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The bifurcations of heteroclinic loop with one nonhyperbolic equilibrium and one hyperbolic saddle are considered, where the
nonhyperbolic equilibrium is supposed to undergo a transcritical bifurcation; moreover, the heteroclinic loop has an orbit flip and
an inclination flip. When the nonhyperbolic equilibrium does not undergo a transcritical bifurcation, we establish the coexistence
and noncoexistence of the periodic orbits and homoclinic orbits. While the nonhyperbolic equilibrium undergoes the transcritical
bifurcation, we obtain the noncoexistence of the periodic orbits and homoclinic orbits and the existence of two or three heteroclinic

orbits.

1. Introduction

In recent years, a great deal of mathematical efforts has
been devoted to the bifurcation problems of homoclinic and
heteroclinic orbits with high codimension, for example, the
bifurcations of homoclinic or heteroclinic loop with orbit flip,
the bifurcations of homoclinic or heteroclinic loop with incli-
nation flip, and so forth; see [1-5] and the references therein.
However, most of these papers considered the bifurcation
problems of orbits connecting hyperbolic equilibria, and
limited work has been done in the corresponding problems
with nonhyperbolic equilibria; see [6-8]. To fill this gap,
we investigate the bifurcations of orbit and inclination flip
heteroclinic orbits with one nonhyperbolic equilibrium and
one hyperbolic saddle. The method is using the fundamental
solution matrix of the linear variational system to obtain
the Poincaré map, which is easier to get the bifurcation
equations.
Consider the following C" (r > 5) system

z=g(zAu) )

and its unperturbed system

z=f(2), (2)

where z € R*, the vector field g depends on the parameters
Auw, A e Ropwe RLI>2,0< A |yl <1, 9(20,0) =
f(z), g(p;,0,u) = 0, and g(p,,A,u) = 0. Moreover,
the parameter A governs bifurcation of the nonhyperbolic
equilibrium, while y controls bifurcations of the heteroclinic
orbits.

Assuming system (2) has a heteroclinic loop I' connecting
its two equilibria p,, p,, where T = T'JT%, T’ = {z = r;(¢) :
t € R}, ri(+00) = 1;,,(-00) = pi1,i = 1,2, r3(t) = ri(t),
and p; = p,. Furthermore, the linearization Df(p,) has real
eigenvalues 0, A}, —p!, and —p} satisfying —p} < —p] < 0 <
Al; Df(p,) has simple real eigenvalues A}, A3, —p3, and —p3
fulfilling -p2 < —p) < 0 < A} < A3.

The following conditions hold in the whole paper:

(H,)

+ li 7";‘ (_t)

€ = tjffmm,

3)

+ CU - SS + u - S
where e] € TP1W1 ;e € TPZW2 ,e, € TPZW2 ,e, € TPIWI’
and e] € TP2W255 mean that T! is a heteroclinic orbit with
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orbit flip, Wi is the center unstable manifold of p,, W/* (resp.,
W?) is the unstable (resp., stable) manifold of p;, and W;**
(resp., W;”) is the strong unstable (resp., stable) manifold of
pi»i = 1,2. Moreover,

dim (T, y Wy N T, (xW3)

(4)
= dim (Trl(t)wfM NT, W, ) =1
(H,)
tETmTrl (t)chu = span {eI’ TPz quu} i
tEl}looTrz(t)W; = span {e;’ TPI Wlu} ’
©)

. S + SS
tgr}iooTrl(t)Wz = span {‘31 T W, } ,

: +
Jim T, )Wy = span {e;, T, W3},

where the first three equations mean that the center unstable
manifold W™ of p,, the stable (resp., unstable) manifold W,
(resp., W,") of p, are fulfilling the strong inclination property.
And the fourth equation implies that the stable manifold W7
is of inclination flip ast — —oo.

It is worthy of noting that, for any integers m > 1 and n >
1, if we assume dim(W}) = dim(W,") = m and dim(W;*) =
dim(W;®) = n, then all the results achieved in this paper are
still valid.

