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The bifurcations of heteroclinic loop with one nonhyperbolic equilibrium and one hyperbolic saddle are considered, where the
nonhyperbolic equilibrium is supposed to undergo a transcritical bifurcation; moreover, the heteroclinic loop has an orbit flip and
an inclination flip. When the nonhyperbolic equilibrium does not undergo a transcritical bifurcation, we establish the coexistence
and noncoexistence of the periodic orbits and homoclinic orbits. While the nonhyperbolic equilibrium undergoes the transcritical
bifurcation, we obtain the noncoexistence of the periodic orbits and homoclinic orbits and the existence of two or three heteroclinic
orbits.

1. Introduction

In recent years, a great deal of mathematical efforts has
been devoted to the bifurcation problems of homoclinic and
heteroclinic orbits with high codimension, for example, the
bifurcations of homoclinic or heteroclinic loopwith orbit flip,
the bifurcations of homoclinic or heteroclinic loop with incli-
nation flip, and so forth; see [1–5] and the references therein.
However, most of these papers considered the bifurcation
problems of orbits connecting hyperbolic equilibria, and
limited work has been done in the corresponding problems
with nonhyperbolic equilibria; see [6–8]. To fill this gap,
we investigate the bifurcations of orbit and inclination flip
heteroclinic orbits with one nonhyperbolic equilibrium and
one hyperbolic saddle. The method is using the fundamental
solution matrix of the linear variational system to obtain
the Poincaré map, which is easier to get the bifurcation
equations.

Consider the following 𝐶
𝑟 (𝑟 ≥ 5) system

�̇� = 𝑔 (𝑧, 𝜆, 𝜇) (1)

and its unperturbed system
�̇� = 𝑓 (𝑧) , (2)

where 𝑧 ∈ R4, the vector field 𝑔 depends on the parameters
(𝜆, 𝜇), 𝜆 ∈ R, 𝜇 ∈ R𝑙, 𝑙 ≥ 2, 0 ≤ 𝜆, |𝜇| ≪ 1, 𝑔(𝑧, 0, 0) =

𝑓(𝑧), 𝑔(𝑝
1
, 0, 𝜇) = 0, and 𝑔(𝑝

2
, 𝜆, 𝜇) = 0. Moreover,

the parameter 𝜆 governs bifurcation of the nonhyperbolic
equilibrium, while 𝜇 controls bifurcations of the heteroclinic
orbits.

Assuming system (2) has a heteroclinic loop Γ connecting
its two equilibria 𝑝

1
, 𝑝
2
, where Γ = Γ

1

⋃Γ
2, Γ𝑖 = {𝑧 = 𝑟

𝑖
(𝑡) :

𝑡 ∈ R}, 𝑟
𝑖
(+∞) = 𝑟

𝑖+1
(−∞) = 𝑝

𝑖+1
, 𝑖 = 1, 2, 𝑟

3
(𝑡) = 𝑟

1
(𝑡),

and 𝑝
3
= 𝑝
1
. Furthermore, the linearization 𝐷𝑓(𝑝

1
) has real

eigenvalues 0, 𝜆1
1
, −𝜌1
1
, and −𝜌

2

1
satisfying −𝜌

2

1
< −𝜌
1

1
< 0 <

𝜆
1

1
; 𝐷𝑓(𝑝

2
) has simple real eigenvalues 𝜆1

2
, 𝜆2
2
, −𝜌1
2
, and −𝜌

2

2

fulfilling −𝜌
2

2
< −𝜌
1

2
< 0 < 𝜆

1

2
< 𝜆
2

2
.

The following conditions hold in the whole paper:

(𝐻
1
)

𝑒
±

𝑖
= lim
𝑡→±∞

̇𝑟
𝑖
(−𝑡)

 ̇𝑟
𝑖
(−𝑡)



, (3)

where 𝑒
+

1
∈ 𝑇
𝑝
1

𝑊
𝑐𝑢

1
, 𝑒−
1
∈ 𝑇
𝑝
2

𝑊
𝑠𝑠

2
, 𝑒+
2
∈ 𝑇
𝑝
2

𝑊
𝑢

2
, 𝑒−
2
∈ 𝑇
𝑝
1

𝑊
𝑠

1
,

and 𝑒
−

1
∈ 𝑇
𝑝
2

𝑊
𝑠𝑠

2
mean that Γ1 is a heteroclinic orbit with
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orbit flip,𝑊𝑐𝑢
1

is the center unstablemanifold of𝑝
1
,𝑊𝑢
𝑖
(resp.,

𝑊
𝑠

𝑖
) is the unstable (resp., stable) manifold of 𝑝

𝑖
, and 𝑊

𝑢𝑢

𝑖

(resp., 𝑊𝑠𝑠
𝑖
) is the strong unstable (resp., stable) manifold of

𝑝
𝑖
, 𝑖 = 1, 2. Moreover,

dim (𝑇
𝑟
1
(𝑡)
𝑊
𝑐

1
∩ 𝑇
𝑟
1
(𝑡)
𝑊
𝑠

2
)

= dim (𝑇
𝑟
1
(𝑡)
𝑊
𝑐𝑢

1
∩ 𝑇
𝑟
1
(𝑡)
𝑊
𝑠

2
) = 1.

(4)

(𝐻
2
)

lim
𝑡→+∞

𝑇
𝑟
1
(𝑡)
𝑊
𝑐𝑢

1
= span {𝑒

−

1
, 𝑇
𝑝
2

𝑊
𝑢𝑢

2
} ,

lim
𝑡→+∞

𝑇
𝑟
2
(𝑡)
𝑊
𝑢

2
= span {𝑒

−

2
, 𝑇
𝑝
1

𝑊
𝑢

1
} ,

lim
𝑡→−∞

𝑇
𝑟
1
(𝑡)
𝑊
𝑠

2
= span {𝑒

+

1
, 𝑇
𝑝
1

𝑊
𝑠𝑠

1
} ,

lim
𝑡→−∞

𝑇
𝑟
2
(𝑡)
𝑊
𝑠

1
= span {𝑒

+

2
, 𝑇
𝑝
2

𝑊
𝑠

2
} ,

(5)

where the first three equations mean that the center unstable
manifold 𝑊

𝑐𝑢

1
of 𝑝
1
, the stable (resp., unstable) manifold 𝑊

𝑠

2

(resp.,𝑊𝑢
2
) of 𝑝
2
are fulfilling the strong inclination property.

And the fourth equation implies that the stable manifold𝑊
𝑠

1

is of inclination flip as 𝑡 → −∞.
It is worthy of noting that, for any integers𝑚 ≥ 1 and 𝑛 ≥

1, if we assume dim(𝑊
𝑢

1
) = dim(𝑊

𝑢𝑢

2
) = 𝑚 and dim(𝑊

𝑠𝑠

1
) =

dim(𝑊
𝑠𝑠

2
) = 𝑛, then all the results achieved in this paper are

still valid.
Let 𝜆 ∈ R be a parameter to control the transcritical

bifurcation of system (1), let the 𝑥-axis be the tangent space of
the center manifold at 𝑝

1
, and let 𝜃(𝑥, 𝜆, 𝜇) be the vector field

defined on the center manifold; then by [9], we may assume
(𝐻
3
) 𝜃(𝑥
𝑝
1

, 𝜆, 𝜇) = 0, (𝜕𝜃/𝜕𝑥)(𝑥
𝑝
1

, 0, 0) = 0,
(𝜕
2

𝜃/𝜕𝑥
2

)(𝑥
𝑝
1

, 0, 0) > 0, (𝜕2𝜃/𝜕𝑥𝜕𝜆)(𝑥
𝑝
1

, 0, 0) < 0,
(𝜕
2

𝜃/𝜕𝑥𝜕𝜇)(𝑥
𝑝
1

, 0, 𝜇) = 0, where 𝑥
𝑝
1

is the 𝑥

component of 𝑝
1
.

