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Combining the variational iterationmethod (VIM) with the sparse grid theory, a dynamic sparse grid approach for nonlinear PDEs
is proposed in this paper. In this method, a multilevel interpolation operator is constructed based on the sparse grids theory firstly.
The operator is based on the linear combination of the basic functions and independent of them. Second, by means of the precise
integration method (PIM), the VIM is developed to solve the nonlinear system of ODEs which is obtained from the discretization
of the PDEs. In addition, a dynamic choice scheme on both of the inner and external grid points is proposed. It is different from
the traditional interval wavelet collocation method in which the choice of both of the inner and external grid points is dynamic.
The numerical experiments show that our method is better than the traditional wavelet collocation method, especially in solving
the PDEs with the Nuemann boundary conditions.

1. Introduction

The sparse representation of functions via a linear combi-
nation of a small number of basic functions has recently
received a lot of attention in several mathematical fields
such as approximation theory as well as signal and image
processing [1]. The advantage of the sparse grid approach
is that it can be extended to nonsmooth solutions by adap-
tive refinement methods; that is, it can capture the steep
waves appearing in the solution of the PDEs. In fact, the
boundary conditions can also be taken as the nonsmooth
parts appearing in the solution, especially to the Neumann
boundary. Furthermore, it can be generalized from piecewise
linear to high-order polynomials. Also, more sophisticated
basis functions like interpolets, prewavelets, or wavelets can
be used in a straightforward way [2]. In practice, the standard
piecewise linear multiscale basis in one dimension, that is,
the Faber-Schauder, can be viewed as a scaling function in
the wavelet analysis. As an interpolation operator, the basis
functions act as the Dirac delta function when operating
on itself and its derivatives [3]. So, the interpolation wavelet
such as the Shannon wavelet, Shannon-Gabor wavelet, Harr
wavelet, and the autocorrelation function of the Daubechies

scaling function can be taken as the basis function to
construct the sparse grid approach directly.

Faber-Schauder and Haar scaling function do not have
the smoothness property, so the function and its derivative
to be approximated cannot be represented exactly by them.
The autocorrelation function of Daubechies scaling function
has been widely used in various numerical methods for PDEs
such as the wavelet collocation method and the sparse grids
method. The Daubechies scaling functions possess almost
all the excellent numerical properties, such as orthogonality,
smoothness, and compact support, which are helpful in
improving numerical accuracy and efficiency. However, the
autocorrelation function of the Daubechies scaling function
loses the orthogonality. In addition, Daubechies scaling
function has no exact analytical expression. This will bring
error to the approximation solution from the Daubechies
wavelet numerical method.

Cattani studied the properties of the Shannon wavelet
function [4], which possesses many advantages such as
orthogonality and is continuous and differentiable. It also
has the advantage over the Hermite DAF in that it is
an interpolating function, producing matrix equations that
have the potential to be relatively sparse. In addition,
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the second-order approximation of a C2-function, based on
Shannon wavelet functions, is given [5]. The approximation
is compared with the wavelet reconstruction formula and
the error of approximation is explicitly computed [6]. The
advantages of the Shannon wavelet have been illustrated
in solving PDEs in engineering [7], which can avoid the
shortcomings of Daubechies wavelet such as the interpola-
tion property. Furthermore, Cattani studied the fractional
calculus problems with the Shannon firstly. A perceived
disadvantage of the Shannon scaling function is that it tends
towards zero quite slowly. The direct consequence of this
is that a large number of the nodal values will contribute
significantly when calculating the derivatives of the function
to be approximated. It is for that reason that Hoffman et
al. constructed the Shannon-Gabor wavelet [8] using the
Gaussian window function. In some ways it improves the
approximation to a Dirac delta function compared with
Shannon wavelet. However, the presence of the Gaussian
window destroys the orthogonal properties possessed by the
Shannon wavelet, effectively worsening the approximation
to a Dirac delta function. In order to test the multilevel
interpolation operator constructed in this paper, the Faber-
Schauder, Shannon scaling functions and the autocorrelation
function of the Daubechies scaling function are taken as the
basis employed in the multilevel interpolator to discretize the
PDEs in the experiments, respectively.

There are many ways to solve the system of nonlinear
ODEs, which are obtained from the discretization of the
nonlinear PDEs using the multilevel interpolator. Compared
with the finite difference method, the retained grid points
are sparse and the dimensionality of the system of ODEs
is smaller. This is helpful to improve the efficiency, but the
small change of the condition number and the smoothness
of the function to be approximated can destroy the exactness
of the numerical solution obtained by the traditional dif-
ference method. The variational iteration method proposed
by Inokuti et al. in 1978 [9], which has been developed
by He [10, 11] and widely used in various fields [12–14], is
able to give the solution of the nonlinear problems in an
infinite series usually converging to an accurate solution
rapidly. By means of the precise integration method (PIM),
VIM has been generated to solve the system of nonlinear
ODEs by Mei and Zhang [15]. In fact, both of the PIM and
VIM are the analytical method; so, the impact of the system
of ODEs on the choice of the sparse grid points can be
neglected.

The dynamic choice of the inner grid points relates with
the smoothness and the gradient at each point of the solution
to be approximated, and the external grid points relates with
the boundary conditions. A better choice of the external grid
points can restrict the boundary effect effectively. Most of the
schemes are based on the extension of the solution function,
such as the interval wavelet in the wavelet collocationmethod
[16] and Lagrange multiplier in the sparse grid approaches
[17]. In most cases, the smoothness and the gradient around
the boundary are variational dynamically such as the Nue-
mann boundary conditions.The extension method by means
of the Lagrangemultiplier is not suited to change the external
grid points dynamically.

In our approach we want to achieve several goals so that
the solution should be sparse and should be a good approx-
imation. First of all is to construct a multilevel interpolation
operator with which the adaptive sparse grid approach can
be simplified to a linear combination of the interpolation
operators. The operator should be independent with the
basic functions. So, we can take different basis functions
in the interpolation operator to solve different problems.
Second goal is to construct an adaptive sparse grid approach
by combining the multilevel interpolation operator and the
VIM.The last one is to construct a dynamic choice scheme on
the external grid points, so that both of the inner and external
grid points are dynamicwith the development of the solution,
especially to PDEs with the Neumann boundary conditions.

