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Abstract

In this article, an iterative regularization model (IRM) with adaptive parameter is addressed. IRM has gained a lot of
attentions. But constant scale parameter becomes very sensitive for the fast convergence. It becomes very
important to optimize the scale parameter adaptively. Therefore, we introduce a novel IRM with varying scale
parameter because of the fact that when the scale parameter is smaller, the number of the iteration will enhance
by IRM. A method to estimate a scale parameter is proposed according to the trend of the scale parameter. And
the theoretical justification for this approach can be inferred. Numerical experiments show that the proposed
methods with varying scale parameter can efficiently remove noise, reduce the number of iteration, and well
preserve the details of images.
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Introduction
During the last decade, in spite of the sophistication of
the recently proposed methods, some algorithms have
not yet attained a desirable level of applicability for
image denoising, which is still a challenge at the crossing
of functional analysis and statistics. The relations be-
tween variational regularization method and wavelet
shrinkage have become one of the most active areas of
research [1-5].
In this article, we are motivated by the following clas-

sical denoising problem of image degraded by additive
white Gaussian noise. Given a noisy image f (x, y): Ω→,
where Ω is a bounded open subset of σ2, we want to
obtain a decomposition equation:

f x; yð Þ ¼ g x; yð Þ þ n x; yð Þ ð1Þ

where g(x,y) is the true image and n(x,y) is the noise
with (x, y) ∈ Ω and n (x, y) (0, σ2)
The most classical variational model is

u ¼ arg min
u∈BV Ωð Þ

J uð Þ þ λ∥f � u 2
2

� �
∥ ð2Þ
* Correspondence: Charlie@zstu.edu.cn
1Lab of Intelligence Detection and System, School of Information Science
and Technology, Zhejiang Sci-Tech University, Hangzhou, China
Full list of author information is available at the end of the article

© 2012 Li et al.; licensee Springer. This is an Op
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
or its corresponding constrained version

u ¼ arg min
u∈BV Ωð Þ

J uð Þ:s:t ::∥f � u 2
2∥ ¼ σ2 ð2aÞ

For some scale parameter λ > 0, where BV(Ω) denotes
the space of functions with bounded variation on Ω, �2
is L2 norm. J(u) is the regularization item and ∥f - u∥2

2 is
the fitting item. λ is chosen to balance inconsistency
(first term) and the deviation (second term) from the
noise image f(x,y) and depends on the noise norm σ.
Therefore, a mass of researchers are concentrated on the
regularization item J(u). The total variation model of
Rudin–Osher–Fatemi (ROF) for image denoising is con-
sidered to be the better denoising model. But, there were
two serious issues about the ROF model [6-11]. First, it
was very complicated to compute the solutions of the
optimization problems induced by the variational method.
Second, it was difficult to extract textures from images
by using the ROF model. For the first issue, Goldstein
and Osher recently introduced the split Bregman method
for L1 regularized problems. The Bregman method gave
rise to very efficient algorithms for solutions of the ROF
model. Meyer [12] did some very interesting analysis by
characterizing textures which he defines as “highly oscil-
latory patterns in image processing” as elements of the
dual space of BV(Ω). An iterative regularization model
(IRM) [13], which replaces the regularization term by a
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generalized Bregman distance [14,15], was proposed.
This model is formulated as

ukþ1 ¼ arg min
u∈BV Ωð Þ

J uð Þ þ λ

2
∥f þ vk � u 2

2∥
� �

ð3aÞ

vkþ1 ¼ vk þ f � ukþ1 ð3bÞ

Large λ corresponds to very little noise removal, and
hence u(x,y) is quickly close to f (x,y) and the quality of
image denoising is not effective. Small λ yields an over-
smoothed u(x,y) and the iterated times will be enhanced.
In spite of the sophistication of the recently proposed
methods, most algorithms have not yet attained a desir-
able level of applicability [15-18].
In this article, we proposed a new denoising method

with varying scale parameter where the regularization

item is J uð Þ ¼ ∬
Ω

∇uj jdxdy. We deduce a method to gain

the scale parameter from the iterative regularization.
Finally, some numerical examples are presented and show
that our method improves the quality of the image
denoising and reduces the optimal number of iterations.
The remainder of this article is organized as follows.

In “IRM” section, we mainly review IRM and its some
attributes. The proposed method is introduced in “IRM
with varying scale parameter” section; the experimental
results of our method are given in “Result and discussion”
section. This article is summarized in “Conclusion”
section.