If (𝐻
3
) is true, then system (1) exhibits the transcritical

bifurcation, that is, when 𝜆 > 0 (or 𝜆 < 0; in this paper, we
only consider the case 𝜆 > 0; for the case 𝜆 < 0, one may
discuss it similarly); there are two hyperbolic saddles 𝑝0

1
and

𝑝
1

1
bifurcated from 𝑝

1
. Denote by 𝑝

0

1
= 𝑝
1
= (0, 0, 0, 0)

∗ and
𝑝
1

1
= 𝑝
1
+ (𝜆
𝑝
, 0, 0, 0)

∗, where 𝜆
𝑝
= 𝜃
0
𝜆 +𝑂(𝜆

2

) + 𝑂(𝜆𝜇) and
𝜃
0

= −(𝜕
2

𝜃/𝜕𝑥𝜕𝜆)(𝑥
𝑝
1

, 0, 0)/(𝜕
2

𝜃/𝜕𝑥
2

)(𝑥
𝑝
1

, 0, 0). Moreover,
dim(𝑊

𝑠

𝑝
0

1

) = 3, 𝑑𝑖𝑚(𝑊
𝑢

𝑝
0

1

) = 1, and dim(𝑊
𝑢

𝑝
1

1

) = dim(𝑊
𝑠

𝑝
1

1

) =

2.
The present paper is built up as follows. In Section 2, we

devote it to deriving the successor functions by constructing
a suitable Poincaré Map. The analysis to the bifurcations of
system (2) is presented in Section 3, where we establish the
existence of the heteroclinic loop, the homoclinic orbits, and
the three or two heteroclinic orbits and the coexistence of
a periodic orbit and a homoclinic loop, and the difference
between the heteroclinic loop with hyperbolic equilibria and
nonhyperbolic equilibria is revealed.

2. Normal Form and Poincaré Map

Let the neighborhood 𝑈
𝑖
of 𝑝
𝑖
be small enough and straight

the localmanifolds of𝑊𝑠
𝑖
,𝑊𝑢𝑢
2
,𝑊𝑠𝑠
𝑖
, and 𝑖 = 1, 2 in the neigh-

borhood 𝑈
𝑖
. And then by virtue of the invariance of these

manifolds and a scale transformation 𝑥 → 𝜃
−1

𝑥𝑥
(𝑥
𝑝
1

, 0, 0)𝑥

and 𝜆 → −𝜃
−1

𝑥𝜆
(𝑥
𝑝
1

, 0, 0)𝜆, system (1) has the following
expression in 𝑈

1
:

�̇� = − 𝜆
𝑝
𝑥 + 𝑥
2

+ 𝑂 (𝑢) [𝑂 (𝑦) + 𝑂 (V)]

+ 𝑂 (𝑥) [𝑂 (𝑦) + 𝑂 (𝑢) + 𝑂 (V)] + 𝑂 (𝑥)𝑂 (𝑥
2

) ,

̇𝑦 = [−𝜌
1

1
(𝛼) + ⋅ ⋅ ⋅ ] 𝑦 + 𝑂 (V) [𝑂 (𝑥) + 𝑂 (𝑢)] ,

�̇� = [𝜆
1

1
(𝛼) + ⋅ ⋅ ⋅ ] 𝑢 + 𝑂 (𝑥) [𝑂 (𝑦) + 𝑂 (V)] ,

V̇ = [−𝜌
2

1
(𝛼) + ⋅ ⋅ ⋅ ] V + 𝑂 (𝑦) [𝑂 (𝑥) + 𝑂 (𝑦) + 𝑂 (𝑢)] ,

(6)

and in 𝑈
2
it takes the following form:

�̇� = [𝜆
1

2
(𝛼) + ⋅ ⋅ ⋅ ] 𝑥 + 𝑂 (𝑢) [𝑂 (𝑦) + 𝑂 (V)] ,

̇𝑦 = [−𝜌
1

2
(𝛼) + ⋅ ⋅ ⋅ ] 𝑦 + 𝑂 (V) [𝑂 (𝑥) + 𝑂 (𝑢)] ,

�̇� = [𝜆
2

2
(𝛼) + ⋅ ⋅ ⋅ ] 𝑢 + 𝑂 (𝑥) [𝑂 (𝑥) + 𝑂 (𝑦) + 𝑂 (V)] ,

V̇ = [−𝜌
2

2
(𝛼) + ⋅ ⋅ ⋅ ] V + 𝑂 (𝑦) [𝑂 (𝑥) + 𝑂 (𝑦) + 𝑂 (𝑢)] ,

(7)

where 𝛼 = (𝜆, 𝜇), 𝜆
𝑝

= 𝜆 + 𝑂(𝜆
2

) + 𝑂(𝜆𝜇), 𝜆1
1
(0) = 𝜆

1

1
,

𝜌
𝑗

𝑖
(0) = 𝜌

𝑗

𝑖
, 𝑗 = 1, 2, 𝑖 = 1, 2, 𝜆𝑗

2
(0) = 𝜆

𝑗

2
, 𝑗 = 1, 2.

From the normal form (6), (7), and the condition (𝐻
1
),

we may select −𝑇
𝑖
and 𝑇

𝑖
such that

𝑟
1
(−𝑇
1
) = (𝛿, 0, 0, 0)

∗

, 𝑟
1
(𝑇
1
) = (0, 0, 0, 𝛿)

∗

,

𝑟
1
(−𝑇
2
) = (𝛿, 0, 0, 𝛿

𝑢
, 0)
∗

, 𝑟
2
(𝑇
2
) = (0, 𝛿, 0, 𝛿V)

∗

,

(8)

where 𝛿 > 0 is small enough such that {(𝑥, 𝑦, 𝑢, V) :

|𝑥|, |𝑦|, |𝑢|, |V| < 2𝛿} ⊂ 𝑈
𝑖
and |𝛿

𝑢
| = 𝑜(𝛿), |𝛿V| = 𝑜(𝛿).

Consider the linear variational system

�̇� = 𝐷𝑓 (𝑟
𝑖
(𝑡)) 𝑧 (9)

𝑖

and its adjoint system

̇𝜙 = −(𝐷𝑓 (𝑟
𝑖
(𝑡)))
∗

𝜙, (10)
𝑖

𝑖 = 1, 2, where (𝐷𝑓(𝑟
𝑖
(𝑡)))
∗ is the transposed matrix of

𝐷𝑓(𝑟
𝑖
(𝑡)).

Supposing 𝑍
𝑖
(𝑡) = (𝑧

1

𝑖
(𝑡), 𝑧
2

𝑖
(𝑡), 𝑧
3

𝑖
(𝑡), 𝑧
4

𝑖
(𝑡)) is a funda-

mental solutionmatrix of (9)
𝑖
, then, we arrive at the following

lemma.
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Lemma 1. If conditions (H
1
)–(H
3
) are satisfied, then

(1) there exists a fundamental solution matrix of (9)
1

satisfying

𝑧
1

1
(𝑡) ∈ (𝑇

𝑟
1
(𝑡)
𝑊
𝑐𝑢

1
)
𝑐

∩ (𝑇
𝑟
1
(𝑡)
𝑊
𝑠

2
)
𝑐

,

𝑧
2

1
(𝑡) = −

̇𝑟
1
(𝑡)

 ̇𝑟
1
(𝑇
1
)


∈ 𝑇
𝑟
1
(𝑡)
𝑊
𝑐

1
∩ 𝑇
𝑟
1
(𝑡)
𝑊
𝑠

2
,

𝑧
3

1
(𝑡) ∈ 𝑇

𝑟
1
(𝑡)
𝑊
𝑐𝑢

1
∩ (𝑇
𝑟
1
(𝑡)
𝑊
𝑠

2
)
𝑐

,

𝑧
4

1
(𝑡) ∈ (𝑇

𝑟
1
(𝑡)
𝑊
𝑐𝑢

1
)
𝑐

∩ 𝑇
𝑟
1
(𝑡)
𝑊
𝑠

2

(11)

such that

𝑍
1
(−𝑇
1
) = (

𝑤
11

1
𝑤
21

1
0 𝑤
41

1

𝑤
12

1
0 0 𝑤

42

1

𝑤
13

1
𝑤
23

1
1 𝑤
43

1

0 0 0 𝑤
44

1

),

𝑍
1
(𝑇
1
) = (

1 0 𝑤
31

1
0

𝑤
12

1
0 𝑤
32

1
1

0 0 𝑤
33

1
0

0 1 𝑤
34

1
0

);

(12)

(2) (9)
2
has a fundamental solution matrix fulfilling

𝑧
1

2
(𝑡) ∈ (𝑇

𝑟
2
(𝑡)
𝑊
𝑢

2
)
𝑐

∩ (𝑇
𝑟
2
(𝑡)
𝑊
𝑠

1
)
𝑐

,

𝑧
2

2
(𝑡) = −

̇𝑟
2
(𝑡)

 ̇𝑟
2
(𝑇
2
)