2. Multilevel Interpolator on Sparse Grids

2.1. Interpolating Multiresolution Analysis. Let us start with
the interpolating multiresolution analysis [18] that is neces-
sary for a detailed discussion of sparse grids for purposes
of interpolation or approximation, respectively. Let 𝜙(𝑥) be
any of the interpolating basis function such as the Shannon,
Faber-Schauder, scaling functions or the autocorrelation
function of the Daubechies scaling function. This mother of
all basis functions can be used to generate an arbitrary 𝜙𝑗

𝑘
(𝑥)

by dilation and translation; that is

𝜙
𝑗

𝑘
(𝑥) = 𝜙 (2

𝑗
𝑥 − 𝑘) , 𝑘 = 0, 1, 2, . . . , 2

𝑗
. (1)

It is easy to check that introducing the spaces

𝑉
𝑗
:= span ⟨𝜙𝑗

𝑘
, 𝑘 = 0, 1, 2, . . . , 2

𝑗
⟩ ⊂ 𝐿

2
(R) . (2)

For convenience of notation we use the superscript to denote
the level of resolution and the subscript to denote the location
in physical space. The sequence {𝑉𝑗} is a multiresolution
analysis, which is an increasing sequence of closed subspaces
of 𝐿2(R). We call such a structure an interpolating multireso-
lution analysis due to the fact that the function 𝜙 verifies what
we call interpolation property, that is𝜙𝑗

𝑘
(𝑛2−𝑗) = 𝛿

𝑛,𝑘
.Wemay

then define an interpolation operator 𝐼𝑗 : 𝐶0(0, 1) → 𝑉𝑗

𝐼
𝑗
𝑓 =
2
𝑗

∑
𝑘=0

𝑓 (𝑥
𝑗

𝑘
) 𝜙
𝑗

𝑘
, 𝑥
𝑗

𝑘
= 𝑘2
−𝑗
. (3)

It is obvious that 𝜙𝑗
𝑘
is just the nodal point basis of the

finite-dimensional space 𝑉𝑗. Additionally, we introduce the
hierarchical increments𝑊𝑗 ⊂ 𝑉𝑗+1

𝑊
𝑗
= span ⟨𝜓𝑗

𝑘
, 𝑘 = 0, 1, 2, . . . , 2

𝑗
− 1⟩ , (4)

where 𝜓𝑗
𝑘
= 𝜙
𝑗+1

2𝑘+1
.

Let 𝑦𝑗
𝑘
= 𝑥
𝑗+1

2𝑘+1
, we may remark that the function 𝜓𝑗

𝑘

verifies

𝜓
𝑗

𝑘
(𝑦
𝑗

𝑛
) = 𝛿
𝑘𝑛
, 𝜓
𝑗

𝑘
(𝑦
𝑗

𝑛
) = 0, ∀𝑗


< 𝑗. (5)



The Scientific World Journal 3

It is obvious that

𝑉
𝑗+1

= 𝑉
𝑗
⨁𝑊

𝑗
. (6)

Such multiresolution analysis has been extensively investi-
gated in [9]. According to this theory, any function 𝑓 ∈

𝐶0(0, 1) can be represented approximately as:

𝑓 ≈ 𝑓
𝑗
=
2
𝑗0

∑
𝑘=0

𝛽
𝑗0

𝑘
𝜙
𝑗0

𝑘
+ ∑
𝑗≥𝑗0

2
𝑗

∑
𝑘=0

𝛼
𝑗

𝑘
𝜓
𝑗

𝑘
. (7)

The coefficients 𝛽𝑗0
𝑘
and 𝛼𝑗

𝑘
are defined as:

𝛽
𝑗0

𝑘
= 𝑓 (𝑥

𝑗0

𝑘
) , 𝛼

𝑗

𝑘
= 𝑓 (𝑦

𝑗

𝑘
) − 𝐼
𝑗
𝑓 (𝑦
𝑗

𝑘
) , (8)

respectively. This shows that the coefficient 𝛼𝑗
𝑘
measures the

lack of approximation of 𝑓 by 𝐼𝑗𝑓 [19].

2.2. Multilevel Interpolation Operator on Sparse Grids. Equa-
tion (7) is the approximate representation of function 𝑓,
which is not unique since the set of functions is not linearly
independent. In this section, we will try to determine the
sparsest representation, that is, a representation with a maxi-
mal number of vanishing coefficients among the coefficients
{𝛼
𝑗

𝑘
, 𝑘 = 0, 1, . . . , 2𝑗, 𝑗 ∈ 𝑍}. The conventional scheme

in signal processing, acquiring the entire signal and then
compressing it, was questioned by Donoho and Elad [20].
Indeed, this technique uses tremendous resources to acquire
often very large signals, just to throw away information
during compression. The popular solving scheme is the
compressed sensing technique proposed by Donoho [21]. In
contrast to it, we try to achieve the same goals by constructing
a multilevel interpolation operator via combining the inter-
polating multiresolution analysis described above and the
wavelet transform theory [22].

Let us start with the definition of the interpolation
operator

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝐽
Ω

𝐼
𝑖
(𝑥) 𝑢
𝐽

𝑖
, 𝑍
𝐽

Ω
:= 0, 1, 2, . . . , 2

𝐽
, (9)

𝐼
𝑖
(𝑥) is the interpolation function. According to the wavelet

transform theory, function 𝑢(𝑥) can be expressed approxi-
mately as:

𝑢
𝐽
(𝑥) =

2
𝑗0

∑
𝑘0=0

𝑢 (𝑥
𝑗0

𝑘0
) 𝜑
𝑗0

𝑘0
(𝑥) +

𝐽−1

∑
𝑗=𝑗0

∑
𝑘∈𝑍
𝑗

𝛼
𝑗

𝑘
𝜓
𝑗

𝑘
(𝑥) , (10)

where 𝑍𝑗 := 0, 1, 2, . . . , 2𝑗, and the interpolation wavelet
transform coefficient can be denoted as:

𝛼
𝑗

𝑘
= 𝑢 (𝑥

2𝑘+1

𝑗+1
)

− [

[

2
𝑗0

∑
𝑘0=0

𝑢 (𝑥
𝑘0

𝑗0
) 𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
) +

𝑗−1

∑
𝑗1=𝑗0

2
𝑗1−1

∑
𝑘1=0

𝛼
𝑘1

𝑗1
𝜓
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𝑗1
(𝑥
2𝑘+1

𝑗+1
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]

=
2
𝐽

∑
𝑛=0

[

[

𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−
2
𝑗0

∑
𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
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]

𝑢 (𝑥
𝑛

𝐽
)

−
2
𝐽

∑
𝑛=0

𝑗−1

∑
𝑗1=𝑗0

2
𝑗1−1

∑
𝑘1=0

𝛼
𝑘1

𝑗1
𝜓
𝑘1

𝑗1
(𝑥
2𝑘+1

𝑗+1
) ,

(11)

where, 0 ≤ 𝑗 ≤ 𝐽 − 1, 𝑘 ∈ 𝑍𝑗, 𝑛 ∈ 𝑍𝐽, and 𝑅 is the restriction
operator defined as:

𝑅
𝑙,𝑗

𝑖,𝑚
= {

1, 𝑥𝑙
𝑖
= 𝑥𝑗
𝑚

0, others.
(12)

Suppose

𝛼
𝑗

𝑘
=
2
𝐽

∑
𝑛=0

𝐶
𝑗,𝐽

𝑘,𝑛
𝑢 (𝑥
𝐽

𝑛
) . (13)

Substituting (13) into (11), we obtain

𝐶
𝑗,𝐽

𝑘,𝑛
= 𝑅
𝑗+1,𝐽

2𝑘+1,𝑛
−
2
𝑗0

∑
𝑘0=0

𝑅
𝑗0,𝐽

𝑘0 ,𝑛
𝜑
𝑗0

𝑘0
(𝑥
𝑗+1

2𝑘+1
)

−

𝑗−1

∑
𝑗1=𝑗0

2
𝑗1−1

∑
𝑘1=0

𝐶
𝑗1 ,𝐽

𝑘1 ,𝑛
𝜓
𝑗1

𝑘1
(𝑥
𝑗+1

2𝑘+1
) .

