0 ⋅ [1 − (
𝑟 − 𝜌

𝛿𝑟
)
2

] , for 󵄨󵄨󵄨󵄨𝑟 − 𝜌
󵄨󵄨󵄨󵄨 ≤ 𝛿𝑟,

0, otherwise.
(1)

The profile of𝑓𝜌 is depicted in Figure 1, where 𝛿𝑟 is the bound
ofmeasurement error. According to the figure, the confidence
level decreases along a parabolic shaped trajectory toward
zero as the distance to the range reading 𝜌 increases.

For a typical distance sensor, the effects of finite lateral
resolution can be formulated into another confidence func-
tion similar to (1). Hence, we create a hybrid function 𝐵𝜌,𝜙

to represent the level of confidence for the combination of
measurement error and finite resolution as

𝐵𝜌,𝜙 (𝑟, 𝜃)

=

{{{{{{{
{{{{{{{
{

𝐾𝑟𝜃 ⋅ [1 − (
𝑟 − 𝜌

𝛿𝑟
)
2

]

×[1 − (
𝜃 − 𝜙

𝛿𝜃
)
2

] , when 󵄨󵄨󵄨󵄨𝑟 − 𝜌
󵄨󵄨󵄨󵄨 ≤𝛿𝑟,

󵄨󵄨󵄨󵄨𝜃 − 𝜙
󵄨󵄨󵄨󵄨 ≤𝛿𝜃,

0, otherwise.
(2)

As depicted in Figure 2, the profile of the confidence
level 𝐵𝜌,𝜙 is in the polar coordinate system (𝑟, 𝜃), which is
symmetric to both the range reading 𝜌 and angular reading
𝜙, where 𝛿𝑟 is the bound of longitudinal distance error and 𝛿𝜙
is the bound of finite lateral resolution. The confidence level
decreases toward zero as the distance to the range reading 𝜌
or angular reading 𝜙 increases.

Information about the existence of obstacles is crucial for
the construction for maps, providing valuable environment
knowledge to the human supervisor. On the other hand, the
information of free space between the sensor and the obsta-
cles is vital for navigation of moving robots, since sensors
cannot provide information behind obstacles.The confidence
function which describes the availability of free space for
navigation is defined as a function 𝑃𝜌,𝜙(𝑟, 𝜃) corresponding
to a set of range reading 𝜌 and angular reading 𝜙 in the polar
coordinate system:

𝑃𝜌,𝜙 (𝑟, 𝜃)

=

{{{{{{{{{{{
{{{{{{{{{{{
{

(
𝑟 − 𝜌

𝛿𝑟
)
2

⋅ [1 − (
𝜃 − 𝜑

𝛿𝜃
)
2

] , when 𝜌 − 𝛿𝑟 ≤ 𝑟 ≤ 𝜌,
󵄨󵄨󵄨󵄨𝜃 − 𝜙

󵄨󵄨󵄨󵄨 ≤𝛿𝜃,

1 − (
𝜃 − 𝜑

𝛿𝜃
)
2

, when 𝑟 < 𝜌 − 𝛿𝑟,
󵄨󵄨󵄨󵄨𝜃 − 𝜙

󵄨󵄨󵄨󵄨 ≤ 𝛿𝜃,

0, otherwise.
(3)

The profile of 𝑃𝑟,𝜃 is depicted in Figure 3. We have that
the 3D shape is the opposite to that of Figure 2. According to
the figure, we have full confidence about the available space
between the observer and a measured obstacle located at
(𝜌, 𝜙). On the contrary, we have little confidence about the
space behind the sensed obstacle.

2.2. Certainty Model of a Specific Laser Range Finder. The
Hokuyo URG-04LX is a popular laser range finder (LRF)
which uses a 785 nm semiconductor laser beam. It has a fixed
scanning range of 60 to 300∘ with a 0.36∘ angular resolution
and a 100 msec scan rate. The data transfer rate can be set at
9Mbps when connected via USB.

The LRF has a quoted range of effective measurement
between 20 and 4,095mm.Themeasurement error is±10mm
for distances of less than 1m. For greater distances, the
error is ±1% of the range readings [17, 18]. The variation of
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represents the confidence
in the availability of space based on range reading 𝜌 and angular
reading 𝜙.

measurement error in terms of measured distance is depicted
in Figure 4. As confidence in measured values decreases with
the increase of measurement error, the complementary curve
to the measurement error curve is defined as the confidence
curve and illustrated in the figure, which can be fitted by a 6th
order polynomial function:

𝐾𝑟𝜃 (𝑟) = 4.70 × 10−21 × 𝑟6 − 5.96 × 10−17 × 𝑟5 + 2.82

× 10−13 × 𝑟4 − 5.96 × 10−10 × 𝑟3 + 4.56

× 10−7 × 𝑟2 − 1.12 × 10−4 × 𝑟 + 0.76.