∈ 𝑇
𝑟
2
(𝑡)
𝑊
𝑢

2
∩ 𝑇
𝑟
2
(𝑡)
𝑊
𝑠

1
,

𝑧
3

2
(𝑡) ∈ 𝑇

𝑟
2
(𝑡)
𝑊
𝑢

2
∩ (𝑇
𝑟
2
(𝑡)
𝑊
𝑠

1
)
𝑐

,

𝑧
4

2
(𝑡) ∈ (𝑇

𝑟
2
(𝑡)
𝑊
𝑢

2
)
𝑐

∩ 𝑇
𝑟
2
(𝑡)
𝑊
𝑠

1

(13)

such that

𝑍
2
(−𝑇
2
) = (

𝑤
11

2
𝑤
21

2
0 𝑤
41

2

0 0 0 𝑤
42

2

𝑤
13

2
𝑤
23

2
1 𝑤
43

2

𝑤
14

2
0 0 0

) ,

𝑍
2
(𝑇
2
) = (

1 0 𝑤
31

2
0

0 1 𝑤
32

2
0

0 0 𝑤
33

2
0

𝑤
14

2
𝑤
24

2
𝑤
34

2
1

) ,

(14)

where 𝑤
21

𝑖
< 0, 𝑤12

1
𝑤
33

𝑖
𝑤
14

2
𝑤
42

2
̸= 0, |(𝑤33

𝑖
)
−1

𝑤
3𝑗

𝑖
| ≪ 1, 𝑗 =

1, 2, 4, 𝑖 = 1, 2.

Now, let (𝑧
1

𝑖
(𝑡), 𝑧
2

𝑖
(𝑡), 𝑧
3

𝑖
(𝑡), 𝑧
4

𝑖
(𝑡)) be a new local

active coordinate system along Γ
𝑖. Given Φ

𝑖
(𝑡) =

(𝜙
1

𝑖
(𝑡), 𝜙
2

𝑖
(𝑡), 𝜙
3

𝑖
(𝑡), 𝜙
4

𝑖
(𝑡)) = (𝑍

−1

𝑖
(𝑡))
∗, then Φ

𝑖
(𝑡) is the

fundamental solution matrix of (10)
𝑖
, 𝑖 = 1, 2.

Let 𝑧 = 𝑟
𝑖
(𝑡) + 𝑍

𝑖
(𝑡)𝑁
𝑖
(𝑡) ≜ ℎ

𝑖
(𝑡), where 𝑁

𝑖
(𝑡) =

(𝑛
1

𝑖
, 0, 𝑛
3

𝑖
, 𝑛
4

𝑖
)
∗, 𝑖 = 1, 2. Defining the cross sections

𝑆
0

𝑖
= {𝑧 = ℎ

𝑖
(−𝑇
𝑖
) : |𝑥| ,

𝑦
 , |𝑢| , |V| < 2𝛿} ,

𝑆
1

𝑖
= {𝑧 = ℎ

𝑖
(𝑇
𝑖
) : |𝑥| ,

𝑦
 , |𝑢| , |V| < 2𝛿}

(15)

of Γ
𝑖
at 𝑡 = −𝑇

𝑖
and 𝑡 = 𝑇

𝑖
, respectively, 𝑖 = 1, 2.

Now that if 𝑞0
𝑖
∈ 𝑆
0

𝑖
and 𝑞
1

𝑖
∈ 𝑆
1

𝑖
, then

𝑞
0

𝑖
= (𝑥
0

𝑖
, 𝑦
0

𝑖
, 𝑢
0

𝑖
, V0
𝑖
)
∗

= 𝑟
𝑖
(−𝑇
𝑖
) + 𝑍
1
(−𝑇
𝑖
)𝑁
𝑖
(−𝑇
𝑖
) ,

𝑁
𝑖
(−𝑇
𝑖
) = (𝑛

0,1

𝑖
, 0, 𝑛
0,3

𝑖
, 𝑛
0,4

𝑖
)
∗

,

𝑞
1

𝑖
= (𝑥
1

𝑖
, 𝑦
1

𝑖
, 𝑢
1

𝑖
, V1
𝑖
)
∗

= 𝑟
𝑖
(𝑇
𝑖
) + 𝑍
𝑖
(𝑇
𝑖
)𝑁
𝑖
(𝑇
𝑖
) ,

𝑁
𝑖
(𝑇
𝑖
) = (𝑛

1,1

𝑖
, 0, 𝑛
1,3

𝑖
, 𝑛
1,4

𝑖
)
∗

.

(16)

Based on the expressions of 𝑍
𝑖
(−𝑇
𝑖
) and 𝑍

𝑖
(𝑇
𝑖
), we

get their new coordinates of 𝑞
0

𝑖
(𝑛
0,1

𝑖
, 0, 𝑛
0,3

𝑖
, 𝑛
0,4

𝑖
)
∗ and

𝑞
1

𝑖
(𝑛
1,1

𝑖
, 0, 𝑛
1,3

𝑖
, 𝑛
1,4

𝑖
)
∗; that is,

𝑛
0,1

1
= (𝑤
12

1
)
−1

[𝑦
0

1
− 𝑤
42

1
(𝑤
44

1
)
−1

V0
1
] ,

𝑛
0,3

1
= 𝑢
0

1
− 𝑤
13

1
(𝑤
12

1
)
−1

𝑦
0

1

+ [𝑤
13

1
𝑤
42

1
(𝑤
12

1
)
−1

− 𝑤
43

1
] (𝑤
44

1
)
−1

V0
1
,

𝑛
0,4

1
= (𝑤
44

1
)
−1

V0
1
,

𝑥
0

1
= 𝛿 + 𝑤

11

1
𝑛
0,1

1
+ 𝑤
41

1
𝑛
0,4

1
≈ 𝛿,

𝑛
1,1

1
= 𝑥
1

1
− 𝑤
31

1
(𝑤
33

1
)
−1

𝑢
1

1
,

𝑛
1,3

1
= (𝑤
33

1
)
−1

𝑢
1

1
,

𝑛
1,4

1
= 𝑦
1

1
− 𝑤
12

1
𝑥
1

1
+ (𝑤
12

1
𝑤
31

1
− 𝑤
32

1
) (𝑤
33

1
)
−1

𝑢
1

1
,

V1
1
≈ 𝛿,

𝑛
0,1

2
= (𝑤
14

2
)
−1

V0
2
,

𝑛
0,3

2
= 𝑢
0

2
− 𝛿
𝑢

2
− 𝑤
13

2
(𝑤
14

2
)
−1

V0
2
− 𝑤
43

2
(𝑤
42

2
)
−1

𝑦
0

2
,

𝑛
0,4

2
= (𝑤
42

2
)
−1

𝑦
0

2
,

𝑥
0

2
≈ 𝛿,

𝑛
1,1

2
= 𝑥
1

0
− 𝑤
31

2
(𝑤
33

2
)
−1

𝑢
1

0
,

𝑛
1,3

2
= (𝑤
33

2
)
−1

𝑢
1

0
,

𝑛
1,4

2
= V1
0
− 𝛿

V
2
− 𝑤
14

2
𝑥
1

0
+ (𝑤
14

2
𝑤
31

2
− 𝑤
34

2
) (𝑤
33

2
)
−1

𝑢
1

0
,

𝑦
1

0
≈ 𝛿.

(17)

Next, we divide our establishment of the Poincaré map in
the new coordinate system in three steps.
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First, consider the map 𝐹
1

𝑖
: 𝑆
0

𝑖
→ 𝑆
1

𝑖
. Put 𝑧 = ℎ

𝑖
(𝑡) into

(1); we have

̇𝑟
𝑖
(𝑡) + �̇�

𝑖
(𝑡)𝑁
𝑖
(𝑡) + 𝑍

𝑖
(𝑡) �̇�
𝑖
(𝑡)

= 𝑔 (𝑟
𝑖
(𝑡) + 𝑍

𝑖
(𝑡)𝑁
𝑖
(𝑡) , 𝜆, 𝜇)

= 𝑔 (𝑟
𝑖
(𝑡) , 0, 0) + 𝑔

𝑧
(𝑟
𝑖
(𝑡) , 0, 0) 𝑍

𝑖
(𝑡)𝑁
𝑖
(𝑡)

+ 𝑔
𝜆
(𝑟
𝑖
(𝑡) , 0, 0) 𝜆 + 𝑔

𝜇
(𝑟
𝑖
(𝑡) , 0, 0) 𝜇 + h.o.t.