Let A € R be a parameter to control the transcritical
bifurcation of system (1), let the x-axis be the tangent space of
the center manifold at p,, and let 0(x, A, ) be the vector field
defined on the center manifold; then by [9], we may assume

(Hy) 6(xp5 Ap) = 0, (90/0x)(x,,0,0) = 0,
(0%0/0x%)(x,,,0,0) > 0, (3°6/0x0A)(x,,,0,0) < 0,
(aze/axay)(xpl,o, @) = 0, where X, 18 the x

component of p;.

If (H;) is true, then system (1) exhibits the transcritical
bifurcation, that is, when A > 0 (or A < 0; in this paper, we
only consider the case A > 0; for the case A < 0, one may
discuss it similarly); there are two hyperbolic saddles p! and
p; bifurcated from p,. Denote by p) = p, = (0,0,0,0)* and
pi =p+ ()LP, 0,0,0)", where AP =0pA + O\?) + O(Ap) and
0, = —(820/8xa)t)(xp1 ,0, 0)/((’320/8362)(36‘01 ,0,0). Moreover,
dim(W;?) =3, dim(W;?) =1, and dim(Wl’;%) = dim(W;}) =
2.

The present paper is built up as follows. In Section 2, we
devote it to deriving the successor functions by constructing
a suitable Poincaré Map. The analysis to the bifurcations of
system (2) is presented in Section 3, where we establish the
existence of the heteroclinic loop, the homoclinic orbits, and
the three or two heteroclinic orbits and the coexistence of
a periodic orbit and a homoclinic loop, and the difference
between the heteroclinic loop with hyperbolic equilibria and
nonhyperbolic equilibria is revealed.
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2. Normal Form and Poincaré Map

Let the neighborhood U; of p; be small enough and straight
the local manifolds of W, W,™, W/, and i = 1,2 in the neigh-
borhood U;. And then by virtue of the invariance of these
manifolds and a scale transformation x — Ggi(xpl, 0,0)x

and A — —G;i(xpl,o, 0)A, system (1) has the following
expression in U:

x=-Ax+x’+0w[0(y)+0)]
+0()[0(y) +O W) +O0M]+0(x)0(x*),
y=[-pl @+ ]yrOomO®+0W], (6
i=[M @+ Ju+r O [0(y) +OW)],

v= [l @+ ]rr0([0@+0() +O0w],
and in U, it takes the following form:

x=[A @+ ]x+0w[O(y)+OW)],

j=[-p @+ ]y+0mOx)+0W],
)
u=[A2 @+ |utr 0 [0(x) +0(y) +0W)],

v=[-ps @+ ]v+0(») [0(x)+O(y) +OW)],

Where a = A, @), AP = A + o) + O(Ap), /\11(0) = /\11,
pl0)=p/,j=1,2,i=1,2,150) =L}, j=1,2.
From the normal form (6), (7), and the condition (H,),
we may select —T; and T; such that
r (-T;) = (6,0,0,0)", r (Ty) = (0,0,0,8)",
8)
11 (-T;) = (6,0,0,8,, 0)*> r,(T;) = (0,8,0, 61/)*’

where § > 0 is small enough such that {(x, y,u,v)
|x], |y, lul, [v] < 26} ¢ U; and [8,,| = 0(6), |5,| = o().
Consider the linear variational system

2=Df(r;(1)z o),
and its adjoint system

¢ =~(Df (r; (1)) ¢, (10);
i = 1,2, where (Df(r,(t)))" is the transposed matrix of
Df (r;(t)).