IRM
IRM makes use of some signals in the removed residual
part for these denoising algorithms [19,20]. For p ∈ ∂J (v),
we define the non-negative quantity

Dp u; vð Þ ≡Dp
J u; vð Þ ≡ J uð Þ � J vð Þ� < p; u� v > ð4Þ

Then, the equivalent representation of Equation (3) is

ukþ1 ¼ arg min
u∈BV Ωð Þ

Dpk u;ukð Þ þ λ

2
∥f � u 2

2∥ g ð5aÞ

pkþ1 ¼ pk þ f � ukþ1 ð5bÞ

where u0 = 0 and Dpk
J u; ukð Þ are the Bregman distance be-

tween u and uk. As the optimal number of iteration k
increases, u is close to the noisy image f. The scale param-
eter λ tunes the weight between the regularization and fi-
delity terms. The iterated refinement method yields a
well-defined sequence of minimizers {uk} which satisfies

∥uk − f∥2
2 ≤ ∥uk − 1 − f∥2

2 and if f ∈ BV (Ω), then ∥uk �
f 2
2∥ ≤ J fð Þ

k , i.e., uk converges monotonically to f in L2(Ω) with

a rate of 1ffiffi
k

p . For g ∈ BV (Ω) and γ > 1, we have D(g, uk) ≤

D(g, uk−1) subject to ∥uk − f∥2 ≥ γ∥g − f∥2.
Thus, the distance between a restored image uk

and a possible exact image g is decreasing until the
L2– distance of f and uk is larger than the L2– distance of
f and g. This result can be used to construct a stopping
rule for our iterative procedure [13].
It should be stressed that the Bregman-based method-

ology, in the last few years, has made rapid development
due to the tireless efforts of Osher and collaborators
[18,21-23]. A key breakthrough among is that, with ad-
equate initializations, the Bregman method equals to the
augmented Lagrangian algorithm [7,22]. Furthermore,
many efficient algorithms are proposed to enable fast im-
plementation [21,24,25].
IRM with varying scale parameter
We know that for IRM the bigger the scale parameter λ
is, the smaller the number of iteration is to the stop cri-
terion, but u is quickly close to the noise image f, the
quality of the image denoising is not ideal. When the
scale parameter λ is smaller, the number of the iteration
will enhance. Therefore, it is important to choose an op-
timal value λ.
Varying scale parameter

For that, let J uð Þ ¼ ∬
Ω

∇uj jdxdy , differentiating both

sides with respect to u for Equation (3a) we have

∇ � 1
∇uj j∇u

� �
þ λ f þ vk � uð Þ ¼ 0 ð6Þ

Multiplying Equation (6) by ∇ � 1
∇uj j∇u

� �
and inte-

grating over x and y, we get

∬
Ω

∇ � 1
∇uj j∇u

� �
∇ � 1

∇uj j∇u
� �

dxdy

þ λ∬
Ω

∇ � 1
∇uj j∇u

� �
f þ vk � uð Þdxdy ¼ 0 ð7Þ

Then, we have the following equation

λ ¼
∬

Ω
∇ � 1

∇uj j∇u
� �

∇ � 1
∇uj j∇u

� �
dxdy

∬
Ω
∇ � 1

∇uj j∇u
� �

u� f � vkð Þdxdy
ð8Þ
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In numerical implementation, we use accordinglyλk+1
denotes λ in Equation (8). Applying the proposed scale
parameter to IRM with initial values u0 = 0, v0 = 0, we
obtain different scale parameters λk+1 for different itera-
tions. Equation (3) should be written as

λkþ1 ¼
∬

Ω
∇ � 1

∇ukj j∇uk
� �

∇ � 1
∇ukj j∇uk

� �
dxdy

∬
Ω
∇ � 1

∇ukj j∇uk
� �

uk � f � vkð Þdxdy

ð9aÞ
ukþ1 ¼ arg min

u∈BV Ωð Þ
∇uj j þ λkþ1∥ f þ vk � u 2

2∥
� � ð9bÞ

vkþ1 ¼ vk þ f � ukþ1ð Þ ð9cÞ
This gives us an adaptive value λk+1, which appears to

converge as k → ∞. The theoretical justification for this
approach comes from Appendices 1 and 2.