= 𝑓 (𝑟
𝑖
(𝑡)) + 𝐷𝑓 (𝑟

𝑖
(𝑡)) 𝑍

𝑖
(𝑡)𝑁
𝑖
(𝑡)

+ 𝑔
𝜆
(𝑟
𝑖
(𝑡) , 0, 0) 𝜆 + 𝑔

𝜇
(𝑟
𝑖
(𝑡) , 0, 0) 𝜇 + h.o.t.

(18)

According to the fact ̇𝑟
𝑖
(𝑡) = 𝑓(𝑟

𝑖
(𝑡)) and �̇�

𝑖
(𝑡) =

𝐷𝑓(𝑟
𝑖
(𝑡))𝑍
𝑖
(𝑡), it then yields to that

�̇�
𝑖
(𝑡) = 𝑍

−1

𝑖
(𝑡) [𝑔
𝜆
(𝑟
𝑖
(𝑡) , 0, 0) 𝜆 + 𝑔

𝜇
(𝑟
𝑖
(𝑡) , 0, 0) 𝜇]

+ h.o.t.
(19)

Integrating the above equation from −𝑇
𝑖
to 𝑇
𝑖
, we arrive at

𝑁
𝑖
(𝑇
𝑖
) = 𝑁

𝑖
(−𝑇
𝑖
) + ∫

𝑇
𝑖

−𝑇
𝑖

𝑍
−1

𝑖
(𝑡) 𝑔
𝜆
(𝑟
𝑖
(𝑡) , 0, 0) 𝜆 𝑑𝑡

+ ∫

𝑇
𝑖

−𝑇
𝑖

𝑍
−1

𝑖
(𝑡) 𝑔
𝜇
(𝑟
𝑖
(𝑡) , 0, 0) 𝜇 𝑑𝑡 + h.o.t.

(20)

Noticing thatΦ∗
𝑖
(𝑡) = 𝑍

−1

𝑖
(𝑡), then

𝑛
1,𝑗

𝑖
= 𝑛
0,𝑗

𝑖
+ 𝑀
𝑗

𝑖𝜆
𝜆 + 𝑀

𝑗

𝑖𝜇
𝜇 + h.o.t., 𝑗 = 1, 3, 4, (21)

𝑖

where

𝑀
𝑗

𝑖𝜆
= ∫

𝑇
𝑖

−𝑇
𝑖

𝜙
𝑗∗

𝑖
𝑔
𝜆
(𝑟
𝑖
(𝑡) , 0, 0) 𝑑𝑡,

𝑀
𝑗

𝑖𝜇
= ∫

𝑇
𝑖

−𝑇
𝑖

𝜙
𝑗∗

𝑖
𝑔
𝜇
(𝑟
𝑖
(𝑡) , 0, 0) 𝑑𝑡, 𝑗 = 1, 3, 4.

(22)
𝑖

Together with (17) and (21)
𝑖
, (22)
𝑖
then defines the map 𝐹

1

𝑖
:

𝑆
0

𝑖
→ 𝑆
1

𝑖
, (𝑛0,1
𝑖

, 0, 𝑛
0,3

𝑖
, 𝑛
0,4

𝑖
) → (𝑛

1,1

𝑖
, 0, 𝑛
1,3

𝑖
, 𝑛
1,4

𝑖
).

Next, to construct the map 𝐹
0

𝑖
: 𝑆
1

𝑖−1
→ 𝑆

0

𝑖

(where 𝑆
1

0
= 𝑆
1

2
). Let 𝜏

𝑖
, 𝑖 = 1, 2 be the flying time

from 𝑞
1

𝑖−1
(𝑥
1

𝑖−1
, 𝑦
1

𝑖−1
, 𝑢
1

𝑖−1
, V1
𝑖−1

)
∗ to 𝑞

0

𝑖
(𝑥
0

𝑖
, 𝑦
0

𝑖
, 𝑢
0

𝑖
, V0
𝑖
)
∗; set 𝑠

1
=

𝑒
−𝜌
1

1
(𝛼)𝜏
1 and 𝑠

2
= 𝑒
−𝜌
1

2
(𝛼)𝜏
2 . By virtue of the approximate

solution of system (6) and (7), if we neglect the higher terms,
then the expression of 𝐹0

1
: 𝑆
1

0
→ 𝑆
0

1
is

𝑥
1

0
≈

𝑥
0

1

ℎ (𝑠
1
)
, 𝑦

0

1
≈ 𝑠
1
𝑦
1

0
,

𝑢
1

0
≈ 𝑠
𝜆
1

1
(𝛼)/𝜌
1

1
(𝛼)

1
𝑢
0

1
, V0

1
≈ 𝑠
𝜌
2

1
(𝛼)/𝜌
1

1
(𝛼)

1
V1
0

(23)

and 𝐹
0

2
: 𝑆
1

1
→ 𝑆
1

2
is

𝑥
1

1
≈ 𝑠
𝜆
1

2
(𝛼)/𝜌
1

2
(𝛼)

2
𝑥
0

2
, 𝑦

0

2
≈ 𝑠
2
𝑦
1

1
,

𝑢
1

1
≈ 𝑠
𝜆
2

2
(𝛼)/𝜌
1

2
(𝛼)

2
𝑢
0

2
, V0

2
≈ 𝑠
𝜌
2

2
(𝛼)/𝜌
1

2
(𝛼)

2
V1
1
,

(24)

x

S
0

1

S
1

0

p
1

1

p
0

1

y

x = 𝜆p

Figure 1

where (𝑠
𝑖
, 𝑢
0

𝑖
, V1
𝑖−1

), 𝑖 = 1, 2 are called Shilnikov coordinates,
and

ℎ (𝑠) =
{

{

{

(𝜆
𝑝
)
−1

[𝑥
0

1
− (𝑥
0

1
− 𝜆
𝑝
) 𝑠
𝜆
𝑝
/𝜌
1

1
(𝛼)

] , 𝜆
𝑝

̸= 0,

1 − (𝜌
1

1
(𝛼))
−1

𝑥
0

1
ln 𝑠, 𝜆

𝑝
= 0.

(25)

Since the nonhyperbolic equilibrium 𝑝
1
undergoes a tran-

scritical bifurcation based on the structure of orbits in 𝑈
1
,

we may see that the equation 𝑥
1

0
≈ 𝑥
0

1
/ℎ(𝑠
1
) holds only for

𝑥
1

0
≥ 𝜆
𝑝
. While for 𝑥1

0
∈ [−𝛽, 𝜆

𝑝
) (0 < 𝛽 ≪ 1), the map 𝐹

0

1

is well defined only if 𝑠
1
= 0 (see Figure 1). So, we extend the

domain of 𝐹0
1
, defining

𝑥
0

1
= 𝛿, 𝑠

1
= 0, if 𝑥1

0
∈ [−𝛽, 𝜆

𝑝
) . (26)

The final step is to compose the maps 𝐹0
𝑖
and 𝐹

1

𝑖
, and then

𝐹
1
= 𝐹
1

1
∘ 𝐹
0

1
: 𝑆
1

0
→ 𝑆
1

1
can be expressed as

𝑛
1,1

1
= (𝑤
12

1
)
−1

𝛿𝑠
1
− (𝑤
12

1
)
−1

𝑤
42

1
(𝑤
44

1
)
−1

𝑠
𝜌
2

1
(𝛼)/𝜌
1

1
(𝛼)

1
V1
0

+ 𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇 + h.o.t.,

𝑛
1,3

1
= 𝑢
0

1
− 𝑤
13

1
(𝑤
12

1
)
−1

𝛿𝑠
1

+ [𝑤
13

1
𝑤
42

1
(𝑤
12

1
)
−1

− 𝑤
43

1
] (𝑤
44

1
)
−1

𝑠
𝜌
2

1
(𝛼)/𝜌
1

1
(𝛼)

1
V1
0

+ 𝑀
3

1𝜆
𝜆 + 𝑀

3

1𝜇
𝜇 + h.o.t.,

𝑛
1,4

1
= (𝑤
44

1
)
−1

𝑠
𝜌
2

1
(𝛼)/𝜌
1

1
(𝛼)

1
V1
0
+ 𝑀
4

1𝜆
𝜆 + 𝑀

4

1𝜇
𝜇 + h.o.t.