(14)

If 𝑗 = 𝑗
0
, then

𝐶
𝑗,𝐽

𝑘,𝑛
= 𝑅
𝑗+1,𝐽

2𝑘+1,𝑛
−
2
𝑗0

∑
𝑘0=0

𝑅
𝑗0,𝐽

𝑘0 ,𝑛
𝜑
𝑗0

𝑘0
(𝑥
𝑗+1

2𝑘+1
) . (15)

Substituting the restriction operator (12) and the wavelet
transform coefficient (13) into (10), the approximate expres-
sion of the solution 𝑢(𝑥) can be obtained as:

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝐽

(
2
𝑗0

∑
𝑘0=0

𝑅
𝑗0 ,𝐽

𝑘0 ,𝑛
𝜑
𝑗0

𝑘0
(𝑥
𝑗+1

2𝑘+1
)

−

𝑗−1

∑
𝑗1=𝑗0

2
𝑗1−1

∑
𝑘1=0

𝐶
𝑗1 ,𝐽

𝑘1 ,𝑛
𝜓
𝑗1

𝑘1
(𝑥
𝑗+1

2𝑘+1
))𝑢 (𝑥

𝐽

𝑖
) .

(16)

According to the definition of the interpolation operator (9),
it’s easy to obtain the expression of the interpolation operator
as follows:

𝐼
𝑖
(𝑥) =

2
𝑗0

∑
𝑘0=0

𝑅
𝑗0 ,𝐽

𝑘0 ,𝑖
𝜑
𝑗0

𝑘0
(𝑥) +

𝐽−1

∑
𝑗=𝑗0

∑
𝑘∈𝑍
𝑗

𝐶
𝑗,𝐽

𝑘,𝑖
𝜓
𝑗

𝑘
(𝑥) . (17)

The corresponding 𝑚-order derivative of the interpolation
operator is

𝐷
(𝑚)

𝑖
(𝑥) =

2
𝑗0

∑
𝑘0=0

𝑅
𝑗0 ,𝐽

𝑘0 ,𝑖
𝜑
𝑗0(𝑚)

𝑘0
(𝑥) +

𝐽−1

∑
𝑗=𝑗0

∑
𝑘∈𝑍
𝑗

𝐶
𝑗,𝐽

𝑘,𝑖
𝜓
𝑗(𝑚)

𝑘
(𝑥) .

(18)
Substitute (17) and (18) into the nonlinear PDEs, and it can
be changed to a system of nonlinear ODEs, the approximate
analytical solution of which can be obtained with the varia-
tional iteration method (VIM).
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3. Coupling Technique of VIM and Sparse
Grid Method for Nonlinear PDEs

As mentioned above, the multilevel interpolation operator
is independent of the basic functions; that is, any basis
function with the interpolation property can be employed in
(17) directly. But the basis function without the 𝑚th order
derivative cannot be employed in (18) directly. In this section,
we just consider the parabolic PDEs with the second order
derivative as follows:

−
𝜕

𝜕𝑥
(𝑝 (𝑥)

𝜕𝑢

𝜕𝑥
) + 𝑟 (𝑥)

𝜕𝑢

𝜕𝑥
+ 𝑞 (𝑥) 𝑢 =

𝜕𝑢

𝜕𝑡
+ 𝑓 (𝑥) ,

𝑥 ∈ [𝑎, 𝑏] , (𝑥, 𝑡) ∈ 𝐷,

𝑢 (𝑎, 0) = 𝛼, 𝑝 (𝑏)
𝜕𝑢 (𝑏, 0)

𝜕𝑥
+ 𝑔 (𝑏) 𝑢 (𝑏, 0) = 𝛽,

(19)

where𝐷 is the definition domain in 𝑥-𝑡 plane.
Therefore, there are two cases that will be discussed in

detail in the following. One is that the basic function to be
employed in (7) has second-order derivative; the other aims
at the Faber-Schauder scaling function.

3.1. Basis Function with C2 Continuity. Substituting (16) into
(19), it is easy to obtain the nonlinear matrix differential
equations as follows:

𝐿 (V̇,V, 𝑡) + 𝑁 (V̇,V, 𝑡) = G (𝑡) , (20)

where 𝐿 is a linear operator,𝑁 a nonlinear operator, andG(𝑡)
is an inhomogeneous term, V is an 𝑛-dimensional unknown
vector, and dot stands for the differential with respect to time
variable 𝑡. For convenience, (20) can be rewritten as:

V̇ −HV − F (V̇,V, 𝑡) = 0 (21)

H is a given 𝑛 × 𝑛 constant matrix, and F(V̇,V, 𝑡) is an 𝑛-
dimensional nonlinear external force vector.

According to VIM, we can write down a correction
functional as follows:

V
𝑛+1
(𝑡) = V

𝑛
(𝑡) + ∫

𝑡

0

𝜆 ⌊V̇
𝑛
(𝜏) −HV

𝑛
(𝜏)

−F ( ̇̃V
𝑛
,Ṽ
𝑛
,𝜏)⌋ 𝑑𝜏,

(22)

where 𝜆 is a general Lagrange vector multiplier [23] which
can be identified optimally via the variational theory.The sub-
script 𝑛 denotes the 𝑛th approximation and Ṽ

𝑛
is considered

as a restricted variation [24–27]; that is, 𝛿Ṽ
𝑛
= 0.

Using VIM, the stationary conditions of (22) can be
obtained as follows:

𝜆

+ 𝜆H = 0,

1 + 𝜆 (𝜏)|
𝜏=𝑡
= 0.

(23)

The Lagrange vector multiplier can therefore be readily
identified,

𝜆 (𝜏) = −𝑒
H(𝑡−𝜏)

. (24)

As a result, we obtain the following iteration formula:

V
𝑛+1
(𝑡) = V

𝑛
(𝑡) − ∫

𝑡

0

𝑒
H(𝑡−𝜏)

⌊V̇
𝑛
(𝜏) −HV

𝑛
(𝜏)

−F ( ̇̃V
𝑛
,Ṽ
𝑛
,𝜏)⌋ 𝑑𝜏.