(4)

The confidence level, which is a function of range reading
as shown in Figure 4, is used as the parameter 𝐾𝑟𝜃 in (2)
with 𝛿𝜃 being 0.36∘. In order to further clarify how the
confidence levels vary with distance measure, 5 confidence
levels with respect to corresponding obstacle detections are
demonstrated in Figure 5, where the dotted green curve is
generated by the closed form of (4).
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Figure 4: Graphic illustration of measurement error as a function
of the range reading. The complementary curve is used as the con-
fidence function.

0 500 1,000 1,500 2,000
−1

−0.5

0
0

0.2

0.4

0.6

0.8

Range reading (mm)

C
on

fid
en

ce

Figure 5: Profile of confidence functions corresponding to different
range readings.

2.3. Aggregation for Fuzzy Map Construction. The construc-
tion of a local fuzzy map of obstacles at time 𝑡, denoted as
𝑀𝑜(𝑡), is based on the aggregation of several sets of range
reading and angular reading, (𝜌𝑘, 𝜃𝑘), in polar coordinates:

𝜇Occupied = 𝑀𝑜 (𝑡) = ⋃
𝑘

𝐵𝑟𝜃 (𝜌𝑘 (𝑡) , 𝜙𝑘 (𝑡)) . (5)

Similarly, a local fuzzy map of space at time 𝑡, denoted
as 𝑀𝑠(𝑡), is based on the aggregation of several sets of range
reading and angular reading, (𝜌𝑘, 𝜃𝑘), in polar coordinates:

𝜇Space = 𝑀𝑠 (𝑡) = ⋃
𝑘

𝑃𝑟𝜃 (𝜌𝑘 (𝑡) , 𝜙𝑘 (𝑡)) . (6)
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Figure 6: Illustration of fuzzymaps showing both the occupied obstacles and available space.The space is in the darkest color in the diagrams.

Furthermore, to construct a fuzzy map simultaneously
suitable for human comprehension and path design, the oc-
cupied obstacles and available space should be integrated
together:

𝜇Map = 𝑀all (𝑡) = (0.3 ∪ 𝑀𝑜 (𝑡)) ∩ 𝑀𝑠 (𝑡)

= min (max (0.3,𝑀𝑜 (𝑡)) ,𝑀𝑠 (𝑡)) ,
(7)

where 𝑀𝑠(𝑡) is the complement of 𝑀𝑠(𝑡) and the value 0.3
is selected to distinguish uncertain regions from assured
occupied and space regions.

A practical implementation of (7) is demonstrated in
Figure 6where the trianglesmarkedwith 1 and 2 are the initial
and final positions, respectively, of a moving robot carrying a
laser range finder. Figures 6(a) and 6(b) are two-dimensional
diagram and three-dimensional diagram, respectively. Note
that the space is in the darkest color showing the least level,
which is suitable for path planning.The largest areaswith gray
value, assigned as 0.3 in this example, are the regions behind
sensed obstacles and hence unknown to the sensor.

3. Experimental Study

3.1. Registration between Local Fuzzy Maps. The concept of
registration is based on the similarities between two local
fuzzy maps sensed at different instances. As a robot moves,
the scene changes with the emergence and disappearance
of objects and boundaries. These extra items on the maps
increase the difficulty in the judge of matching between two
succeeding local maps, leading to erroneous results. To alle-
viate the difficulty and enhance robustness and correctness
in the search of coordinate transformation for alignment, a
prediction algorithm is proposed. The algorithm exploits the
knowledge of currentmove direction to crop local maps from
the sensed maps.