Supposing Z;(t) = (zil(t),ziz(t),zf(t),z?(t)) is a funda-
mental solution matrix of (9);, then, we arrive at the following
lemma.
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Lemma 1. If conditions (H,)-(H;) are satisfied, then
(1) there exists a fundamental solution matrix of (9),

satisfying
c [
2 () € (T, W) n (T, wW;).
(t
Z%(t):— .rl() GT(t)W ﬂT
|1 (1)) a1
Cc
2 (1) € T, Wi 0 (T, o W3)
Zl (t) € ( r (t)Wcu) n Trl(t)WS
such that
w}l w%l 0 w‘f1
7 ( T) w}z 0 0 ufl12
! ! w}s wl3 1 w;B ’
0 0 0w
o 12)
1 0wl o
7,(T)) 0> 0 w? 1
U ow?o |
0 1 w*o
(2) (9), has a fundamental solution matrix fulfillin
2 g
c [
2 (1) € (ToWs) 0 (T,0Wi)
t
2(t) = h#) T, o We N T, Wi,
| [F} (T2)| (13)
s c
5 (1) € T, oWy 0 (T, o Wr)
2 (1) < ( 72(t)W2u) NT, oW
such that
wél w%l 0 w;“
0 0 0 w
Z,(-T,) = R
2 (-T,) wf w23 1 w;B
w* 0 0 0
(14)
1 0 w'o
[ 0o 1 wlo
Z,(T,) = 0 0 w§3 o |’
1?6%4 wg w§’4 1
where wfl < 0, w{2w33w54w‘2‘2=ﬁ0, |(wi33)_1wi3j| < 1j=
1,2,4,i=1,2.

Now,

(@1 (1), 2 (1), (1), (1)) =

let (z](t),27(t),2;(t),2}(t) be a new local
active coordinate system along I".

'@,

Given @;(t) =
then @;(t) is the

fundamental solution matrix of (10);,i = 1, 2.

Let z =

(nl'la 03 n?y n:l)*; i = 1, 2. Deﬁning

S = {z=h(-T)): Ixl,
cxl |y luls vl < 28}

st =

1

{z=h(T))

ri(t) + Z;(t)N;(t) =

h;(t), where N;(t) =
the cross sections

[y]lul, vl < 26},

of I at t = -T; and t = T}, respectively, i = 1, 2.

3
Now thatif g} € S} and g; € S;, then
q?:(x?,yl,uov) =r,(-T;)) + Z, (-T;) N, (-T;),
N; (-T;) = ( 0,17, ?4)*’
(16)

qil = (xil’yil’uil’vil)* =1, (T;) + Z; (T;) N; (T;),

N; () = ("

1,4
Onl ,n )

Based on the expressions of Z;(-T;) and Z/(T;), we

3 ; )1 8 4
get their new coordinates of q?(n? ,0,n?3,n? )" and
1,1 13 14 .
ql(n ,0,m 3 N )*; that is,
01_( 12)—1 0 _ 42( 44)—1 0
n=\w yp —wy (W Yi|>
03 _ 0 13( 12)—1 0
ne =u-w (W ) N
13 42( 12)—1_ 43 ( 44)—1 0
+ |w; w; (w, w” | (w;") vy

04 _ ( 44)—1 0
ne=w ) Vi

0 _ 11_0,1 41 04

x,=80+w, n +w; n =6,

L1 _ 1 31( 33)—1 1
nS=x W \W, Uy,

1,3 _( 33)—1 1
ne =\w; ) 4

L4 _ 1 121 (~12 31 32)( 33)—1 1
ny =y -w x t(ww —wyp J(wy ) Uy

1

v = 0, (17)

01 _ ( 14)*1 0
n, =\w, ) V»

03 _ - ( 14)—1 0_ 43( 42)-1 0
n, = w, (W, V, —w, (W, Y2
0,4 ( 42)—1 0
ny =\w, ) Y
0
x, = 6,
L1 _ 1 31( 33)*1 1
ny =Xg-W, \W, ) Up

1,3 _( 33)*1 1
ny” = (w, Uy,
14

mt = vy -8 -

—14 1 (~14 31 34)( 33)—1 1
-, xp + (W0, w, —w, ) (wy") uy,

Next, we divide our establishment of the Poincaré map in
the new coordinate system in three steps.