(25)

According to VIM, we can start with an arbitrary initial
approximation that satisfies the initial condition. So we take
the exact analytic solution of V̇−HV = 0 as the initial
approximation; that is,

V
0
(𝑡) = 𝑒

H𝑡A, (26)

where A is the given initial value vector.
Substituting (26) into (25) and after simplification, we

have

V
𝑛+1
(𝑡) = V

𝑛
(𝑡) + ∫

𝑡

0

𝑒
H(𝑡−𝜏)F ( ̇̃V

𝑛
,Ṽ
𝑛
,𝜏) 𝑑𝜏. (27)

According to the theory of matrices, the analytical expression
of the external force F( ̇̃V

𝑛
,Ṽ
𝑛
,𝜏) is required now, but it is not

always available except F( ̇̃V
𝑛
,Ṽ
𝑛
,𝜏) is a constant vector f ; that

is,

F ( ̇̃V
𝑛
, Ṽ
𝑛
, 𝜏) = f . (28)

The integration term of (15) is

∫
𝑡

0

𝑒
H(𝑡−𝜏)f𝑑𝜏 = (𝑒H𝑡 − I)H−1f , (29)

where the exponentialmatrix 𝑒H𝑡 can be calculated accurately
in PIM, and I is a unit matrix. Substituting (29) into (27),
we obtain the variational iteration formula of the matrix
differential equation as follows:

V
𝑛+1
(𝑡) = V

𝑛
(𝑡) + (𝑒

H𝑡
− I)H−1f . (30)

𝑒H𝑡 can be solved exactly by means of the precise integration
method (PIM) [28].

3.2. Basis Function with C1 Continuity. Faber-Schauder scal-
ing function is the typical basis with 𝐶1 continuity. For con-
venience to construct the variational equation, the parameter
𝑡 should be discretized as 𝑡

0
, 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
, 𝑡
𝑚
+ 1, . . ., where

𝑡
0
= 0, 𝑡
𝑚
= 𝑚Δ𝑡. Then, 𝜕𝑢/𝜕𝑡 can be approximated as:

𝜕𝑢

𝜕𝑡
≈
1

Δ𝑡
[𝑢 (𝑥,𝑚Δ𝑡) − 𝑢 (𝑥, (𝑚 − 1) Δ𝑡)] . (31)

Substituting above equation into (19), we obtain

−
𝑑

𝑑𝑥
(𝑝 (𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑟 (𝑥)

𝑑𝑢

𝑑𝑥
+ 𝑞 (𝑥) 𝑢 = 𝐹 (𝑥) ,

𝑥 ∈ [𝑎, 𝑏] , (𝑥, 𝑡) ∈ 𝐷,

𝑢 (𝑎, 0) = 𝛼, 𝑝 (𝑏)
𝑑𝑢 (𝑏, 0)

𝑑𝑥
+ 𝑔 (𝑏) 𝑢 (𝑏, 0) = 𝛽,

𝐹 (𝑥) = 𝑓 (𝑥) +
1

Δ𝑡
[𝑢 (𝑥,𝑚Δ𝑡) − 𝑢 (𝑥, (𝑚 − 1) Δ𝑡)] .

(32)
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Obviously, it is the initial-boundary elliptic PDEs. Using the
virtual displacement theory, the variation equation can be
obtained as:

𝑎 (𝑢, V) = 𝐺 (V) , 𝑢 ∈ 𝐻
1

𝐸
(𝑎, 𝑏) , ∀V ∈ 𝐻1

0𝐸
(𝑎, 𝑏) , (33)

where

𝐻
1

𝐸
(𝑎, 𝑏) := {𝑢 ∈ 𝐻

1
(𝑎, 𝑏) | 𝑢 (𝑎) = 𝛼} ,

𝐻
1

0𝐸
(𝑎, 𝑏) := {V ∈ 𝐻1 (𝑎, 𝑏) | V (𝑎) = 0} ,

𝑎 (𝑢, V) := ∫
𝑏

𝑎

[𝑝 (𝑥)
𝑑𝑢

𝑑𝑥

𝑑V
𝑑𝑥

+ 𝑟 (𝑥)
𝑑𝑢

𝑑𝑥
V + 𝑞 (𝑥) 𝑢V] 𝑑𝑥

+ 𝑔 (𝑏) 𝑢 (𝑏) V (𝑏) ,

𝐺 (V) := ∫
𝑏

𝑎

𝐹 (𝑥) V (𝑥) 𝑑𝑥 + 𝛽V (𝑏) ,

(34)

𝐻1(𝑎, 𝑏) is the Sobolev space.
According to the interpolation wavelet transform theory,

the variables 𝑢 and V can be approximated as:

𝑢 (𝑥, 𝑡) =
2
𝑗0

∑
𝑘=0

𝑢 (𝑥
𝑗0 ,𝑘
)𝑤
𝑗0

𝑘
(𝑥) +

𝐽−1

∑
𝑗=𝑗0

2
𝑗
−1

∑
𝑘=0

𝛼
𝑗,𝑘
(𝑡) 𝑤
𝑗+1

2𝑘+1
(𝑥)

V (𝑥, 𝑡) =
2
𝑗0

∑
𝑘=0

V (𝑥
𝑗0 ,𝑘
)𝑤
𝑗0

𝑘
(𝑥) +

𝐽−1

∑
𝑗V=𝑗0

2
𝑗V
−1

∑
𝑘V=0

𝛼
𝑗V,𝑘V (𝑡) 𝑤

𝑗V+1
2𝑘V+1 (𝑥) .

(35)

The first-order derivatives are

𝑑

𝑑𝑥
𝑢 (𝑥, 𝑡) =

2
𝑗0

∑
𝑘=0

𝑢 (𝑥
𝑗0 ,𝑘
) (𝑤
𝑗0

𝑘
(𝑥))


+
𝐽−1

∑
𝑗=𝑗0

2
𝑗
−1

∑
𝑘=0

𝛼
𝑗,𝑘
(𝑡) (𝑤

𝑗+1

2𝑘+1
(𝑥))


,

𝑑

𝑑𝑥
V (𝑥, 𝑡) =

2
𝑗0

∑
𝑘=0

V (𝑥
𝑗0 ,𝑘
) (𝑤
𝑗0

𝑘
(𝑥))


+
𝐽−1

∑
𝑗V=𝑗0

2
𝑗V
−1

∑
𝑘V=0

𝛼
𝑗V,𝑘V (𝑡) (𝑤

𝑗V+1
2𝑘V+1 (𝑥))



,

(36)

respectively. Substituting (35)-(36) into (32), the sparse
method for the parabolic PDEs based on the Faber-Schauder
scaling function will be obtained. The system of ODEs can
be solved exactly by means of the precise integration method
(PIM).

4. Dynamic Choice Scheme on the External
Grid Points

Combining the multilevel interpolation operator with the
threshold scheme, it is easy to obtain the sparse inner grid

points dynamically. Any adaptive method can capture the
steep gradient appearing in the solution; that is, the inner
grid points can concentrate around the larger gradient points
adaptively.The PDEs in engineering are always defined in the
finite domain, so the boundary condition can usually change
the smoothness of solution around the boundary.This results
in that more grid points around the boundary contribute
to the solution and increase the calculation amount. The
reasonable choice of the external grid points can decrease the
boundary effect and improve the precision of the solution. In
this section, we try to give a dynamic choice scheme of the
external grid points, which is deduced from concept of the
interval interpolation wavelet and is different from it.