(27)

and 𝐹
2
= 𝐹
1

2
∘ 𝐹
0

2
: 𝑆
1

1
→ 𝑆
1

2
(= 𝑆
1

0
) as

𝑛
1,1

2
= (𝑤
14

2
)
−1

𝛿𝑠
𝜌
2

2
(𝛼)/𝜌
1

2
(𝛼)

2
+ 𝑀
1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇 + h.o.t.,

𝑛
1,3

2
= 𝑢
0

2
− 𝛿
𝑢

2
− 𝑤
13

2
(𝑤
14

2
)
−1

𝛿𝑠
𝜌
2

2
(𝛼)/𝜌
1

2
(𝛼)

2

− 𝑤
43

2
(𝑤
42

2
)
−1

𝑠
2
𝑦
1

1
+ 𝑀
3

2𝜆
𝜆 + 𝑀

3

2𝜇
𝜇 + h.o.t.,

𝑛
1,4

2
= (𝑤
44

2
)
−1

𝑠
2
𝑦
1

1
+ 𝑀
4

2𝜆
𝜆 + 𝑀

4

2𝜇
𝜇 + h.o.t.

(28)
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Set 𝐺
𝑖
= 𝐹
𝑖
(𝑞
1

𝑖−1
) − 𝑞
1

𝑖
, 𝑖 = 1, 2. Combing (21)

𝑖
, (23), (24),

(27), and (28), we derive the successor functions 𝐺𝑗
𝑖
:

𝐺
1

1
= (𝑤
12

1
)
−1

𝛿𝑠
1
− 𝛿𝑠
𝜆
1

2
(𝛼)/𝜌
1

2
(𝛼)

2
+ 𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇 + h.o.t.,

𝐺
3

1
= 𝑢
0

1
− 𝑤
13

1
(𝑤
12

1
)
−1

𝛿𝑠
1
− (𝑤
33

1
)
−1

𝑠
𝜆
2

2
(𝛼)/𝜌
1

2
(𝛼)

2
𝑢
0

2

+ 𝑀
3

1𝜆
𝜆 + 𝑀

3

1𝜇
𝜇 + h.o.t.,

𝐺
4

1
= (𝑤
44

1
)
−1

𝑠
𝜌
2

1
(𝛼)/𝜌
1

1
(𝛼)

1
V1
0
− 𝑦
1

1
+ 𝑤
12

1
𝛿𝑠
𝜆
1

2
(𝛼)/𝜌
1

2
(𝛼)

2

+ 𝑀
4

1𝜆
𝜆 + 𝑀

4

1𝜇
𝜇 + h.o.t.,

𝐺
1

2
= (𝑤
14

2
)
−1

𝛿𝑠
𝜌
2

2
(𝛼)/𝜌
1

2
(𝛼)

2
− 𝛿ℎ (𝑠

1
)

+ 𝑤
31

2
(𝑤
33

2
)
−1

𝑠
𝜆
1

1
(𝛼)/𝜌
1

1
(𝛼)

1
𝑢
0

1
+ 𝑀
1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇 + h.o.t.,

𝐺
3

2
= 𝑢
0

2
− 𝛿
𝑢

2
− 𝑤
13

2
(𝑤
14

1
)
−1

𝛿𝑠
𝜌
2

2
(𝛼)/𝜌
1

2
(𝛼)

2

− 𝑤
43

2
(𝑤
42

2
)
−1

𝑠
𝜌
1

2
(𝛼)/𝜌
1

2
(𝛼)

2
𝑦
1

1

− (𝑤
33

2
)
−1

𝑠
𝜆
1

1
(𝛼)/𝜌
1

1
(𝛼)

1
𝑢
0

1
+ 𝑀
3

2𝜆
𝜆 + 𝑀

3

2𝜇
𝜇 + h.o.t.,

𝐺
4

2
= (𝑤
44

2
)
−1

𝑠
2
𝑦
1

1
− V1
0
+ 𝛿

V
2
+ 𝑤
14

2
𝛿ℎ (𝑠
1
)

− (𝑤
34

2
− 𝑤
14

2
𝑤
31

2
) (𝑤
33

2
)
−1

𝑠
𝜆
1

1
(𝛼)/𝜌
1

1
(𝛼)

1
𝑢
0

1

+ 𝑀
4

2𝜆
𝜆 + 𝑀

4

2𝜇
𝜇 + h.o.t.

(29)

It is easy to see that what we need to do is considering the
solutions of

(𝐺
1

1
, 𝐺
3

1
, 𝐺
4

1
, 𝐺
1

2
, 𝐺
3

2
, 𝐺
4

2
) = 0 (30)

with 𝑠
1
≥ 0 and 𝑠

2
≥ 0. This is because the solution of (30)

with 𝑠
1
= 𝑠
2
= 0 (resp., 𝑠

1
> 0, 𝑠
2
> 0; 𝑠

1
= 0, 𝑠
2
> 0 or 𝑠

1
> 0,

𝑠
2
= 0) means that system (1) has a heteroclinic loop (resp., a

periodic orbit; homoclinic loop).

3. Main Results

Based on the expressions of the successor functions and
the implicit function theorem, we know that the equation
(𝐺
3

1
, 𝐺
4

1
, 𝐺
3

2
, 𝐺
4

2
) = 0has a unique solution (𝑢

0

1
, 𝑢
0

2
, 𝑦
1

1
, V1
0
). And

putting it into (𝐺
1

1
, 𝐺
1

2
) = 0, then we obtain the following

bifurcation equations:

(𝑤
12

1
)
−1

𝛿𝑠
1
− 𝛿𝑠
𝜆
1

2
/𝜌
1

2

2
+ 𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇 + h.o.t. = 0,

(𝑤
14

2
)
−1

𝛿𝑠
𝜌
2

2
/𝜌
1

2

2
− 𝛿ℎ (𝑠

1
) + 𝑀

1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇

+ 𝑤
31

2
(𝑤
33

2
)
−1

𝑠
𝜆
1

1
/𝜌
1

1

1
[𝑤
13

1
(𝑤
12

1
)
−1

𝛿𝑠
1
+ (𝑤
33

1
)
−1

× 𝑠
𝜆
2

2
/𝜌
1

2

2
(𝛿
𝑢

2
− 𝑀
3

2𝜆
𝜆 − 𝑀

3

2𝜇
𝜇)

−𝑀
3

1𝜆
𝜆 − 𝑀

3

1𝜇
𝜇] + h.o.t. = 0.

(31)

Firstly, we consider the case 𝜆 = 0, which means the
transcritical bifurcation does not happen. By (23) and (25),
(31) turns to

(𝑤
12

1
)
−1

𝛿𝑠
1
− 𝛿𝑠
𝜆
1

2
/𝜌
1

2

2
+ 𝑀
1

1𝜇
𝜇 + h.o.t. = 0,

(𝑤
12

2
)
−1

𝛿𝑠
𝜌
2

2
/𝜌
1

2

2
−

𝛿

1 − (𝜌
1

1
)
−1

𝛿 ln 𝑠
1

+ 𝑀
1

2𝜇
𝜇

+ 𝑤
31

2
(𝑤
33

2
)
−1

𝑤
13

1
(𝑤
12

1
)
−1

𝛿𝑠
𝜆
1

1
/𝜌
1

1
+1

1

− 𝑤
31

2
(𝑤
33

2
)
−1

𝑠
𝜆
1

1
/𝜌
1

1

1
𝑀
3

1𝜇
𝜇 + h.o.t. = 0.

(32)

Noticing that 𝜆
1

1
/𝜌
1

1
> 0, which shows lim

𝑠
1
→0

𝑠
𝜆
1

1
/𝜌
1

1

1
(1 −

(𝜌
1

1
)
−1

𝛿 ln 𝑠
1
) = 0, it then follows that

𝑠
1
− 𝑤
12

1
𝑠
𝜆
1

2
/𝜌
1

2

2
+ 𝛿
−1

𝑤
12

1
𝑀
1

1𝜇
𝜇 + h.o.t. = 0,

(𝑤
12

2
)
−1

𝑠
𝜌
2

2
/𝜌
1

2

2
−

1

1 − (𝜌
1

1
)
−1

𝛿 ln 𝑠
1

+ 𝛿
−1

𝑀
1

2𝜇
𝜇 + h.o.t. = 0.

(33)

From the above bifurcation equations, we obtain the
following results immediately.