First, consider the map Fi1 : S? — Sil. Put z = h,(t) into
(1); we have

# () + Z; ()N, () + Z; () N; ()
=g (r;(0) + Z; () N; (£), A, )
=9g(r;(1),0,0) + g, (r; (t),0,0) Z; (1) N; (¢)
+ g (r; (£),0,0) A + g, (r; (),0,0) p + hoovt.
= f(r: () + Df (1 () Z; (1) N; ()
+g, (r; (£),0,0) A + g, (r; (£),0,0)  + ho.t.

f(r(t)) and Z(t) =

(18)

According to the fact 7;(f) =
Df (r;(t))Z;(t), it then yields to that

N; (1) = Z7* (1) [ g2 (i (£),0,0) A + g,, (1, (£),0,0) 1] )

+h.o.t.

Integrating the above equation from —T; to T}, we arrive at

T,

N(T) = Ni(T)+ [ 27 0, 0,0.0) Al

. (20)
+ J 27N g, (r;(1),0,0) pdt + hot.
T,

Noticing that ®; (¢) = Zi_l(t), then

n = n?’j + MIJA)L + M p+hot, j=1,3,4,  (21),

i i

where

. T, .
M}, = JT ¢ gy (r; (t),0,0) dt,
’ (22),

(T
M, = J . ¢! g, (r;(t),0,0)dt, j=1,3,4

Together with (17) and (21);, (22); then defines the map Fl.1 :
0 1,01 o 03 04 Ll o 13 14
S; =S, (n,0,m,7,m%) = (n7,0,n77, m,7%).

Next, to construct the map F, : S, +— &
(where S; = S)). Let 7,,i = 1,2 be the flying time

1R RS WS B N 00,0 0 0 Oy

frO{n qi1 (Xi_p> Vi ”Hl’ Vi) to g (x;, v, v;) s set sy =
eP®% and s, = e ™%, By virtue of the approximate
solution of system (6) and (7), if we neglect the higher terms,
then the expression of F, : S} + S is

0
!~ X yo ~s yl
0= > 1~ 51>
h(sy) (23)
1 1 2 1
W = HERl@ 0 @l )

and Fg :S} — S; is

1 Ay(@)/py (@) 0 0 1
xp =80T x, Yo =81
AZ 1 2 1 (24)
W= SOE@ e AR,
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X
St \
So
p} X = AP
» 4
&
FIGURE 1

where (s;, u?, vil_l), i = 1,2 are called Shilnikov coordinates,
and

N L B e e Rl PP P S
1- (P11 (oc))_lx(l) Ins, AP =0

Since the nonhyperbolic equilibrium p; undergoes a tran-
scritical bifurcation based on the structure of orbits in Uy,
we may see that the equation x; =~ x)/h(s,) holds only for
x(l) > A,. While for x(l) € [-B.A,) (0 < B < 1), the map F?
is well defined only if s, = 0 (see Figure 1). So, we extend the
domain of F}, defining

X1=0, s=0, ifxge[-BA,). (26)

The final step is to compose the maps Fi0 and Fi1 ,and then
F, =F! o F): 8} S can be expressed as

L1 _ ( 12\7! 12\"1 42/ 44\71 pl(a)/p} (@) 1
ny = (w1 ) 8s, — (w1 ) w) (w1 ) s} vy

1 1
+MpjA+ M u+hot,
1,3 0 13/ 12\71
ny” = u; —w, (w1 ) 08,
3 42/ 12\7! 43 44\~1 pl(e)/pi (a) 27)
1 - L pi@/p(e) 1
+ [wl w, (w1 ) -w, ](w1 ) sy
+ MA+ Mfﬂy +h.o.t,
-1 2 1
n%"* = (w‘lM) sfl @/py (“)v(l) + MfA/\ + Mf”;/t +h.o.t.
and F, = F) o F} : S} = S)(=S;) as
-1 2 1
n;’l = (w;l) 8st? @/p@ M;AA + M;M;,t +h.o.t,
13 0 su 137, 14\"L o pl(@)/py(e)
ny" = uy, — 68, —w, (w2 ) G5y
(28)