4.1. Construction of the Interval Interpolation Wavelet. In
general, the interpolation basis functions defined in interval
can be represented as:

𝜔𝑗𝑘

=

{{{{{{{
{{{{{{{
{

𝜔(2𝑗𝑥 − 𝑘) +
−1

∑
𝑛=−𝐿+1

𝑎𝑛𝑘𝜔 (2
𝑗
𝑥 − 𝑛) , 𝑘 = 0, . . . , 𝐿

𝜔 (2𝑗𝑥 − 𝑘) , 𝑘 = 𝐿 + 1, . . . , 2𝑗 − 𝐿 − 1

𝜔 (2𝑗𝑥 − 𝑘) +
2
𝑗
+𝐿−1

∑
𝑛=2𝑗+1

𝑏𝑛𝑘𝜔 (2
𝑗
𝑥 − 𝑛) , 𝑘 = 2𝑗 − 𝐿, . . . , 2𝑗,

(37)

where

𝑎
𝑛𝑘
=
−1

∏
𝑖=𝐿−1

𝑖 ̸= 𝑘

𝑥
𝑗,𝑛
− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

, 𝑏
𝑛𝑘
=
2
𝑗
+1+𝐿

∏

𝑖=2
𝑗
+1

𝑖 ̸= 𝑘

𝑥
𝑗,𝑛
− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

,

𝑥
𝑗,𝑘
= 𝑘

𝑥max − 𝑥min
2𝑗

, 𝑘 ∈ Z,

(38)

where 𝐿 is the amount of the external collocation points;
the amount of discrete points in the definition domain is
2𝑗 + 1 (𝑗 ∈ 𝑍); [𝑥min, 𝑥max] is the definition domain of the
approximated function.

Equations (37) and (38) show that the interval wavelet
is derived from the domain extension. The supplementary
discrete points in the extended domain are called external
points.The value of the approximated function at the external
points can be obtained by Lagrange extrapolation method.
Using the interval wavelet to approximate a function, the
boundary effect can be left in the supplementary domain; that
is, the boundary effect is eliminated in the definition domain.

According to (37) and (38), the interval wavelet approxi-
mant of the function 𝑓(𝑥)𝑥 ∈ [𝑥min, 𝑥max] can be expressed
as

𝑓
𝑗
(𝑥) = ∑𝑓

𝑗
(𝑥
𝑛
)𝑊
𝑗
(2
𝑗
𝑥 − 𝑛) ,

𝑥
𝑛
= 𝑥min + 𝑛

𝑥max − 𝑥min
2𝑗

,
(39)

𝑓
𝑗
(𝑥
𝑛
) is the given value at the discrete point 𝑥

𝑛
. At the

external points, 𝑓
𝑗
(𝑥
𝑛
) can be calculated by extrapolation

method; that is,
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𝑓
𝑗
(𝑥
𝑛
) =

{{{{{{{{{{
{{{{{{{{{{
{

𝐿−1

∑
𝑘=0

(𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0

𝑖 ̸= 𝑘

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

), 𝑛 = −1, . . . , −𝐿

2
𝑗

∑
𝑘=2
𝑗
−𝐿+1

(𝑓
𝑗
(𝑥
𝑘
)
2
𝑗

∏

𝑖=2
𝑗
−𝐿+1

𝑘 ̸= 𝑖

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

), 𝑛 = 2𝑗 + 1, . . . , 2𝑗 + 𝐿.

(40)

So the interval wavelet approximant of 𝑓(𝑥) can be rewritten
as:

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

(
𝐿−1

∑
𝑘=0

𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

)𝜔(2
𝑗
𝑥 − 𝑛)

+
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2

𝑗
𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑
𝑛=2
𝑗
+1

(
2
𝑗

∑
𝑘=2
𝑗
−𝐿

𝑓
𝑗
(𝑥
𝑘
)
2
𝑗

∏
𝑖=2
𝑗
−𝐿

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

)𝜔(2
𝑗
𝑥 − 𝑛) .

(41)
Let

LS
𝐿
(𝑥
𝑛
) =
𝐿−1

∑
𝑘=0

𝑓
𝑗
(𝑥
𝑘
)
𝐿−1

∏
𝑖=0

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

,

LE
𝐿
(𝑥
𝑛
) =

2
𝑗

∑
𝑘=2
𝑗
−𝐿

𝑓
𝑗
(𝑥
𝑘
)
2
𝑗

∏
𝑖=2
𝑗
−𝐿

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

(42)

then

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

LS
𝐿
(𝑥
𝑛
) 𝜔 (2

𝑗
𝑥 − 𝑛) +

2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2

𝑗
𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑
𝑛=2
𝑗
+1

LE
𝐿
(𝑥
𝑛
) 𝜔 (2

𝑗
𝑥 − 𝑛) .

(43)

LS
𝐿
(𝑥
𝑛
) and LE

𝐿
(𝑥
𝑛
) correspond to the left and the right

external points, respectively. They are obtained by Lagrange
extrapolation using the internal collocation points near
the boundary. So, the interval wavelet’s influence on the
boundary effect can be attributed to Lagrange extrapolation.
It should be pointed out that we did not care about the
reliability of the extrapolation. The only function of the
extrapolation is enlarging the definition domain of the given
function which can avoid the boundary effect occurring in
the domain. Therefore, we can discuss the choice of 𝐿 by
means of Lagrange inner- and extrapolation error polynomial
as follows:

𝑅
𝐿
(𝑥) =

𝑓(𝐿+1) (𝜉)

(𝐿 + 1)!

𝐿

∏
𝑖=0

(𝑥 − 𝑥
𝑖
) ,

for some 𝜉 between 𝑥, 𝑥
0
, . . . , 𝑥

𝐿
.

(44)

Equation (44) indicates that the approximation error is both
related to the smoothness and the gradient of the original
function near the boundary. Setting different 𝐿 can satisfy the
different error tolerance requirement.

4.2. Dynamic Choice Scheme of External Points in Sparse Grids
Approach. This scheme is made up with 2 steps. First, the
Newton interpolation operator is employed instead of the
traditional Lagrange interpolation. Second, both of the error
tolerance and condition number are taken as the termination
procedure of dynamic choice of external grid points. We will
discuss it in detail in this section.

In order to construct the dynamic choice scheme of exter-
nal grid points, the Newton interpolation theory should be
introduced instead of the traditional Lagrange interpolation
theory. It is well known that the Newton interpolation is
equivalent with Lagrange interpolation, but the Lagrange
interpolation algorithm has no inheritance which is the key
feature of Newton interpolation. So, the advantage of Newton
interpolation method is that the basis function does not need
to be recalculated as one point is added except only one more
term is needed to be added, which reduces the number of
compute operation, especially the multiplication.