Initial scale parameter
By the numerical experiment, we discover that the
quality of image denoising is not ideal when initial
values u0 = 0, v0 = 0. For example, if the initial condition
holds, there is a question that Equation (9a) will be
divided by zero.
If we randomly give an initial scale parameter value λ0,

we calculate λk by

λ
∼
k ¼

∬
Ω
∇ � 1

∇ukj j∇uk
� �

∇ � 1
∇ukj j∇uk

� �
dxdy

∬
Ω
∇ � 1

∇ukj j∇uk
� �

uk � f � vkð Þdxdy
ð10Þ

after the iterations are taken some steps. We gain the
sequence vector {λk} and find that λk has some proper-
ties as follows:

(a) the sequence vector {λk} is monotonically decreasing
as the number of iteration k increases (see Figure 1c);
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Figure 1 Trends of the scale parameter λk change as the number of i
(b)as the number of iteration k increases, the sequence
vector {λk} will at first decrease, and then increase
closely to λ0 (see Figure 1b);

(c) the sequence vector {λk} is monotonically increasing
as the number of iteration k increases (see
Figure 1a).

Therefore, we can obtain the initial value of varying
scale parameter by the trend of the sequence vector {λk}
as follows:

(1) If the sequence vector {λk} is monotonically
decreasing at first as the number of iteration k
increases, we consider that the random selected λ0
is contented with the property of (a) or (b). Then,
the initial scale parameter λ1 of our proposed
method is equal to λk

�. Usually, k is equal to 3.
(2) If the sequence vector {λk} is monotonically

increasing as the number of iteration k increases,
the random selected λ0 is contented with the
property of (c). Then, the initial scale parameter of
our proposed method λ1 ¼ λ1

� or λ1 = λ0/p with
the constant p > 1. Usually, p = 2.

In Figure 1, as the example of ‘Barbara’ image, the
trends of the sequence vector {λk} are gained when the
scale parameter λ0 is 8.33, 4.34, and 0.013, respectively.

IRM framework with varying scale parameter
According to the above two sections, our general iterative
regularization procedure can be formulated as follows.

ujþ1 ¼ arg min
u∈BV Ωð Þ

J uð Þ þ λ0
2
∥f þ vj � u 2

2∥
� �

vjþ1 ¼ vj þ f � ujþ1

8<
: ð11Þ

Step 1: We randomly select λ0. Let u0 = 0, v0 = 0 and
j = 0, 1, 2. . .
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(a) k=1, PSNR=19.7dB (b) k=5, PSNR=25.1dB (c) k=15, PSNR=30dB (d) k=21, PSNR=28.8dB

(e) k=1, PSNR=25dB (f) k=2, PSNR=30.2dB (g) k=3, PSNR=28.3dB (h) k=5, PSNR=25.4dB
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Figure 2 Denoising image used constant scale parameter for IRM and proposed method when λ is smaller.
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(1) According to Equations (11) and (10), we calculate
uj+1, vj+1, and λj by the number of iteration j.
Generally j = 2.

(2) We observe the trend of the sequence vector {λk}.
According to the properties of “Initial scale
parameter” section, we get the initial value λ1 of our
proposed method.

Step 2: Let u0 = 0, v0 = 0 and k = 1, 2. . .

(1) According to Equation (9) and the initial value λ1,
we calculate uk+1, vk+1, and λk+1.
(2) We get image uk and stop the iteration when
∥f - u∥k ≤ σ (as the stopping criterion).
Result and discussion
All solutions to the variational problem were obtained
using gradient descent in a standard fashion [21-28].
Now, we use Chambolle Algorithm [8]. The only non-
trivial difficulty comes when |∇u| ≈ 0. We fix this, as

is usual, by perturbing J uð Þ ¼ ∬
Ω

∇uj jdxdy to Jε uð Þ ¼

∬
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇uj j2 þ ε2

q
dxdy , where ε is a small positive number.
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To be extent, the ‘stair-casing’ effect of this method can
be decreased. In our calculations, we too k = 10−12; the
step of iteration unit τ for Chambolle Algorithm is 0.2.
Without loss of generality, the performance of the
denoising algorithms is measured in terms of peak sig-
nal-to-noise-ratio (PSNR) [29], which can be defined as
follows