-1
—w (W) syl MA+ M+ huoit,

1,4 44\ g 4 4
n,” = (wz ) $,01 + My A+ My, p+hot.
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Set G; = Fi(q;,) — q;»i = 1,2. Combing (21);, (23), (24),
(27), and (28), we derive the successor functions Gf :

-1 1 1
G{ = (wiz) Osy — 8522(0‘)/‘72(“) + MIIAA + Mllwu +h.o.t,,
3 0 13/ 12 33\~ A (@)/p3(@) 0
G| = u, —w, ( ) ds; — ( ) s,
+ M)A+ Mfwu +ho.t,

1
G‘l1 — (wl ) P] (“)/Pl(“) 1 1265/\ (OL)/pZ( o)

-y + @,
+ MA+ M ui+hodt,
1
G, = (w
(w2 s

Gy =u) -5 —w13(

NSO _sp (s,

rx)/pl(a) 0 +M ,\+M2wu+hot
-1 2 1
) ash e
43 2\ p@/p@ 1
- w, (w2 ) s N
—1 3! 1
B (wf) S?I(«x)/pl (a)u(l) + M+ ng“ +h.o.t,
4 a7l 1 14
G, = (wz ) 01 = Vo + 8y + W, 0k (sy)
34
_ (w2 -

+ My A + Mgwu +ho.t.

14 31 33\~ Al(@)/pi (@) 0
w, W, )(wz ) Sy Uy

(29)

It is easy to see that what we need to do is considering the
solutions of

(G1,G1,G},G,,G3,G;) =0 (30)
with s; > 0 and s, > 0. This is because the solution of (30)
with s; =s, = 0 (resp.,s; > 0,s, >0; s; =0,s, >0o0rs; >0,

s, = 0) means that system (1) has a heteroclinic loop (resp., a
periodic orbit; homoclinic loop).

3. Main Results

Based on the expressions of the successor functions and
the implicit function theorem, we know that the equation

(G, G4 G3 G4) = 0 hasa unique solution (ul,uz,yl, Vo) And
putting it into (G},G}) = 0, then we obtain the following
bifurcation equations:

(wiz)_l&l - 5525/’)21 + MIIAA + Mllyy +h.o.t. =0,
(wht) " 857 — Sk (s,) + M A + M
rwy'(w’) 1 ? Vel [wi3(wi2)7l8sl + (wf3)71 31)
X sg a/P: (8; -

My = Mj, 1)

~MjA - M; ] +hot = 0.

Firstly, we consider the case A = 0, which means the
transcritical bifurcation does not happen. By (23) and (25),
(31) turns to

-1 11
(w}2) ds; — 852\2/92 + Mllwu +h.o.t. =0,

12\ 1o pi/ps 9 1
(w2 ) Osy"" — M, p

T N laq +

1_(P1) dlns, (32)
-1 -1 1,1

vy (W) wp (wy?) as P
Z1 4141

~w (w3’) P M+ hot. = 0,

Noticing that A}/p; > 0, which shows lim, Hos)L ey -

(P1) 181n s;) = 0, it then follows that

12 Ay/ps 12 _
51— w, 5,7+ 87wy 1M14+hot 0,

12\ pi/p} 1
(wz ) ST

- +8'M!u+hot=0.
- (pl) olns,

(33)

From the above bifurcation equations, we obtain the
following results immediately.

Theorem 2. Let the conditions (H,)-(H;) be true and Milﬂ 0,
i=1,2. Then, for A =0 and 0 < |p| < 1, one has

(i) for rank(M1 M1 ) = 2, there exists a codimension 2

surface
L,= {(4 : Mllwu +hot. = MZI#‘” +hot. = 0} (34)

such that system (1) has a unique heteroclinic loop near I' if
and only if y € L,,, where the surface L, has a normal plane
span{M1 M) Jatyu=0.