The expression of Newton interpolation can be written as
:

𝑁
𝑛
(𝑥) = 𝑓 (𝑥

0
) + (𝑥 − 𝑥

0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
)

+ ⋅ ⋅ ⋅ + (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) , . . . , (𝑥 − 𝑥

𝑛−1
)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
) ,

(45)

substituting theNewton interpolation instead of the Lagrange
interpolation into (43), which can be rewritten as:

𝑓
𝑗
(𝑥) =

−1

∑
𝑛=−𝐿

(NS
𝐿
(𝑥
𝑛
)) 𝜔 (2

𝑗
𝑥 − 𝑛)

+
2
𝑗

∑
𝑛=0

𝑓
𝑗
(𝑥
𝑛
) 𝜔 (2

𝑗
𝑥 − 𝑛)

+
2
𝑗
+𝐿

∑
𝑛=2
𝑗
+1

(NE
𝐿
(𝑥
𝑛
)) 𝜔 (2

𝑗
𝑥 − 𝑛) ,

(46)
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where

N𝑆
𝐿
(𝑥
𝑛
) = 𝑓 (𝑥

0
) + (𝑥

𝑛
− 𝑥
0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥
𝑛
− 𝑥
0
) (𝑥
𝑛
− 𝑥
1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
)

+ ⋅ ⋅ ⋅ + (𝑥
𝑛
− 𝑥
0
) (𝑥
𝑛
− 𝑥
1
) , . . . , (𝑥

𝑛
− 𝑥
𝐿−1
)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝐿
) ,

NS
𝑅
(𝑥
𝑛
) = 𝑓 (𝑥

2
𝑗) + (𝑥

𝑛
− 𝑥
2
𝑗) 𝑓 (𝑥

2
𝑗 , 𝑥
2
𝑗
−1
)

+ (𝑥
𝑛
− 𝑥
2
𝑗) (𝑥
𝑛
− 𝑥
2
𝑗
−1
) 𝑓 (𝑥

2
𝑗 , 𝑥
2
𝑗
−1
, 𝑥
2
𝑗
−2
)

+ ⋅ ⋅ ⋅ + (𝑥
𝑛
− 𝑥
2
𝑗) (𝑥
𝑛
− 𝑥
2
𝑗
−1
) , . . . , (𝑥

𝑛
− 𝑥
2
𝑗
−𝐿
)

× 𝑓 (𝑥
2
𝑗 , 𝑥
2
𝑗
−1
, . . . , 𝑥

2
𝑗
−𝐿
) .

(47)

It is well known that the Newton interpolation is equiv-
alent to the Lagrange interpolation. The corresponding error
estimation can be expressed as:

𝑅
𝑛
(𝑥) = (𝑥 − 𝑥

0
) (𝑥 − 𝑥

1
) , . . . , (𝑥 − 𝑥

𝑛
) 𝑓 (𝑥, 𝑥

0
, . . . , 𝑥

𝑛
) .
(48)

And the simplest criterion to terminate the dynamic choice
on 𝐿 is |𝑅

𝑛
(𝑥)| ≤ Ta (Ta is the absolute error tolerance).

Obviously, it is difficult to define Ta which should meet with
the precision requirement of all approximated curves. In fact,
the difference coefficient 𝑓(𝑥, 𝑥

0
, . . . , 𝑥

𝑛
) can be used directly

as the criterion; that is,
𝑓 (𝑥, 𝑥0, . . . , 𝑥𝑛)

 < 𝜀. (49)

As mentioned above, once the curves with lower-order
smoothness are approximated by higher-order polynomial
expression, the errors will become bigger on the contrary.
In fact, even if the 𝐿 is infinite, the computational precision
cannot be satisfied except increasing computational complex-
ity. To avoid this, we design the termination procedure of
dynamic choice about 𝐿 as follows :

If 𝑓(𝑥
0
, 𝑥
1
) < Ta, then 𝐿 = 1

elseif 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
) < Ta

or 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
) < 𝑓(𝑥

0
, 𝑥
1
), then 𝐿 = 2

elseif 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) < Ta

or 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) < 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
), then 𝐿 = 3

...

In the field of numerical analysis, the condition number
of a function with respect to an argument measures how
much the output value of the function can change for a small
change in the input argument. This is used to measure how
sensitive a function is to changes or errors in the input, and
how much error in the output results from an error in the
input. There is no doubt that the choice of 𝐿 can change
the condition number of the system of algebraic equations
discretized by the wavelet interpolation operator or the finite
difference method. Therefore, the choice of 𝐿 should take

the condition number into account. In fact, if the condition
number cond(𝐴) = 10𝑘, then you may lose up to 𝑘 digits
of accuracy on top of what would be lost to the numerical
method due to loss of precision from arithmetic methods.
According to the general rule of thumb, the choice should
follow the rule as follows:

Cond (𝐴
𝐿+1
)

Cond (𝐴
𝐿
)
< 10. (50)

The computational complexity of interpolation calcu-
lation is not proportional to the increasing points. The
former is mainly up to the computation amount of (𝑥 −
𝑥
0
)(𝑥 − 𝑥

1
), . . . , (𝑥 − 𝑥

𝑛
) and the derivative operations.

Obviously, according to (9), the increase in computational
complexity is 𝑂(𝐿3) when the number of extension points 𝐿
increases by 1. But the computational complexity of adaptively
increasing collocation points is related to the different basis
functions. For the basis with compact support property such
as Daubechies wavelet and Shannon wavelet, the value of 𝐿 is
impossible to be infinite. For Haar scaling function which has
no smoothness property, 𝐿 can be taken as 0 at most since it
does not need to be extended. For Faber-Schauder wavelet, L
can be taken as 1 at most. For Daubechies wavelet, 𝐿 can be
taken as different values according to the order of vanishing
moments, but it must be finite. For the wavelets without
compact support property, 𝐿 can take value dynamically,
such as Shannon wavelet. The computational complexity of
increasing points is mainly dependent on the basis function
of itself.

5. Numerical Experiments

5.1. Dynamic Choice of the Sparse Grid Points. In order to
test the adaptability of the sparse grid approach proposed in
this paper, the Faber-Schauder and Shannon scaling function,
the autocorrelation function of Daubechies scaling functions,
are taken as the basis, respectively. Faber-Schauder scaling
function has first-order derivative and Daubechies scaling
function has second derivative, so both of the dynamic choice
schemes will be tested.

Example 1. Burger equation with Dirichlet boundary condi-
tions.

As a test problem for the numerical algorithm described
in the previous section, we will consider Burgers equation as
follows:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
=
1

Re
𝜕2𝑢

𝜕𝑥2
, 𝑥 ∈ [0, 2] (51)

with initial and boundary conditions

𝑢 (𝑥, 0) = sin (𝜋𝑥) ,

𝑢 (0, 𝑡) = 𝑢 (2, 𝑡) = 0,
(52)

where 𝑡 represents the time and Re denotes the Reynolds
number. With the increasing of the value of Re, the solu-
tion develops into a saw-tooth wave at the origin point.
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Table 1: Condition number of the Fokker-Planck equation.

𝑗 Re 𝜏 = 0.0001 𝜏 = 0.00001

𝐿 = 0 𝐿 = 1 𝐿 = 2 𝐿 = 0 𝐿 = 1 𝐿 = 2

4
10 8.9742 6.3786 12.1637 1.56319 1.9723 2.3335
100 91.8021 49.1826 186.9260 9.5434 11.9168 19.2971
1000 1891.2 512.7634 3856.3 403.3223 148.8976 812.9812

7
10 40.3968 32.2256 82.2844 41.2311 4.3834 7.2188
100 813.5472 199.1953 1245.7 81.7719 49.5538 173.4967
1000 21987.0000 2426.8 39004 3688.30 699.4512 6917.4

10
10 298.5375 145.7761 663.4654 20.6612 18.4523 40.1116
100 7821.7000 1217.8 14346 698.5623 212.9856 1274.6
1000 194670 13887 523830 38421 3974.4 79248

0 0.5 1 1.5 2

0

0.5

1

x

u

t = 0.0
t = 0.2

t = 0.4
t = 0.6

−0.5

−1

Figure 1: Analytical solutions of the Burgers equation at different
times (𝑡 = 0, 0.4, 0.6).

