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Determination of the hydraulic parameters (transmissivity and storage coefficients) of a confined aquifer is important for effective
groundwater resources. For this purpose, the residual drawdowns have been in use to estimate the aquifer parameters by the classical
Theis recoverymethod.The proposedmethod of this paper depends on a straight-line through the field data and it helps to calculate
the parameters quickly without any need for long-term pumping data. It is based on the expansion series of theTheis well function
by consideration of three terms, and this approach is valid for the dimensionless time factor 𝑢󸀠 = 𝑆

󸀠
𝑟
2
/4𝑇𝑡
󸀠
≤ 0.2. The method can

be applied reliably to extensive and homogeneous confined aquifers resulting in different storage coefficients during the pumping
and recovery periods (𝑆 ̸= 𝑆

󸀠
). It presents a strength methodology for the parameters decision making from the residual data in the

groundwater field of civil engineering.

1. Introduction

One of the practical ways to estimate the aquifer parameter
is to measure the water level rise by time in the production
or observation wells after the pumping test stoppage. This is
referred to as the recovery test which starts just after the pump
shut.The recoverymethod serves as a check and alternative to
the pumping test.Theparameters’ estimations fromboth tests
are practically equal to each other if theTheis [1] assumptions
are satisfied.

The residual drawdown measurement at any time during
the recovery period is the difference between the observed
water level and the prepumping static water level. The recov-
ery drawdown is known as the difference between the total
drawdown at the end of pumping and the residual drawdown
[2, 3].With theTheis recoverymethod, the transmissivity can
be estimated easily using pumping well recovery data, but
the storage coefficient cannot be calculated due to wellbore
storage effects, unknown effective radius, and difficulty in
finding the time of zero recovery as needed for the application
of Cooper and Jacob [4] method. However, in cases of
measurements from the observation wells there will not be
such restrictive effects. TheTheis recovery method considers
the late-time residual drawdowns with the Cooper and Jacob

formulations and it estimates the transmissivity and the ratio
of storativity values during pumping and recovery periods.
Theis [1] observed that a straight-line through the residual
drawdowns (𝑠󸀠) versus 𝑡/𝑡󸀠 plot (𝑡 indicates the total time since
pump start while 𝑡

󸀠 is the time since pump shut). This plot
on the semilogarithmic graph paper passes below the origin
(𝑡/𝑡󸀠 = 1, 𝑠󸀠 = 0) giving the value of 𝑡/𝑡󸀠 > 1 for a zero residual
drawdown and that is the reason why different storage coeffi-
cient estimations are valid for the pumping and recovery peri-
ods. On the other hand, Jacob [5] observed that the storage
coefficient estimation is generally greater during the pumping
period than the recovery period.

Bruin and Hudson [6] proposed the time-recovery draw-
down graph to find the time of zero recovery. The method
depends on the extension of the time-drawdown pumping
test data, which can also be applied to the time-recovery
graph. Later, USDI [7] gave an alternative method for deter-
mining the storage coefficient (𝑆) as follows:

𝑆 =

2.25𝑇𝑡󸀠/𝑟2

log−1 [(𝑠
𝑝
− 𝑠
󸀠
) /Δ (𝑠

𝑝
− 𝑠
󸀠
)]

, (1)

where𝑇 is the transmissivity, 𝑠
𝑝
is pumping period drawdown

projected to time 𝑡
󸀠 at any radial distance, 𝑟, 𝑠󸀠 is residual
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drawdown at time 𝑡󸀠, (𝑠
𝑝
−𝑠
󸀠
) is recovery at time 𝑡󸀠, andΔ(𝑠