Theorem2. Let the conditions (H
1
)–(H
3
) be true and𝑀

1

𝑖𝜇
̸= 0,

𝑖 = 1, 2. Then, for 𝜆 = 0 and 0 < |𝜇| ≪ 1, one has
(i) for rank(𝑀1

1𝜇
,𝑀
1

2𝜇
) = 2, there exists a codimension 2

surface

𝐿
12

= {𝜇 : 𝑀
1

1𝜇
𝜇 + h.o.t. = 𝑀

1

2𝜇
𝜇 + h.o.t. = 0} (34)

such that system (1) has a unique heteroclinic loop near Γ if
and only if 𝜇 ∈ 𝐿

12
, where the surface 𝐿

12
has a normal plane

span{𝑀1
1𝜇
,𝑀
1

2𝜇
} at 𝜇 = 0.

(ii) there exists an (𝑙 − 1)-dimensional surface

𝐿
2

1
= {𝜇 : 𝛿

−1

𝑤
12

2
𝑀
1

2𝜇
𝜇 + (𝛿

−1

𝑀
1

1𝜇
𝜇)
𝜌
2

2
/𝜆
1

2

+ h.o.t. = 0,

𝑀
1

1𝜇
𝜇 > 0}

(35)

(resp., 𝐿
1

2
=
{

{

{

𝜇 :
𝛿

1 − (𝜌
1

1
)
−1

𝛿 ln (−𝛿−1𝑤
12

1
𝑀
1

1𝜇
𝜇)

−𝑀
1

2𝜇
𝜇 + h.o.t. = 0, 𝑤

12

1
𝑀
1

1𝜇
𝜇 < 0

}

}

}

)

(36)

such that system (1) has a unique homoclinic loop connecting
𝑝
1
(resp., connecting 𝑝

2
) near Γ if and only if 𝜇 ∈ 𝐿

2

1
(resp.,

𝜇 ∈ 𝐿
1

2
).
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Proof. The result (i) will be proved by putting 𝑠
1
= 𝑠
2
= 0 into

(33).
If we assume 𝑠

1
= 0 and 𝑠

2
> 0 in (33), then

𝑠
𝜆
1

2
/𝜌
1

2

2
= 𝛿
−1

𝑀
1

1𝜇
𝜇 + h.o.t.,

(𝑤
12

2
)
−1

𝑠
𝜌
2

2
/𝜌
1

2

2
+ 𝛿
−1

𝑀
1

2𝜇
𝜇 + h.o.t. = 0,

(37)

which means

(𝑤
12

2
)
−1

𝑠
𝜌
2

2
/𝜆
1

2

2
+ 𝛿
−1

𝑀
1

2𝜇
𝜇 + h.o.t. = 0. (38)

It follows that there exists an (𝑙 − 1)-dimensional surface
𝐿
2

1
given by (35) such that (33) has a unique solution 𝑠

1
= 0,

𝑠
2
= 𝑠
2
(𝜇) > 0 as 𝜇 ∈ 𝐿

2

1
and 0 < |𝜇| ≪ 1.This implies system

(1) has a homoclinic loop connecting 𝑝
1
. The existence of 𝐿1

2

can be obtained similarly.
This completes the proof.

Remark 3. There is no difficulty to see that 𝐿2
1
has a normal

vector 𝑀
1

2𝜇
at 𝜇 = 0 as 𝜌2

2
> 𝜆
1

2
, while for 𝜌

2

2
< 𝜆
1

2
(resp.,

𝜌
2

2
> 𝜆
1

2
) it has a normal vector𝑀1

1𝜇
(resp.,𝑀1

1𝜇
+𝑤
12

2
𝑀
1

2𝜇
) at

𝜇 = 0.

Theorem 4. Assume the conditions (𝐻
1
)–(𝐻
3
) hold and

𝑀
1

𝑖𝜇
̸= 0, 𝑖 = 1, 2. Then for 𝜆 = 0, 𝜇 ∈ 𝐿

2

1
, and 0 < |𝜇| ≪ 1, the

periodic orbit and homoclinic loop with 𝑝
1
of system (1) cannot

coexist.

Proof. Theorem 2 shows that if 𝜇 ∈ 𝐿
2

1
and 0 < |𝜇| ≪ 1,

then system (1) has a homoclinic loop with 𝑝
1
. Setting 𝑠

1
≥ 0,

𝑠
𝜆
1

2
/𝜌
1

2

2
= (𝑤
12

1
)
−1

𝑠
1
+ 𝛿
−1

𝑀
1

1𝜇
𝜇 + h.o.t. > 0, and 𝜇 ∈ 𝐿

2

1
, then

(33) is reduced to

𝑉
1
(𝑠
1
) ≜ [(𝑤

12

1
)
−1

𝑠
1
+ 𝛿
−1

𝑀
1

1𝜇
𝜇]

𝜌
2

2
/𝜆
1

2

+ 𝛿
−1

𝑤
12

2
𝑀
1

2𝜇
𝜇

+ h.o.t. =
𝑤
12

2

1 − (𝜌
1

1
)
−1

𝛿 ln 𝑠
1

≜ 𝑁
1
(𝑠
1
) .

(39)

Notice that 𝑉
1
(0) = 𝑁

1
(0) and

𝑉


1
(𝑠
1
) =

𝜌
2

2

𝜆
1

2

(𝑤
12

1
)
−1

[(𝑤
12

1
)
−1

𝑠
1
+ 𝛿
−1

𝑀
1

1𝜇
𝜇]

𝜌
2

2
/𝜆
1

2
−1

,

𝑁


1
(𝑠
1
) =

𝑤
12

2
(𝜌
1

1
)
−1

𝛿

(1 − (𝜌
1

1
)
−1

𝛿 ln 𝑠
1
)
2

𝑠
1

.

(40)

If 𝑤12
1
𝑤
12

2
< 0, then 𝑉



1
(𝑠
1
)𝑁


1
(𝑠
1
) < 0; it is obvious that

𝑉
1
(𝑠
1
) = 𝑁

1
(𝑠
1
) has no sufficiently small positive solutions.

While 𝜌2
2
> 𝜆
1

2
, then |𝑉



1
(𝑠
1
)| ≪ 1 and |𝑁



1
(𝑠
1
)| ≫ 1 hold

for 0 < 𝑠
1
≪ 1, which shows that 𝑉

1
(𝑠
1
) = 𝑁

1
(𝑠
1
) has no

sufficiently small positive solution.
Next, we only consider the case 𝜌2

2
≤ 𝜆
1

2
and 𝑤

12

1
𝑤
12

2
> 0.

As 𝜇 ∈ 𝐿
2

1
, we have 𝑀1

1𝜇
𝜇 > 0, and then, for 𝑤12

𝑖
> 0, 𝑖 = 1, 2

we see that

𝑉


1
(𝑠
1
) ≤ (𝑤

12

1
)
−𝜌
2

2
/𝜆
1

2

𝑠
𝜌
2

2
/𝜆
1

2
−1

1
< 𝑁


1
(𝑠
1
) for 0 < 𝑠

1
≪ 1.

(41)

In fact, 𝜌
2

2
< 𝜆
1

2
yields that lim

𝑠
1
→0
+𝑠
𝜌
2

2
/𝜆
1

2
−1

1
= +∞,

lim
𝑠
1
→0
+𝑁


1
(𝑠
1
) = +∞, and lim

𝑠
1
→0

𝑠
𝜌
2

2
/𝜆
1

2
−1

1
/𝑁


1
(𝑠
1
) = 0,

which shows 𝑉
1
(𝑠
1
) = 𝑁

1
(𝑠
1
) has no sufficiently small posi-

tive solutions.Obviously, the conclusion is correct as 𝜌
2

2
= 𝜆
1

2
.

Similarly, for 𝜌2
2

< 𝜆
1

2
, 𝑤
12

𝑖
< 0, 𝑖 = 1, 2, there does not

exist a small positive solution for 𝑉
1
(𝑠
1
) = 𝑁

1
(𝑠
1
).

The proof is then completed.

Theorem 5. Assume that the conditions (H
1
)–(H
3
) hold and

𝑀
1

𝑖𝜇
̸= 0, 𝑖 = 1, 2. Let 𝜆 = 0, 𝜇 ∈ 𝐿

1

2
, and 0 < |𝜇| ≪ 1; then

(i) the periodic orbit and the homoclinic loop connecting
𝑝
2
of system (1) cannot coexist as 𝜌

2

2
≥ 𝜆
1

2
or

𝑤
12

1
𝑤
12

2
< 0;

(ii) at least one periodic orbit and the homoclinic loop
connecting 𝑝

2
of system (1) coexist as 𝜌2

2
< 𝜆
1

2
,𝑤12
1

> 0,
and 𝑤

12

2
> 0;

(iii) a unique periodic orbit and the homoclinic loop con-
necting 𝑝

2
of system (1) coexist as 𝜌2

2
< 𝜆
1

2
, 𝑤12
1

< 0,
and 𝑤

12

2
< 0.