The gradient at the origin reaches its maximum value.
Therefore, the performance of a numerical method is often
judged by its ability to resolve the large gradient region that
develops in the solution, which is shown in Figure 1.

Using the difference coefficient to approximate the partial
differential operator 𝜕𝑢/𝜕𝑡, the Burgers equation becomes

−
1

Re
𝑑2𝑢 (𝑥,𝑚.Δ𝑡)

𝑑𝑥2
+ 𝑢 (𝑥, (𝑚 − 1) Δ𝑡) ⋅

𝑑𝑢 (𝑥,𝑚Δ𝑡)

𝑑𝑥

+
1

Δ𝑡
[𝑢 (𝑥,𝑚Δ𝑡) − 𝑢 (𝑥, (𝑚 − 1) Δ𝑡)] = 0,

𝑢 (0,𝑚Δ𝑡) = 𝑢 (2,𝑚Δ𝑡) = 0, 𝑚 = 1, 2, . . . .

(53)

According to the virtual displacement theory, the variational
form of the Burgers equation can be represented as:

∫
2

0

𝜀
𝑑𝑢 (𝑥,𝑚 ⋅ Δ𝑡)

𝑑𝑥
⋅
𝑑V (𝑥)
𝑑𝑥

𝑑𝑥

+ ∫
2

0

[𝑢 (𝑥, (𝑚 − 1) Δ𝑡)
𝑑𝑢 (𝑥,𝑚 ⋅ Δ𝑡)

𝑑𝑡

+
1

Δ𝑡
𝑢 (𝑥,𝑚 ⋅ Δ𝑡)] V (𝑥) 𝑑 (𝑥)

= ∫
2

0

1

Δ𝑡
𝑢 (𝑥, (𝑚 − 1) Δ𝑡) V𝑑𝑥.

(54)

This can be solved by means of (35)-(36).
In the experiments, the Reynolds number Re = 1000, and

the time step 𝜏 = 0.001.
The numerical results showed in Figure 2 are obtained

by the finite difference method. As the amount of the even
discrete points is taken as 512, theGibbs phenomena appeared
at 𝑥 = 1 where exists a steep slope in the solution
(Figure 2(b)). Increasing the discrete points can restrict the
Gibbs phenomena (Figure 2(a)).

Figure 3 illustrates the performance of the sparse solution
method on this example by comparison of the sparse solution
and the true solution produced using a standard fully resolved
method (finite difference method).

With the increasing of the parameter 𝑡, the gradient of
the solution at the point 𝑥 = 1 becomes more and more
large. Any of the Faber-Schauder scaling function and the
auto-correlation function of the Daubechies scaling function
is taken as the basis functions, the sparse method can capture
the steep slope appeared in the solution effectively.This shows
that more andmore grid points concentrate around the point
𝑥 = 1. However, the maximum of the gradient at 𝑥 = 1
appeared as 𝑡 = 0.4, the 1024 coefficients used in the true
solution, only 64 with Faber-Schauder basis and 152 with
Daubecies basis, are retained in the sparse solution (about
6.25% and 14.84%), respectively. Begin with 𝑡 = 0.4, the
gradient value of the solution at 𝑥 = 1 becomes smaller and
smaller with the increasing of 𝑡. The amount of the sparse
grid points also decreases with the increasing of 𝑡 accordingly.
This is illustrated in Figure 3.The adaptability of the proposed
sparse method is helpful to improve the efficiency and the
calculation precision of the algorithm.

Besides, we also noticed that the condition number of
Burger equation from Table 1 varies with the change of 𝑗,
Re, and the time step 𝜏. In fact, the condition number relates
closely with the sparse grid points. As Re and 𝑗 are smaller,
the steep gradient will not appear in the solution and the grid
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(b) 𝑡 = 0.4 512 grid points

Figure 2: Numerical solution obtained by the finite difference method.

Table 2: Dynamic 𝐿 and the iteration times at the same 𝐿 value (𝑗 = 5, 𝑇 = 0.2, 𝜏 = 0.01).

𝐿 3 2 4 2 3 2 4 2 3 2 4 2 3
Iteration times 2 1 2 1 1 1 3 1 1 1 3 1 1

Table 3: Dynamic 𝐿 and the iteration times at the same 𝐿 value (𝑗 =
5, 𝑇 = 0.2, 𝜏 = 0.00001).

𝐿 6 5 4 5 4
Iteration times 15 14 1 1 19968

points are sparse. In this case, the condition number is smaller
and will not destroy the numerical precision apparently. On
the contrary, if the Re, 𝑗, and the time step are larger, the steep
slope appearing in the solution and the error brought from
the larger time stepwill bringmore grid points adaptively into
the algorithm. This will deduce that the condition number
becomes larger. It has been mentioned in Section 4.2 that
the larger condition number can decrease the calculation
precision greatly. Table 1 shows that the condition number
(𝐿 = 2) increases more rapidly than 𝐿 = 1 with the increase
of 𝑗 and Re. This also can be illustrated in Figure 4.

Figure 4 illustrates that the external grid points change
with the development of 𝑡 dynamically. As 𝑡 ≤ 0.04 (Fig-
ure 4(a)), the solution function is smooth and the condition
number is smaller. The approach can take more external grid
points dynamically to improve the precision. As 𝑡 > 0.04
(Figure 4(b)), the steep slope is appearing in the solution and
the condition number is increasing. In this case, the increase
of the external grid points cannot improve the precision
anymore. In fact, this explained the reason why we construct
the dynamic choice scheme of external grid points to some
extent.

5.2. Comparison between the Dynamic Choice Scheme and the
Wavelet Collocation Method

Example 2. Consider the Heat equation

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕2𝑥
+ 𝑒
𝑥+2𝑡

, 𝑥 ∈ [0, 1] , 0 ≤ 𝑡 ≤ 𝑇, (55)

with the initial and boundary conditions

𝑢 (𝑥, 0) = 𝑒
𝑥
,

𝜕𝑢 (0, 𝑡)

𝜕𝑥
= 𝑒
2𝑡
,

𝜕𝑢 (1, 𝑡)

𝜕𝑥
= 𝑒
1+2𝑡

,

(56)

where 𝑡 denotes the time parameter.
Let 𝐼
𝑖
(𝑥) and 𝐷

𝑖
(𝑥) denote the interpolation operator

and the corresponding derivative; according to the classical
collocation approach, the approximating formulation 𝑢

𝐽
(𝑥)

of a function 𝑢(𝑥) can be written as:

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝑐

𝐼
𝑖
(𝑥) 𝑢
𝐽𝑖
. (57)