𝑝
−

𝑠
󸀠
) is slope of the time-recovery graph. In this formulation

log−1[𝑥] corresponds to the antilogarithm as 10𝑥.
The recovery analysis is also investigated by many

researchers. For instance, Case et al. [8] developed convenient
equations in the forms of a series based on theTheis recovery
equation using the residual drawdown data. Agarwal [9]
developed amethod for recovery test analysis which is widely
used by petroleum engineers. Through a simple transforma-
tion of the data from a recovery test, Agarwal method allows
one to apply the same diagnostic principles and type curves
used for drawdown analysis in the interpretation of recovery
data. Ramey [10] presented the type curves for drawdown
during the pumping and recovery periods, where the recov-
ery times are plotted as large times. Mishra and Chachadi
[11] obtained the recovery type curves for large-diameter
pumping wells by discrete kernel approach while Şen [12]
presented an analytical solution and a set of type curves for
the drawdown distribution in a large-diameter well recovery.
Later, Yeh and Wang [13] developed a mathematical model
for describing the residual drawdown by taking into consid-
eration the pumping drawdown distribution in addition to
the effects of well radius and wellbore storage. They obtained
the Laplace domain solution for the residual drawdown.
Goode [14] proposed a set of graphical recovery type curves
based on Theis’ [1] exact well-function solution. These type
curves depend on the dimensionless duration of pumping.
Ballukraya and Sharma [15] proposed an approach derived
from the Cooper-Jacob equation for estimating storativity by
using residual drawdownmeasurements. Banton and Bangoy
[16] presented a graphical method with the first three terms
of theTheis series approximation.Themethod involves three
separate plots with the equality of the storage coefficients in
pumping and recovery periods (𝑆 = 𝑆

󸀠), but this approach
requires at least two observation wells. Singh [17] proposed a
numerical method by considering the derivative of the Theis
recovery equation. Zheng et al. [18] suggested a straight-line
method based on the Cooper-Jacob approximation for the
extended pumping period and the first three terms in the
expansion are from the well function for the recovery period.
The method considers that 𝑆 = 𝑆

󸀠. Singh [19] presented an
optimization method based on nonlinear least-squares for
the identification of the transmissivity and the storage coef-
ficients in the pumping and recovery periods. Samani et al.
[20] used a derivative analysis of pumping and recovery test
data to estimate the hydraulic parameters in a heterogeneous
aquifer. They showed that the drawdown-derivative analysis
improves estimation of aquifer parameters and identification
of different forms of heterogeneity. Kambhammettu and
King [21] estimated the transmissivity and storage coefficient
using a generalized MATLAB code with the conventional
Levenberg-Marquardt algorithm. They considered the resid-
ual drawdowns measurements from a single observation
well. Ashjari [22] determined the transmissivity and storage
coefficients from residual data in case of 𝑆 ̸= 𝑆

󸀠 by using a
modified version of Banton and Bangoy [15] method. This
method is basically fitting a straight-line to a plot of residual
drawdown versus square of radial distance at the same time.

In this study, another straight-line method is proposed
using the first three terms from the expansion of the well
function for the pumping and recovery periods. The method
offers the use of spreadsheet for the inequality 𝑆 ̸= 𝑆

󸀠, which
implies different storage coefficients during pumping and
recovery periods. The procedure involves a linear regression
line and its coefficients’ estimations based on a set of recovery
data from a single observation well. It is valid for the
dimensionless time factor, 𝑢󸀠 ≤ 0.2.

2. Proposed Method

In a homogeneous isotropic confined aquifer with infinite
domain without the well storage, Theis [1] gave the residual
drawdown expression for an observation well as follows:

𝑠 (𝑟, 𝑡
󸀠
) =

𝑄

4𝜋𝑇
[∫

∞

𝑢

𝑒
−𝑥

𝑥

𝑑𝑥−∫

∞

𝑢
󸀠

𝑒
−𝑥

𝑥

𝑑𝑥] , (2)

where 𝑠(𝑟, 𝑡󸀠) is the residual drawdown at any distance 𝑟 and
at any recovery time 𝑡

󸀠, 𝑄 is the constant rate (discharge)
towards the pumping well during the pumping and recovery
periods, 𝑇 is the transmissivity, 𝑢 = 𝑟

2
𝑆/4𝑇𝑡 is the dimen-

sionless time factor for the pumping period, 𝑢󸀠 = 𝑟
2
𝑆
󸀠
/4𝑇𝑡
󸀠

is another dimensionless time factor for the recovery period,
𝑆 and 𝑆

󸀠 are the storage coefficients of aquifer during the
pumping and recovery periods, 𝑡 = 𝑡