(ii) there exzsts an (I — 1)-dimensional surface

2 Al
= {y £ 0wy My, p + (8’1M11H[4)P2/ *+hot.=0,
Mllﬂ/,t > 0}

(35)

1)
resp., L= :
< S 1= (p}) "8 1n (=8 1wiM] )

lewu +h.o.t.=0, w}lelwu <0 >
(36)

such that system (1) has a unique homoclinic loop connecting
py (resp., connecting p,) near T if and only if u € L% (resp.,
pell)



Proof. The result (i) will be proved by putting s, = s, = 0 into
(33).
If we assume s; = 0 and s, > 0 in (33), then

1 1
s;z/Pz = 8_1M:wu +h.o.t,

-1 2,1 (37)
(w?) £l 5‘1]\/[;#[4 +hot. =0,
which means
( 12\ p/Ay | slqaul = 38
wy?) 5™ + 87 M)+ hoit. = 0, (38)

It follows that there exists an (I — 1)-dimensional surface
L21 given by (35) such that (33) has a unique solution s; = 0,
s, =5,(4) > 0as u € L3 and 0 < |u| < 1. This implies system
(1) has a homoclinic loop connecting p,. The existence of L}
can be obtained similarly.

This completes the proof. O

Remark 3. There is no difficulty to see that L has a normal
vector M;H atu = 0as p2 > A}, while for p? < A} (resp.,
p22 > /\;) it has a normal vector Mllﬂ (resp., Mfy + w;ZM;“) at
u=0.

Theorem 4. Assume the conditions (H,)-(H;) hold and
Ml.l!l#O, i=1,2 Thenfor A =0, u € L%, and 0 < |u| < 1, the

periodic orbit and homoclinic loop with p, of system (1) cannot
coexist.

Proof. Theorem 2 shows that if 4 € L} and 0 < |u| < 1,

then system (1) has a homoclinic loop with p;. Setting s; > 0,
1 1

5;12/92 = (W) s, + 871M11M//t +hot > 0,and y € L%, then

(33) is reduced to

- 7/,
Vi(s) = [(w)?) s, +6"1M11Hy]p2 L+ W) My
12 (39)
+hot = 2 2N, (s)).

1-(p!) '6lns,
Notice that V;(0) = N;(0) and

2 200
Vi (s) = 2 (w) (wl) s ]

w(p}) '8
(1- (1) '8Ins,)’s,

If w}zwéz < 0, then Vl'(sl)N{(sl) < 05 it is obvious that
Vi(s;) = N, (s;) has no sufficiently small positive solutions.

While p22 > A;, then |V1'(sl)| < 1and |N{(sl)| > 1 hold
for 0 < s; < 1, which shows that V;(s;) = N, (s;) has no
sufficiently small positive solution.

Next, we only consider the case p; < A} and w}*w)* > 0.
As p € L2, we have M;wu > 0, and then, for w}* > 0,i = 1,2
we see that

(40)
NI’ (51) =

—p2/AL -
Vi(s) < (wiz) Pl 25;1722/)@ "<Ni(s) for0<s <1
(41)
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In fact, p; < A} yields that limsl_,ws“l’z/)‘2 Y2 4o,
291

limsl_,0+N{(sl) = +00, and limsl_,osfz/)t2 1/N{(sl) =0,

which shows V;(s;) = N;(s;) has no sufficiently small posi-
tive solutions. Obviously, the conclusion is correct as p; = AJ.
Similarly, for p7 < A}, w/*> < 0,i = 1,2, there does not
exist a small positive solution for V;(s;) = N;(s,).
The proof is then completed. O

Theorem 5. Assume that the conditions (H,)-(H,) hold and
M}M#O, i=1,2LetA=0,pueL),and0 < |u| < 1; then

(i) the periodic orbit and the homoclinic loop connecting
P, of system (1) cannot coexist as p; > A5 or
w}zwéz <0

(ii) at least one periodic orbit and the homoclinic loop
connecting p, of system (1) coexist as p5 < Ay, w;”> > 0,
and w)? > 0;

(iii) a unique periodic orbit and the homoclinic loop con-

necting p, of system (1) coexist as p; < A}, wi* < 0,

and wéz <0.