Proof. By Theorem 2, the condition 𝜇 ∈ 𝐿
1

2
for 0 < |𝜇| ≪ 1

implies that system (1) has a homoclinic loop connecting 𝑝
2
.

(i) Let 𝑠
2
= 𝑒
−𝜌
1

2
𝜏
2 and eliminating 𝑠

1
in (33), we derive

𝑉
2
(𝑠
2
) ≜ 𝑠
2
+ 𝛿
−1

𝑤
12

2
𝑀
1

2𝜇
𝜇 + h.o.t.

=
𝑤
12

2

1 − (𝜌
1

1
)
−1

𝛿 ln (𝑤
12

1
(𝑠
𝜆
1

2
/𝜌
2

2

2
− 𝛿−1𝑀

1

1𝜇
𝜇))

≜ 𝑁
2
(𝑠
2
) .

(42)

Note that 𝑉
2
(0) = 𝑁

2
(0) as 𝜇 ∈ 𝐿

1

2
. Moreover,

𝑉


2
(𝑠
2
) = 1,

𝑁


2
(𝑠
2
) =

𝑤
12

2
(𝜌
1

1
)
−1

𝛿

[1 − (𝜌
1

1
)
−1

𝛿 ln (𝑤
12

1
(𝑠
𝜆
1

2
/𝜌
2

2

2
− 𝛿−1𝑀

1

1𝜇
𝜇))]

2

⋅

(𝜆
1

2
/𝜌
2

2
) 𝑠
(𝜆
1

2
−𝜌
2

2
)/𝜌
2

2

2

(𝑠
𝜆
1

2
/𝜌
2

2

2
− 𝛿−1𝑀

1

1𝜇
𝜇)

.

(43)

For 𝜌2
2
≥ 𝜆
1

2
and𝑁



2
(𝑠
2
) ≪ 1 = 𝑉



2
(𝑠
2
), thismeans𝑉

2
(𝑠
2
) =

𝑁
2
(𝑠
2
) has no sufficiently small positive solutions.

Now we turn to the case 𝑤
12

1
𝑤
12

2
< 0, since we are

interested in sufficiently small positive solutions of (33), it
suffices to consider the sufficiently small positive solutions of
𝑉
2
(𝑠
2
) = 𝑁

2
(𝑠
2
) satisfying 𝑤

12

1
(𝑠
𝜆
1

2
/𝜌
2

2

2
− 𝛿
−1

𝑀
1

1𝜇
𝜇) > 0, which

implies that 𝑠𝜆
1

2
/𝜌
2

2

2
− 𝛿
−1

𝑀
1

1𝜇
𝜇 < 0 (resp., 𝑠𝜆

1

2
/𝜌
2

2

2
− 𝛿
−1

𝑀
1

1𝜇
𝜇 >

0) for 𝑤
12

1
< 0 (resp., 𝑤12

1
> 0). It is easy to see that

𝑉
2
(𝑠
2
) = 𝑁

2
(𝑠
2
) has no sufficiently small positive solutions

as 𝑤12
1
𝑤
12

2
< 0.
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(ii) For 𝜌2
2
< 𝜆
1

2
, we have 𝑉



2
(0) = 1 > 0 = 𝑁



2
(0), which

implies that there exists an 0 < 𝑠
2
≪ 1 such that 𝑉

2
(𝑠
2
) >

𝑁
2
(𝑠
2
) for 0 < 𝑠

2
< 𝑠
2
.

Choosing 𝑠
2
= 𝛿
−1

𝑤
12

2
𝑀
1

2𝜇
𝜇 > 0, then

𝑉
2
(𝑠
2
) = 2𝛿

−1

𝑤
12

2
𝑀
1

2𝜇
𝜇 + h.o.t.,

𝑁
2
(𝑠
2
) =

𝑤
12

2

1 − (𝜌
1

1
)
−1

𝛿 ln (𝑤
12

1
(𝑠
𝜆
1

2
/𝜌
2

2

2
− 𝛿−1𝑀

1

1𝜇
𝜇))

.

(44)

In view of ln(𝑤12
1
(𝑠
𝜆
1

2
/𝜌
2

2

2
− 𝛿
−1

𝑀
1

1𝜇
𝜇)) > ln(𝑤12

1
𝑠
𝜆
1

2
/𝜌
2

2

2
) =

ln(𝑤12
1
(𝛿
−1

𝑤
12

2
𝑀
1

2𝜇
𝜇)
𝜆
1

2
/𝜌
2

2 ) for 𝑤12
1

> 0, so

𝑁
2
(𝑠
2
) >

𝑤
12

2

1 − (𝜌
1

1
)
−1

𝛿 ln(𝑤
12

1
(𝑤
12

1
(𝛿−1𝑤

12

2
𝑀
1

2𝜇
𝜇)
𝜆
1

2
/𝜌
2

2

))

≫ 2𝑤
12

1
(𝛿
−1

𝑤
12

2
𝑀
1

2𝜇
𝜇) = 𝑉

2
(𝑠
2
)

(45)

when 𝑤
12

2
> 0. As a result, 𝑁

2
(𝑠
2
) = 𝑉

2
(𝑠
2
) has at least one

solution 𝑠
2
satisfying 0 < 𝑠

2
< 𝑠
2
< 𝑠
2
≪ 1.

(iii) 𝑠
2
must fulfill 0 < 𝑠

2
< (𝛿
−1

𝑀
1

1𝜇
𝜇)
𝜌
2

2
/𝜆
1

2 as 𝑤12
1

< 0;
with similar arguments in proof of (ii), we can prove that there
exists a 0 < 𝑠

∗

2
≪ 1 such that 𝑉

2
(𝑠
∗

2
) = 𝑁

2
(𝑠
∗

2
) for 0 < 𝑠

∗

2
<

(𝛿
−1

𝑀
1

1𝜇
𝜇)
𝜌
2

2
/𝜆
1

2 ≪ 1. It is easy to compute that𝑁
2
(𝑠
2
) > 0 for

𝑤
12

2
< 0, 0 < 𝑠

2
< (𝛿
−1

𝑀
1

1𝜇
𝜇)
𝜌
2

2
/𝜆
1

2 , and 𝜇 ∈ 𝐿
1

2
. Combining

with the fact 𝑉
2
(0) = 𝑁

2
(0), 𝑁

2
(𝑠
2
) > 0, and 𝑉



2
(𝑠
2
) = 1, we

immediately know that 𝑠∗
2
is unique.

This completes the proof.

Now, we turn to discussing the bifurcations of the hete-
roclinic loop for 𝜆 > 0, when 𝑝

1
undergoes a transcritical

bifurcation. From Figure 1, we know that when 𝜆 > 0, after
the creation of the equilibria 𝑝

0

1
and 𝑝

1

1
, there always exists

a straight segment orbit heteroclinic to 𝑝
1

1
and 𝑝

0

1
, its length

is 𝜆
𝑝
, and we denote this heteroclinic orbit by Γ

∗. Moreover,
𝑥
1

0
= 𝜆
𝑝
is a critical position.

Firstly, we take into account the case 𝑥1
0
≥ 𝜆
𝑝
. In this case,

(31) becomes

(𝑤
12

1
)
−1

𝛿𝑠
1
− 𝛿𝑠
𝜆
1

2
/𝜌
1

2

2
+ 𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇 + h.o.t. = 0,

(𝑤
12

2
)
−1

𝛿𝑠
𝜌
2

2
/𝜌
1

2

2
− 𝛿𝜆
𝑝
[𝛿 − (𝛿 − 𝜆

𝑝
) 𝑠
𝜆
𝑝
/𝜌
1

1

1
]

−1

+ 𝑀
1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇

+ 𝑤
31

2
(𝑤
33

2
)
−1

𝑠
𝜆
1

1
/𝜌
1

1

1
[𝑤
13

1
(𝑤
12

1
)
−1

𝛿𝑠
1
+ (𝑤
33

1
)
−1

𝛿𝑠
𝜆
2

2
/𝜆
1

2

2

−𝑀
3

1𝜆
𝜆 − 𝑀

3

1𝜇
𝜇] + h.o.t. = 0.