𝑝
+ 𝑡
󸀠, and 𝑡

𝑝
is the time

of pumping. This expression can be considered after the first
three terms of the exponential function series as follows:

𝑠 (𝑟, 𝑡
󸀠
) =

𝑄

4𝜋𝑇
[(−0.5772− ln 𝑢+ 𝑢)

− (0.5772− ln 𝑢
󸀠
+𝑢
󸀠
)] ,

(3a)

𝑠 (𝑟, 𝑡
󸀠
) =

𝑄

4𝜋𝑇
[ln(

𝑆
󸀠

𝑆

𝑡

𝑡
󸀠
)+

𝑟
2
𝑆
󸀠

4𝑇
(

𝑆

𝑆
󸀠

1
𝑡

−

1
𝑡
󸀠
)] . (3b)

The error involved in adopting (3b) instead of (2) is less than
1% for 𝑢󸀠 ≤ 0.2. Theis [1] proposed the first two terms of the
series in (2) by considering that 𝑆/𝑆󸀠 = 1 in order to estimate
the aquifer transmissivity only. Theis approach is valid for
𝑢
󸀠
≤ 0.01. Hence, (3b) considers more recovery data than

Theis method. Equation (3b) can be rewritten to estimate the
aquifer parameters as

𝑊 = 𝑎𝜏− 𝑏, (4)

𝑊 =

𝑠 (𝑟, 𝑡
󸀠
)

1/𝑡󸀠 − (𝑆/𝑆
󸀠
) (1/𝑡)

, (5)

𝑎 =

𝑄

4𝜋𝑇
, (6)

𝜏 =

ln ((𝑆
󸀠
/𝑆) (𝑡/𝑡

󸀠
))

1/𝑡󸀠 − (𝑆/𝑆
󸀠
) (1/𝑡)

, (7)

𝑏 = 𝑎

𝑟
2
𝑆
󸀠

4𝑇
. (8)
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Figure 1: Straight-line fit to recovery data: (a) Theis recovery method and (b) proposed method.

Equation (4) presents a straight-line between 𝜏 and 𝑊. The
first approximation of the aquifer parameter estimations can
be obtained from the time residual drawdown data on a
spreadsheet with the exception of a few early time instances,
and the aquifer parameters can be estimated after fitting a
straight-line to the field data and the coefficients of the regres-
sion line result from (6) and (8). By considering the calculated
parameters, the dimensionless time factors, 𝑢󸀠, should be
determined especially for the first data values. If 𝑢

󸀠 is
greater than 0.2, then the straight-line should be rearranged.
Furthermore, the ratio of 𝑆/𝑆󸀠may be easily investigated with
various straight-lines.

3. Application and Discussion

Two data sets are used to illustrate the application of the
proposedmethod.The first set of data is taken from the USDI
[7]. The data is recorded in an observation well located at
30.48m from the pumping well. The well is pumped during
800min with a constant discharge rate of 4.613m3/min, and
the recovery period is also recorded as 800min after the
pump is turned off. The last record of pumping data is
0.567m at 800min. USDI [7] estimated the transmissivity as
2.982m2/min with theTheis recoverymethod (for 𝑆 = 𝑆

󸀠 and
𝑢
󸀠
≤ 0.01) and the storage coefficient as 0.07 according to (1)

(for (𝑠
𝑝
− 𝑠
󸀠
) = 0.533m and Δ(𝑠

𝑝
− 𝑠
󸀠
) = 0.302m). Figure 1(a)

explicitly shows a difficulty at fitting a straight-line to the data
on a semilogarithmic graph plot between residual drawdown
and 𝑡/𝑡

󸀠. By the application of (5) and (7) for 𝑆/𝑆󸀠 = 1 to the
observed recovery data except for the data at 𝑡󸀠 = 0, 540,
and 600min and after fitting a straight-line, a relationship
similar to (4) is obtained (Figure 1(b)). From the straight-line
parameters, the transmissivity and the storage coefficients
are calculated as 2.8596m2/min and 0.0661, respectively.
For 𝑢