Proof. By Theorem 2, the condition p € L) for 0 < |u| < 1
implies that system (1) has a homoclinic loop connecting p,.

(i) Let s, = ¢ ™ and eliminating s, in (33), we derive
V,(sy) 25, + S_Iwézlewu +ho.t.

i o
) o (u (o))

2N, (s).

Note that V,(0) = N,(0) as 4 € L}. Moreover,

Vzr (s,) =1L,
Wi (o) s
[1- o) "o1n (w}? (3% -5 03 )) |
(gg) 4

(&)

Né (s2) =

(43)

For p7 > A} and Ni(s,) < 1 = V] (s,), this means V,(s,) =
N, (s,) has no sufficiently small positive solutions.

Now we turn to the case wizwéz < 0, since we are
interested in sufficiently small positive solutions of (33), it
suffices to consider the sufficiently small positive solutions of

1 2
V,(s,) = N,(s,) satisfying wiz(sgz/pz - (S_IM:WM) > 0, which
1 2 1 2
implies that SQZ/PZ - 6_1M11wu < 0 (resp., S;Z/PZ - 8_1M11#y >
0) for w}z < 0 (resp., wiz > 0). It is easy to see that

V,(s,) = N,(s,) has no sufficiently small positive solutions
as w}zwéz <0.
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(ii) For p22 < A;, we have VZ'(O) =1>0-= Né(O), which
implies that there exists an 0 < §, < 1 such that V,(s,) >
N,(s,) for0 < s, <5,.

Choosing s, = 871w;2M21wu > 0, then
V,(5,) = 28_1w;2M;M//1 +h.o.t.,

wy? (44)
-1 Ml o '
1= (ph) " 0mn (w}? (7 - 07 M}, u))

N, (§2) =

1 2 1 2

In view of ln(wiz(?z\z/p2 - 6_1M11Hy)) > ln(wizgz/pz)
1 2
ln(w}z((S_lw;zM;Hy)Az/Pz) for w}* > 0, so

w)?
-1 _ Ay/p3
1-(pl) dln <w{2 <w%2(8 lwézleﬂy) >>

> 2w,’ (6_1w;2M;Mpt) =V, (5,)

N, (5,) >

(45)

when w)> > 0. As a result, N,(s,) = Vj(s,) has at least one
solution s, satisfying 0 < 5, <5, <§, < L.
2771

(iii) s, must fulfill 0 < s, < (6_1M11Hy)”2/’\2 as w;’ < 0;
with similar arguments in proof of (ii), we can prove that there
existsa 0 < s; < 1 such that V,(sJ) = N,(s;) for 0 < s; <

2741

((S_IMIIWM)"”’12 < 1.1tis easy to compute that N, (s,) > 0 for

w?’ <0,0<s,< (871M11#y)p§/)“;, and p € L}. Combining

with the fact V,(0) = N,(0), Né(sz) > 0, and Vz'(sz) =1, we
immediately know that s is unique.
This completes the proof. O

Now, we turn to discussing the bifurcations of the hete-
roclinic loop for A > 0, when p; undergoes a transcritical
bifurcation. From Figure 1, we know that when A > 0, after
the creation of the equilibria p and p}, there always exists

a straight segment orbit heteroclinic to p] and p}, its length
is A » and we denote this heteroclinic orbit by ['*. Moreover,

xp=A p is a critical position.

Firstly, we take into account the case x§ > A - In this case,
(31) becomes

1 1.1
(wiz) ds; — 6522/‘02 + M)A+ M;wu +hot =0,
—1 2,1 Aol -1
(w?) o527 - a)tp[a —(8-1,)sp" ]

+ MZIA)L + M;Hy

31/ 33\"L Al/pt [ 137 12\71 33\"1 o A3/A5
+w, (w2 ) s w, (w1 ) 08, +(w1 ) 0s,

~M}\A - M| +hot. = 0.
(46)

A, /p

Lets =s5,”"" (s = 0 means s; = 0 and vice versa); by virtue

of Taylor’s development for A » J§—=(6-A P)s?" e ), we have
(wiz)ilspll/’\l’ - sfz/pzl + 6_1M11)L}L + 8_1M11M(4 +h.o.t. =0,

_ Ap (S_Ap)

1 o241
(w)?) 8P ~ 1, 5

s+ MyA

+ M;’M +h.o.t. = 0.
(47)

With similar arguments to A = 0, we may easily obtain
the following results.