Let𝑀𝑜(𝑡)|(𝑥,𝑦) and𝑀𝑜(𝑡 + 1)|
(𝑥,𝑦)

be the local fuzzy maps
sensed at 𝑡 and 𝑡 + 1 which have been transformed into
rectangular coordinates from their polar coordinate counter-
parts, 𝑀𝑜(𝑡) and 𝑀𝑜(𝑡 + 1), respectively. Besides, let 𝑝𝑘(𝑡)

Mo(t)

Mo(t + 1)

M̂o(t)

M̂o(t + 1)
t + 1

t

Obstacle A

Obstacle B
ΔXt

Figure 7: The cropping of local maps for registration by the use of
estimated motion.

and 𝑝𝑗(𝑡 + 1) be position vectors with confidence values at
𝑀𝑜(𝑡)|(𝑥,𝑦) and𝑀𝑜(𝑡 + 1)|

(𝑥,𝑦)
, respectively.The problem is to

find coordinate transformations, 𝑡+1
𝑡 𝑇(Δ𝑋𝑡) and

𝑡

𝑡+1𝑇(Δ𝑋𝑡),
such that the fuzzy maps are aligned with each other. Here
Δ𝑋𝑡 is a vector of displacement and rotation for the robot
to move between 𝑡 and 𝑡 + 1. To begin with the prediction
procedure, a rough estimation of Δ𝑋𝑡, denoted as Δ𝑋𝑡, is
generated based on current moving command. Partial local
fuzzy maps, 𝑀̂𝑜(𝑡 + 1)|

(𝑥,𝑦)
and 𝑀̂𝑜(𝑡)|(𝑥,𝑦), that are cropped

from𝑀𝑜(𝑡 + 1) and𝑀𝑜(𝑡), are defined as

𝑀̂𝑜(𝑡 + 1)
󵄨󵄨󵄨󵄨󵄨(𝑥,𝑦) = { 𝑡+1

𝑡 𝑇 (Δ𝑋𝑡) 𝑝𝑘 (𝑡) | 𝑝𝑘 (𝑡) ∈ 𝑀𝑜(𝑡)
󵄨󵄨󵄨󵄨(𝑥,𝑦)}

∩ 𝑀𝑜(𝑡 + 1)
󵄨󵄨󵄨󵄨(𝑥,𝑦),

(8)

𝑀̂𝑜(𝑡)
󵄨󵄨󵄨󵄨󵄨(𝑥,𝑦) = { 𝑡+1

𝑡 𝑇 (Δ𝑋𝑡) 𝑝𝑗 (𝑡 + 1) |

𝑝𝑗 (𝑡 + 1) ∈ 𝑀𝑜 (𝑡 + 1)
󵄨󵄨󵄨󵄨(𝑥,𝑦)} ∩ 𝑀𝑜 (𝑡)

󵄨󵄨󵄨󵄨(𝑥,𝑦).

(9)

The relationship between the local fuzzy maps is illus-
trated in Figure 7. Besides, the homogeneous transformation
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Figure 8: Flowchart of the generation of a global fuzzy map.

matrices, 𝑡+1
𝑡 𝑇(Δ𝑋𝑡) and

𝑡

𝑡+1𝑇(Δ𝑋𝑡), can be easily obtained
by exploiting the relationship 𝑡+1

𝑡 𝑇(Δ𝑋𝑡) = 𝑡
𝑡+1𝑇 (Δ𝑋𝑡)

−1

=
𝑡

𝑡+1𝑇 (Δ𝑋𝑡)
𝑇.

3.2. System Flowchart. This section presents an alternative
solution to simultaneous localization and mapping (SLAM)
problem by direct registration of fuzzy maps of obstacles.

As shown in the flowchart of Figure 8, the data {𝜌, 𝜙}
sensed by the laser range finder are firstly aggregated into
a local fuzzy map 𝑀𝑜(𝑡 + 1) in polar coordinates and
transformed into rectangular coordinate system, denoted as
𝑀𝑜(𝑡 + 1)|

(𝑥,𝑦)
.The prediction algorithmof (8) and (9) is then

used to crop from this local fuzzy map𝑀𝑜(𝑡)|(𝑥,𝑦) and the last
local fuzzy map 𝑀𝑜(𝑡 + 1)|

(𝑥,𝑦)
to generate two fuzzy maps,

𝑀̂𝑜(𝑡 + 1)|
(𝑥,𝑦)

and 𝑀̂𝑜(𝑡)|(𝑥,𝑦), for registration by the Cuckoo
search [14], where a cost function of overlap between them
is maximized. The registration results in a homogeneous
transformationmatrix 𝑡

𝑡+1𝑇 to be used for the local fuzzymap
𝑀𝑜(𝑡 + 1) to be integrated into the global fuzzy map in real
time. The procedure iterates with the movement of the robot
and the receiving of sensed data.