󸀠
= 0.2, the recovery time, 𝑡

󸀠, is determined as
26.8min from these estimations. For this reason, the data
after 26.8min is reconsidered, and the transmissivity and the
storage coefficients are recalculated as 2.8594m2/min and
0.0666 (for 𝑎 = 0.12838 and 𝑏 = 0.694922), respectively.
These parameters yield 0.568m as a close value to 0.567m,
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Figure 2: Observed and simulated residual drawdowns.

which is the last drawdown at 𝑡 = 800min during the pump-
ing period. According to USDI’s [7] parameter values, the last
drawdown is 0.544m, which is far away from 0.567m. Zheng
et al. [18] method (𝑇 = 2.855m2/min and 𝑆 = 0.0696) which
uses a straight-line similar to the proposedmethodology pro-
duces 0.563m. The reason of the difference between the val-
ues of Zheng et al. [18] and themethodology of this papermay
be due to the lack of 𝑆/𝑆󸀠𝑡 in the right-side of (3b). Figure 2
shows the measured and simulated residual drawdowns
versus time.

The second set of recovery data is produced synthetically
for 𝑄 = 3m3/min, 𝑟 = 50m, 𝑡

𝑝
= 70min, 𝑠(𝑟, 𝑡

𝑝
) = 0.396m,

𝑇 = 1m2/min, 𝑆 = 0.0055, and 𝑆
󸀠
= 0.005. Table 1 shows the

residual drawdowns for this data. Figure 3(a) presents a non-
linear relation between 𝜏 and𝑊 for 𝑆 = 𝑆

󸀠, while Figure 3(b)
shows a linear relation for 𝑆/𝑆

󸀠
= 1.1. Figure 3(a) implies

that the rate of 𝑆/𝑆󸀠 has a big effect on the late-time residual
drawdowns during the recovery period. From the straight-
line parameters at Figure 3(b), the transmissivity and the
storage coefficients during the recovery and pumping periods
are calculated as 1.0m2/min from (6), 0.0048 from (8), and
0.0053 from 𝑆/𝑆

󸀠
= 1.1, respectively. For 𝑢

󸀠
= 0.2, the

recovery time, 𝑡󸀠, is determined as 14.99min from these esti-
mations (𝑇 and 𝑆

󸀠). For this reason, the data after 14.99min
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Figure 3: Plots of𝑊 versus 𝜏 of the synthetic data: (a) for 𝑆 = 𝑆
󸀠 and (b) straight-line fit to recovery data for 𝑆/𝑆󸀠 = 1.1 and fitting parameters.

Table 1: Synthetic residual drawdowns.

𝑡
󸀠 (min) 𝑠(𝑟, 𝑡

󸀠
) (m)

0 0.593
5 0.506
10 0.415
15 0.354
20 0.309
25 0.276
30 0.249
40 0.208
50 0.178
70 0.138
90 0.111
120 0.085
150 0.068
210 0.045
270 0.032
330 0.023

is reconsidered, and the transmissivity and storage coeffi-
cients are found as 1.0m2/min, 0.00494, and 0.00543 (for 𝑎 =

0.238856 and 𝑏 = 0.737662), respectively. The errors in the
obtained storage coefficients with respect to the other storage
coefficients are due to the rounded recovery values, which
are calculated from (2).

4. Conclusion

An effective method has been proposed for decision making
to the transmissivity and storage coefficients estimations
from the residual drawdowns during the recovery period.The
methodology is valid for the confined aquifers and considers
the expanding series ofTheis well functionwith the first three
terms and the maximum dimensionless time as 𝑢

󸀠
≤ 0.2.

This approach considers a lot of residual drawdown data than
the classical Theis recovery method. The procedure depends
on a straight-line through the field data and calculates rather
easily the aquifer parameters without the pumping data (if it

is unavailable). Validity of the procedure is presented by con-
sidering actual field data, while the Theis recovery method
has some difficulties at fitting a straight-line to a given field
data.Thismethod of this paper is very effective for the aquifer
parameters estimation and it can be reliably applied to the
residual data at an observation well in the extensive and
homogeneous confined aquifers with different storage coef-
ficients during the pumping and recovery periods (𝑆 ̸= 𝑆

󸀠).
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