PSNR ¼ 10 � log10
2552

1
MN

XM

m¼1

XN

n¼1
fmn � umnð Þ2

0
B@

1
CA

ð12Þ

where f is the original image and u is the denoising
image.
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(e) (f) k=2, PSNR=30.2dB
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Figure 3 Denoising image used constant scale parameter for IRM and
Convergence analysis
Figures 2 and 3 show the results with constant and vary-
ing scale parameter of IRM with ‘cameramen’ image
added Gauss noise σ = 20 when λ is smaller and bigger,
respectively. In Figure 2, the first row results show that
more iteration steps are required to stop criterion with
smaller scale parameter λ0 = 0.67; the second row results
show that our proposed methods require less iterations
to get the optimal denoising results. At first, we used
constant scale parameter λ0 = 0.67 to iterate three times
and got a sequence vector {λk} decreased in the first
image of the third row. According to Equation (11), we
got the initial value λ1 = λ2 = 5.74. The last two plots (i)
and (j) show that ∥f − u∥k2 decreases monotonically with
the iteration, first dropping below σ at the optimal iter-
ate k = 12 and 2, respectively. It shows that our proposed
(c) (d)
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method converge faster than IRM with the constant
scale parameter. In Figure 3, as can be seen, with large
scale parameter λ0 = 10 the original IRM convergences
to the noisy image f quickly, and only one iterative
needed to reach the stop criterion. Obviously, the
denoising result is not satisfied. However, promising
result is obtained by our varying scale parameter strategy
where the initial value λ1 = λ2 = 5.74 according to
Equation (10).
(a) original (b) noisy f (c) k=1, PSNR

(f) k=12, PSNR=26.1 (g) k=1, PSNR=22.5 (h) k=2, PSNR
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Figure 4 Denoising results of ‘Barbara’ image.
Preserved textures analysis
Figure 4 shows the denoising results of ‘Barbara’ image
with Gauss white noise σ = 25.5. The constant scale par-
ameter λ for IRM is 1. Compared with the constant scale
parameter for IRM in Figure 4c–f, our proposed method
can preserved more textures in Figure 4g–j. The last two
plots (k) and (l) show that ∥f − u∥k2 decreases monoton-
ically with the iterations, first dropping below σ at the
optimal iterate k = 12 and 2, respectively. It shows that
=20.1 (d) (e) k=8, PSNR=24.5

=25.2 (i) k=3, PSNR=26.2 (j) k=5, PSNR=24.5
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Figure 5 Denoising results of MRI coronal brain image.

Table 1 Computer time of formula (9)

Computing (9a) Computing the
sub-problem (9b)

Computational time 0.026 s 1.281 s
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our proposed method converges faster than IRM with
the constant scale parameter.

Denoising analysis for MRI coronal brain
The denoising results of MRI coronal brain image with
Gauss white noise σ = 53.83 are shown in Figure 5. The
constant scale parameter λ for IRM is 1. Compared with
the constant scale parameter for IRM in Figure 5c–f,
our proposed method can preserve more textures in
Figure 5g–j. The last two plots (k) and (l) show that
∥f − u∥k2 decreases monotonically with the iterations,
first dropping below σ at the optimal iterate k = 13 and 3,
respectively. It shows that our proposed method con-
verges faster than IRM with the constant scale parameter
and has more texture details in the denoised image.

Computational cost analysis
We have made a comparison in terms of computational
time (see Tables 1 and 2) by MATLAB 7.1, which is used



Table 2 Computer time of our method and the
conventional IRM

Our method The conventional IRM

Computational time 3.136 s 13.708 s
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on a PC equipped with AMD 2.31 GHz CPU and 3 GB
RAM. In fact, it should be noted that the term “Fast” is
relatively for computing (9a) when compared with com-
puting the sub-problem (9b), i.e., in this article even we
use the efficient Chambolle Algorithm to solve the sub-
problem (9b) and set the inner iterations is 40. To take
the results of “Preserved textures analysis” section for
denoising ‘Barbara’ image (256 × 256) as an example, the
average time of computing (9b) once is 1.281 s, while
that of (9a) once is only 0.026 s. Moreover, combined
with fact that the outer iterations of the conventional
IRM is 13 while our adaptive IRM is 3, the whole com-
putational time of the conventional IRM is 13.708 s
while that of our method is 3.136 s. Therefore, we know
that our adaptive scheme is really faster than the con-
ventional one.
In addition, we have made a comparison between

wavelet + wiener, curvelets include hard threshold, soft
threshold, and block threshold regulation algorithm and
our method. Denoising results of Lena image are shown
that our algorithm improves PSNR than traditional
method in Table 3.