The data {𝜌, 𝜑} sensed by the laser range finder are
firstly aggregated into a local fuzzy map 𝑀𝑜(𝑡 + 1) in polar
coordinates and transformed into rectangular coordinate
system, denoted as 𝑀𝑜(𝑡 + 1)|

(𝑥,𝑦)
. The prediction algorithm

of (8) and (9) is then used to crop from this local fuzzy
map𝑀𝑜(𝑡)|(𝑥,𝑦) and the last local fuzzy map𝑀𝑜(𝑡 + 1)|

(𝑥,𝑦)
to

generate two fuzzy maps, 𝑀̂𝑜(𝑡 + 1)|
(𝑥,𝑦)

and 𝑀̂𝑜(𝑡)|(𝑥,𝑦), for
registration by the Cuckoo search [15], where a cost function
of overlap between them is maximized. The registration
results in a homogeneous transformation matrix 𝑡

𝑡+1𝑇 to be
used for the local fuzzy map 𝑀𝑜(𝑡 + 1) to be integrated into
the global fuzzy map in real time.The procedure iterates with
the movement of the robot and the receiving of sensed data.

Figure 9 illustrates a situation of two cropped local fuzzy
maps, 𝑀̂𝑜(𝑡 + 1)|

(𝑥,𝑦)
and 𝑀̂𝑜(𝑡)|(𝑥,𝑦), for registration. After

successful registration by the Cuckoo search, an optimal
transformation matrix 𝑡

𝑡+1𝑇 is obtained that has maximum
overlapping for these two fuzzy maps, as shown in Figure 10.

4. Experimental Results

Amoving robot of three omniwheels (or poly wheels) is built
for experimental study; the robot is equipped with a Hokuyo
URG-04LX laser range finder and a notebook of Intel Core i5
and 4GB RAM, as shown in Figure 11.

The proposed procedure was successfully implemented to
generate a global fuzzy map shown in Figure 12. In addition
to the corridor, a closed passage is selected for robustness
evaluation of the approach.The generated global fuzzymap is
demonstrated in Figure 13 showing that the proposedmethod



6 Mathematical Problems in Engineering

0

500

1000

1500

2000

2500

3000

3500

4000

−1000010002000

M̂(t)

M̂(t + 1)

(a)

0

1000

2000

3000

4000

−2000
−10000100020003000

0
0.5

1

M̂(t)

M̂(t + 1)

(b)

Figure 9: Two local fuzzy maps before registration. (a) 2D Fuzzy maps. (b) 3D fuzzy maps.
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Figure 10: Two local fuzzy maps after registration showing maximum overlapping when compared with Figure 9. (a) 2D fuzzy maps. (b) 3D
fuzzy maps.

is effective in generating a comprehensible and useful fuzzy
map of the environment by the introduction of confidence
fuzzy model and the use of the laser range finder.

5. Conclusion

This study proposes an effective SLAM algorithm using
fuzzy confidence functions of the laser range finder. The
fuzzy confidence functions are functions of both range and
anger readings of the sensor which explicitly take sensor
uncertainty and finite resolution into consideration. Based on

the fuzzy functions, we are able to aggregate sensed data into
local fuzzy maps by fuzzy union.

In aligning local fuzzy maps into a global fuzzy map, we
developed a prediction strategy to crop the most potential
part to be overlapped with global fuzzy map from the sensed
local fuzzy maps.This strategy is experimentally evaluated to
be effective in finding homogeneous transformationmatrices
by the Cuckoo search in real time.

In addition to the occupied obstacles, confidence fuzzy
functions for available space are also implemented. The inte-
gration of occupied obstacles and available space allows us to
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(a) (b)

Figure 11: Experimental setup. (a) A moving robot equipped with three omniwheels. (b) A scenario of a corridor with obstacles along the
passage.

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
−4000

−2000

0

20000
0.51

(b)

Figure 12: A global fuzzy map generated with the arrangement of Figure 11. (a) 2D fuzzy map. (b) 3D fuzzy map.
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Figure 13: A comprehensive global fuzzy map of a closed passage generated by the proposed approach. (a) 2D fuzzy map. (b) 3D fuzzy map.

generate a comprehensive global fuzzymap that is suitable for
both human comprehension and path design. Performance of
the proposed architecture is verified by experiment results of
a real-time mobile vehicle.

Indeed, fuzzy path planning seems to be more amenable
to the proposed fuzzy map than its nonfuzzy counterparts.
Further research aimed at exploiting the benefits of fuzzy
maps to include measurement errors and uncertainty as
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an integral part of amap to improve reliability and robustness
is needed to elucidate their role in navigation.
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