(46)

Let 𝑠 = 𝑠
𝜆
𝑝
/𝜌
1

1

1
(𝑠 = 0 means 𝑠

1
= 0 and vice versa); by virtue

of Taylor’s development for 𝛿𝜆
𝑝
/(𝛿 − (𝛿 − 𝜆

𝑝
)𝑠
𝜆
𝑝
/𝜌
1

1

1
), we have

(𝑤
12

1
)
−1

𝑠
𝜌
1

1
/𝜆
𝑝 − 𝑠
𝜆
1

2
/𝜌
1

2

2
+ 𝛿
−1

𝑀
1

1𝜆
𝜆 + 𝛿
−1

𝑀
1

1𝜇
𝜇 + h.o.t. = 0,

(𝑤
12

2
)
−1

𝛿𝑠
𝜌
2

2
/𝜌
1

2

2
− 𝜆
𝑝
−

𝜆
𝑝
(𝛿 − 𝜆

𝑝
)

𝛿
𝑠 + 𝑀

1

2𝜆
𝜆

+ 𝑀
1

2𝜇
𝜇 + h.o.t. = 0.

(47)

With similar arguments to 𝜆 = 0, we may easily obtain
the following results.

Theorem 6. Suppose the conditions (H
1
)–(H
3
) hold, 0 < 𝜆 ≪

1; then
(i) if rank(𝑀1

1𝜇
,𝑀
1

2𝜇
) = 2, there exists an (𝑙 − 2)-

dimensional surface

𝐿
𝜆

12
= {𝜇 (𝜆) : 𝑀

1

1𝜇
𝜇 + 𝑀

1

1𝜆
𝜆 + ℎ.𝑜.𝑡.

= 𝑀
1

2𝜇
𝜇 + 𝑀

1

2𝜆
𝜆 − 𝜆 + ℎ.𝑜.𝑡. = 0}

(48)

such that system (1) has a unique heteroclinic loop if and only
if 𝜇 ∈ 𝐿

𝜆

12
and 0 < |𝜇| ≪ 1;

(ii) there exists an (𝑙 − 1)-dimensional surface

𝐿
2

1𝜆
= {𝜇 (𝜆) : 𝑊

2

1
(𝜆, 𝜇) = (𝑤

12

2
)
−1

[𝛿
−1

(𝑀
1

1𝜇
𝜇 + 𝑀

1

1𝜆
𝜆)]
𝛽
2

+ 𝛿
−1

(𝑀
1

2𝜇
𝜇 + 𝑀

1

2𝜆
𝜆)

− 𝛿
−1

𝜆
𝑝
+ h.o.t. = 0,

𝑀
1

1𝜇
𝜇 + 𝑀

1

1𝜆
𝜆 > 0}

(resp.,

𝐿
1

2𝜆
= {𝜇 (𝜆) : 𝑊

1

2
(𝜆, 𝜇)

= 𝛿𝜆
𝑝
+ 𝜆
𝑝
(𝛿 − 𝜆

𝑝
)

× [−𝛿
−1

𝑤
12

1
(𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇)]
𝜆
𝑝
/𝜌
1

1

− 𝛿𝑀
1

2𝜆
𝜆

− 𝛿𝑀
1

2𝜇
𝜇 + h.o.t. = 0,

𝑤
12

1
(𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇) < 0})

(49)

such that system (1) has one homoclinic loop connecting 𝑝
1

1

(resp., connecting 𝑝
2
) if and only if 𝜇 ∈ 𝐿

2

1𝜆
and 0 < |𝜇| ≪ 1.

Theorem 7. Suppose hypotheses (H
1
)–(H
3
) hold, 𝑀1

𝑖𝜇
̸= 0, 𝑖 =

1, 2, 0 < 𝜆, |𝜇| ≪ 1, and 𝑤
12

1
𝑤
12

2
< 0. Then, except the
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homoclinic loop connecting 𝑝
1

1
(resp., 𝑝

2
), system (1) has no

periodic orbits as 𝜇 ∈ 𝐿
2

1𝜆
(resp., 𝜇 ∈ 𝐿

1

2𝜆
).

Remark 8. It is easy to see that homoclinic loop connecting
𝑝
0

1
and heteroclinic loop joining 𝑝

0

1
, 𝑝
2
cannot be bifurcated

from Γ, which is exactly determined by the generic condition
(𝐻
1
).

Finally, we consider the case −𝛽 ≤ 𝑥
1

0
< 𝜆
𝑝
. Due to

Figure 1 and (25), it follows from (31) that

𝑠
2
= [𝛿
−1

(𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇)]
𝜌
1

2
/𝜆
1

2

+ h.o.t.,

𝑥
1

0
= (𝑤
12

2
)
−1

𝛿𝑠
𝜌
2

2
/𝜌
1

2

2
+ 𝑀
1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇 + h.o.t.

(50)

Theorem 9. Assume the conditions (H
1
)–(H
3
) are true,

rank(𝑀1
1𝜆
,𝑀
1

1𝜇
) > 0 and rank(𝑀1

2𝜆
,𝑀
1

2𝜇
) > 0. Then,

(i) there exists a surface

Σ
1
(𝜇, 𝜆) = {𝜇 (𝜆) : [𝛿

−1

(𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇)]
𝜌
1

2
/𝜆
1

2

+ ℎ.𝑜.𝑡. = 0,

− 𝛽 ≤ 𝑀
1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇 + ℎ.𝑜.𝑡. < 𝜆

𝑝
,

0 <
𝜇
 , 𝜆 ≪ 1} ,

(51)

such that system (1) has two orbits heteroclinic to 𝑝
1

1
,

𝑝
2
, 𝑝0
1
as 𝜇 ∈ Σ

1
(𝜇, 𝜆);

(ii) there exists a region in the (𝜆, 𝜇) space

Δ = {(𝜆, 𝜇) : −𝛽 ≤ (𝑤
12

2
)
−1

𝛿
(𝜆
1

2
−𝜌
2

2
)/𝜆
1

2

× (𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇)
𝜌
2

2
/𝜆
1

2

+ 𝑀
1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇

+ ℎ.𝑜.𝑡. < 𝜆
𝑝
,

𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇 > 0,

0 <
𝜇
 , 𝜆 ≪ 1} ,

(52)

such that system (1) has a heteroclinic orbit connecting
𝑝
1

1
and 𝑝

0

1
for (𝜆, 𝜇) ∈ Δ.

Proof. (i) If 𝑠
2
= 0 in (50), then

0 = [𝛿
−1

(𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇)]
𝜌
1

2
/𝜆
1

2

+ h.o.t.,

𝑥
1

0
= 𝑀
1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇 + h.o.t.

(53)

which shows that there exists a surface Σ
1
(𝜇, 𝜆) such that (50)

has a solution 𝑠
2
= 0 and −𝛽 ≤ 𝑥

1

0
< 𝜆
𝑝
for 𝜇 ∈ Σ

1
(𝜇, 𝜆),

then system (1) has two heteroclinic orbits, one is heteroclinic
to 𝑝
1

1
and 𝑝

2
and the other is heteroclinic to 𝑝

2
and 𝑝

0

1
.

p
2

y

p
0

1

Γ
2

(a)

p
2

y

p
0

1

(b)

p
2

y

p
0

1

(c)

Figure 2

(ii) If 𝑠
2
> 0 in (50), one attains𝑀1

1𝜆
𝜆+𝑀
1

1𝜇
𝜇 > 0. Eliminating

𝑠
2
in (50), we achieve

𝑥
1

0
= (𝑤
12

2
)
−1

𝛿
(𝜆
1

2
−𝜌
2

2
)/𝜆
1

2(𝑀
1

1𝜆
𝜆 + 𝑀

1

1𝜇
𝜇)
𝜌
2

2
/𝜆
1

2

+ 𝑀
1

2𝜆
𝜆 + 𝑀

1

2𝜇
𝜇 + h.o.t.,

(54)

which shows that there exists a region Δ such that when
(𝜆, 𝜇) ∈ Δ, system (1) has one heteroclinic orbit heteroclinic
to 𝑝
1

1
and 𝑝

0

1
.

Remark 10. All the heteroclinic orbits joining 𝑝
0

1
will go into

𝑝
0

1
in different ways according to different fields of 𝑥1

0
; see

Figure 2.
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