Substituting (57) into (55) leads to a system of nonlinear
ordinary differential equations as follows:

∑
𝑛∈𝑍
𝑐

𝑢
𝐽
(𝑥
𝑛
, 𝑡) 𝐷


𝑛
(𝑥
𝑘
) + exp (𝑥

𝑘
+ 2𝑡) =

𝜕𝑢
𝑗
(𝑥
𝑘
, 𝑡)

𝜕𝑡
, (58)

where 𝑘 ∈ 𝑍
𝑐
. The corresponding vector expression is

𝜕

𝜕𝑡
𝑉
𝐽
= 𝑀
0
𝑉
𝐽
+ 𝐹 (𝑡) . (59)
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Figure 3: Solution evolution of Burgers equation with Re = 1000.
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Figure 4: The influence of the condition number to the error (Re = 1000, 𝑗 = 7).
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Figure 5: Error of the solutionwith the dynamic grid approach (𝑇 =
0.2, 𝜏 = 0.01, 𝑗 = 5).
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Figure 6: Numerical solution with interval wavelet method (𝐿 = 4,
𝑇 = 0.2, 𝜏 = 0.01, 𝑗 = 5).
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Figure 7: Error of the solution with the dynamic sparse grid
approach (𝑗 = 5, 𝑇 = 0.2, and 𝜏 = 0.00001).

The corresponding Neumann boundary condition can be
expressed as:

𝑀
1
(1, 1) 𝑉

𝐽
(1) +

2
𝐽

∑
𝑖=2

𝑀
1
(1, 𝑖) 𝑉

𝐽
(𝑖) = 𝑒

2𝑡
,

𝑀
1
(2
𝐽
, 2
𝐽
)𝑉 (2

𝐽
) +
2
𝐽

∑
𝑖=2

𝑀
1
(2
𝐽
, 𝑖) 𝑉
𝐽
(𝑖) = 𝑒

1+2𝑡
,

(60)

where

𝑉
𝐽
= (𝑢
𝐽
(𝑥
0
, 𝑡) , 𝑢
𝐽
(𝑥
1
, 𝑡) , . . . , 𝑢

𝐽
(𝑥
2
𝐽 , 𝑡))
𝑇

,

𝐹 (𝑡) = (exp (𝑥
0
+ 2𝑡) , exp (𝑥

1
+ 𝑡) , . . . , exp (𝑥

2
𝐽 + 2𝑡))

𝑇

,
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Figure 8: Numerical solution and error curves with interval wavelet Runge-Kutta method (𝐿 = 4, 𝑇 = 0.2, 𝜏 = 0.00001, 𝑗 = 5).

𝑀
0
(𝑘, 𝑛) = 𝑚

0

𝑘,𝑛
= 𝐷


𝑛
(𝑥
𝑘
) , 𝑘, 𝑛 ∈ 𝑍

𝑐
,

𝑀
1
(𝑘, 𝑛) = 𝑚

1

𝑘,𝑛
= 𝐷


𝑛
(𝑥
𝑘
) , 𝑘, 𝑛 ∈ 𝑍

𝑐
.

(61)

Equations (59)-(60) can be solved by the VIM and PIM.
In the following, we will take heat equation as examples
to illustrate the effectiveness of the algorithm proposed in
this paper. The Shannon scaling function is employed to be
the basis function. The exact analytical solution of (55) is
𝑢(𝑥, 𝑡) = 𝑒𝑥+2𝑡. Obviously, the solution function’s infinite
order derivative exists for all 𝑥 in the definition domain.

(1) Comparison between the Dynamic Choice Scheme and the
Static Interval Wavelet. Let 𝑇 = 0.2 and let 𝜏 = 0.01.
The computational error curve of the dynamic sparse grid
approach is shown in Figure 5.Themaximum of the absolute
error is 0.0471, which occurs near the right boundary. This
shows that the bigger gradient of the solution can cause bigger
error. The dynamic 𝐿 and the iteration times at the same 𝐿
value are shown in Table 2. The value of 𝐿 varies between
2, 3, and 4, and the iteration times at 𝐿 = 4 is much more
than 𝐿 equaling 2 or 3. So, we take 𝐿 = 4 in the static
interval wavelet PIM to solve the heat equation in the same
parameterswith the dynamic scheme.Thenumerical solution
is shown in Figure 6. Obviously, the error is too big that the
algorithm is invalid. There are many reasons that can lead
to this result such as the smoothness of the solution and the
nonlinear term in the PDEs. As the time step 𝜏 = 0.00001,
the error curve was shown in Figure 7. The dynamic 𝐿 and
the iteration times at the same 𝐿 value are shown in Table 3.
With the decreasing of the time step, the influence of the
nonlinear term on PDEs becomes smaller and smaller. The
biggest errors of both dynamic and static interval wavelet
PIM are 1.3388 × 10−5. This shows that the construction of
dynamic grid approach is necessary for nonlinear PDEs with
Neumann boundary conditions.

(2) Comparison between the VIM and PIM and Runge-
Kutta Method for Time-Domain Integration. The numerical
solution and error curves with the VIM and PIM and Runge-
Kutta method are shown in Figure 8. It is obvious that the
calculation precision ofVIMandPIM(Figure 5) is better than
Runge-Kutta method. It should be pointed out that Runge-
Kutta is not sensitive to the time step 𝜏 (Table 4) compared
with VIM and PIM. One of the most important reasons is
that the nonlinear term in PDEs was integrated with explicit
format in VIM and PIM, and implicit format was employed
in Runge-Kutta method.

6. Conclusions

The multilevel interpolation operator constructed in this
paper is independent of the basis. Although Faber-Schauder
scaling function has no second-order derivative, it still can be
the basis employed in the multiscale interpolation operator
to solve the Burgers equation, while only retaining important
nodes. The reduced dynamics created by the sparse projec-
tion property can dynamically capture the true phenomena
exhibited by the solution.This sparse projection amounts to a
shrinkage of the coefficients of the updated solution at every
time step. Compared with the finite difference method, the
retained coefficients are less than 10% in the sparse solution
of the Burgers equation.

The dynamic sparse grid approach, which is constructed
by combining the multiscale interpolation operator and the
variational iteration method, is able to choose both of the
internal and external grid points based on the gradient and
the smoothness of the solution, the condition number of the
PDEs, and the error tolerance dynamically. This property is
good suit to the PDEs with Neumann boundary conditions.
It can eliminate the boundary effect efficiently. With regard
to the accuracy and time complexity of the solution in
comparison with those obtained with other algorithms, the
dynamic sparse grid approach constructed in this paper is
more reasonable. The numerical experiments illustrate that
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Table 4: Error comparison between VIMand PIM and Runge-Kutta Method.

𝜏 0.1 0.01 0.001 0.0001 0.00001
VIM and PIM 0.4176 0.0471 0.0045 4.1368 × 10−4 1.7610 × 10−5

Runge-Kutta 0.1366 0.2193 0.2110 0.2122 0.2124

it is necessary to construct the dynamic sparse grid approach
for the nonlinear PDEs with Neumann boundary conditions
and Dirichlet boundary conditions.
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