Theorem 6. Suppose the conditions (H,)-(H;) hold, 0 < A <«
1; then

G if rank(MllH,Méﬂ) =
dimensional surface

2, there exists an (I — 2)-

L, = {u): M+ MhA+hot.
(48)
= i,m + MHA—A+hot. = 0}
such that system (1) has a unique heteroclinic loop if and only

ifuel),and0 < |yl < 1;
(ii) there exists an (I — 1)-dimensional surface

Lzm = {.”()‘) : le (An‘") = (wéz)_l[‘s_l (Mllyﬂ + M11A/\)]ﬁz
+07! (M;#” + M;)L)L)
~87'A, +hot. =0,

M{My + M4 > o}
(resp.,

Lh = e W} (Lp)
=81, +1,(6-1,)
x [-67 wi (ML + ML )77
~ SM;, A
- SMéwu + h.o.t. =0,
w? (M A+ M u) < 0})
(49)

such that system (1) has one homoclinic loop connecting p)
(resp., connecting p,) if and only if y € L3, and 0 < |u| < 1.

Theorem 7. Suppose hypotheses (H,)-(H;) hold, Mily #0,i=

1,2,0 < A lul < 1, and w*w)” < 0. Then, except the



homoclinic loop connecting p; (resp., p,), system (1) has no
periodic orbits as y € L3, (resp., y € L})).

Remark 8. 1t is easy to see that homoclinic loop connecting
0 .. L. 0 .

p; and heteroclinic loop joining p;, p, cannot be bifurcated

from I', which is exactly determined by the generic condition

(H)).

Finally, we consider the case - < x; < A,. Due to
Figure 1 and (25), it follows from (31) that

_ 1 /\1
S, = [8 ! (Mll/\/\ + M:wu)]pz/ *+ho.t,
(50)
1 o200
xp = (w3?) 8PP + My A+ My, p+hot.

Theorem 9. Assume the conditions (H;)-(H;) are true,
rank(Mll/\,MllH) > 0 and rank(MéA,M;H) > 0. Then,

(i) there exists a surface
2 (wA) = {M W [87 (MhA+ M{ﬂy)]"” % hot =0,
- B < MyA+Myu+hot. <A,
0<|ul, A< 1},
(51)

such that system (1) has two orbits heteroclinic to pi,
Py Pl as p € Zy(u, A);
(ii) there exists a region in the (A, ) space

A= {(A, M) . _ﬁ < (wéz)%@(/\lz—Pzz)//\lz

% (MU + ML)

1 1
+MyA+ M,,p (52)
+ h.ot. < )tp,

MIIA)L+M11H” >0,
0< |y, A< 1},

such that system (1) has a heteroclinic orbit connecting
py and p) for (A, ) € A.

Proof. (i) If s, = 0in (50), then

(53)
xp = MyA+ lewu +h.o.t.

which shows that there exists a surface X, (4, A) such that (50)
has a solution s, = 0 and -8 < x, < A, for pu € X, (u, A),
then system (1) has two heteroclinic orbits, one is heteroclinic
to p} and p, and the other is heteroclinic to p, and py.
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FIGURE 2

(ii) If s, > 01in (50), one attains M:

s, in (50), we achieve

A)HMLM > 0. Eliminating

1 (o12\"Lol-p)/al 1 1\
= @) s
+ M)A+ M;My +hot,

which shows that there exists a region A such that when
(A, ) € A, system (1) has one heteroclinic orbit heteroclinic
to p and p?. O

Remark 10. All the heteroclinic orbits joining p? will go into
p) in different ways according to different fields of x,; see
Figure 2.
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