Conclusion
A novel IRM with adaptive scale parameter is proposed
in order to decrease the sensitivity of constant scale par-
ameter, optimize the scale parameter adaptively in the
IRM, and attain a desirable level of applicability for image
denoising. We replace the classic regularization item and
deduce the equation of the adaptive scale parameter, be-
cause we know that the scale parameter is smaller, the
number of the iteration will enhance by IRM. Then,
the rule of varying scale parameter by the trend of the
sequence vector is attained. A new iterative scale param-
eter λ is obtained according to the trend of the sequence
vector. In general, we can get the initial scale parameter
λ just using three steps of iteration. We have seen with
practical examples that our proposed method can reduce
Table 3 A variety of image denoising algorithms are
compared for Lena image

Gauss white noise σ 10 15 20 25 30

Wavelet + wiener 30.65 28.06 26.94 25.48 24.39

Hard threshold of curvelet 31.67 29.58 28.47 26.43 24.97

Soft threshold of curvelet 31.99 30.76 29.78 28.79 26.34

Block threshold of curvelet 32.76 32.33 31.09 29.57 28.08

Our method 33.97 33.68 32.59 30.14 29.64
the number of iterations. Thus, a fast and robust method
is got.

Appendix 1
A constrained problem is defined as

minF Xð Þ
s:t:NTX � b ≥ 0

�
ð13Þ

We know that the constraint equation is NTX − b = 0.
The basic assumption is that X lies in the subspace tan-
gent to the active constraints, i.e., Xi+1 = Xi + αS, where
S is the direction with the most negative directional de-
rivative and α is the iterative step length, both Xi and
Xi+1 satisfy the constraint equations. Therefore, we
obtain

NTS ¼ 0 ð14Þ
If we want the steepest descent direction satisfying

Equation (14), we can pose the problem as

minST∇F
s:t:NTS ¼ 0 and STS ¼ 1

�
ð15Þ

The Euler–Lagrange equation (15) has the formulation

L S; λ; μð Þ ¼ ST∇F � STNλ� μ STS � 1
	 
 ð16Þ

The derivative of L with respect to S is

∂L
∂S

¼ ∇F � Nλ� 2μS ¼ 0 ð17Þ

Recall that NTS = 0 in Equation (14) and multiplying
Equation (17) by NT, we get

NT∇F � NTNλ ¼ 0 ð18Þ

Therefore, we get the value

λ ¼ NT∇F
NTN

ð19Þ

So, the proposition holds.

Appendix 2
In this article, we want to solve the question

ukþ1 ¼ arg min
uεBV Ωð Þ

∬
Ω

∇uj jdxdyþ λ

2
∥f þ vk � u 2

2∥
� �

ð20Þ
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It is equivalent to

ukþ1 ¼ arg min
uεBV Ωð Þ

λ1 ∬
Ω

∇uj jdxdyþ 1
2
∥f þ vk � u 2

2∥
� �

ð21Þ

where λ1 ¼ 1
λ
. Then, Equation (21) is rewritten to

min
uεBV Ωð Þ

1
2
∥f þ vk � u 2

2∥

s:t:∬
Ω

∇uj jdxdy ≥ 0

8>>><
>>>:

ð22Þ

Since ∬
Ω

∇uj jdxdy ¼ ∥∇u1∥≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥∇u 2

1∥þ ε
p

¼<

∇�∇uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥∇u 2

1∥ þε
p ; u > , we let ∇�∇uffiffiffiffiffiffiffiffiffiffi

∇u21þε
p be approximated by

∇�∇ukffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥∇uk 2

1∥ þε
p , and let u ¼ X; b ¼ 0;N ¼ ∇�∇ukffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∥∇uk 2
1∥ þε

p and

uð Þ ¼ 1
2∥f þ vk � u 2

2∥ , we have ∬
Ω

∇uj jdxdy ¼¼ NTu ≥ 0,

then according to Appendix 1, we obtain

λ1 ¼
∬Ω∇ � 1

∇ukj j∇u
k

� �
uk � f � vkð Þdxdy

∬Ω∇ � 1
∇ukj j∇u

k

� �
∇ � 1

∇ukj j∇uk
� �

dxdy

ð23Þ

Therefore, we obtain the parameter

λ ¼ 1
λ1

¼
∬Ω∇ � 1

∇ukj j∇uk
� �

∇ � 1
∇ukj j∇uk

� �
dxdy

∬Ω∇ � 1
∇ukj j∇uk

� �
uk � f � vkð Þdxdy

ð24Þ
So, the proposition holds.
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