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This paper presents a novel wavelet kernel neural network (WKNN) with wavelet kernel function. It is applicable in online learning
with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID) controller, which could handle time
delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function
is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most
innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the
integrated pressurized water reactor (IPWR) system is established by RELAP5, and a novel control strategy combiningWKNN and
fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment
results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.

1. Introduction

With the tightening supplies of energy and deterioration of
environment pollution in the globe, the reliability, cleanli-
ness, and security help the nuclear technology gain increasing
traction. The majority of marine nuclear power plants adopt
integrated design. Since vessels request strong mobility and
operational condition changes dramatically, the nuclear reac-
tor and system device need to accommodate themselves to
the radical load changing. The nuclear reactor power control
dominates the whole system of nuclear power plant and
decides the security and reliability of the global device.Hence,
the operation control strategy and controller design should
accord with its particularities, which is convenient for power
controlling and adjusting and ensures the steady operation.
The reactor is a time delay system that is similar to other
industrial systems.The time delay effect influences the system
performance, which possibly brings oscillation and even
destroys the instability [1, 2]. Thus, it is practically significant
to research the time delay control of nuclear reactor.

In numerous problems encountered in modern control,
the time delay issue is of central importance and also a
difficult point to elaborate. There is an increasing interest in
time delay problem of industrial system from scientists and
engineers. Classical control theory utilizes plenty of Smith
control, Dahlin control, and so on [3–5]. During recent
years, some novel control algorithms also have obtained
achievements of time delay systems [6, 7]; for instance,
Yang and Zhang [8] studied a robust 𝐻

∞
network control

method for T-S fuzzy systems with uncertainty and time
delay. Besides, Shi and Yu proposed the 𝐻

2
/𝐻
∞

control
for the two-mode-dependent robust control synthesis of
networked control systems with random delay [9]. Moreover,
a class of uncertain singular time delay systems is controlled
by sliding mode [10, 11], and an optimal sliding surface is
designed for sliding model control in time delay uncertain
systems [12].The industrial system, especially the large-scaled
complex industrial systems, possesses the feature of process
delay. The control of these systems depends on both current
state and past state, which makes the control issue difficult.
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As a mature controller with strong availability, PID and
the controllers have been applied in industrial processes for
sophisticated dynamic systems which have large scale. The
primary reason is its relatively simple structure that could
be easily comprehended and implemented [13–15]. In recent
years, considerable interests in time delay have been aroused
in fractional-order PID controller andmany researchers have
presented beneficial methods to design stabilizing fractional-
order PID (FOPID) controllers for varying time delay system
[16–19]. This paper adopts neural network (NN) to tune
the FOPID online to control the nuclear reactor power,
which keeps the coolant average temperature constant on
the condition of load changing. NN is an effective method
for PID parameters tuning, and the wavelet neural network
(WNN) improves the efficiency of NN by transforming
the nonlinear excitation function to the wavelet function.
However, WNN still follows the gradient descent method
to adjust weights, which inevitably causes the problems
of deficient generalization performance, ill-posedness, and
overfitting. Motivated by the drawback above, it should take
advantage of the algorithm core, LMS, to improve WNN.
Both LMS and KLMS are derived from mean squared error
cost function [20–22]. LMS algorithm is famous for its easy
comprehending and implementing but has no ability to
be utilized in nonlinear domain. With the wide spread of
kernel theory, the novel LMS algorithm with kernel trick has
drawn considerable attention to learning machines including
neural network [23–26]. Recently, kernel functions (such
as Gaussian kernel) are applied in support vector machine
(SVM) mostly, which projects the linear nonseparable data
to another space for being separable in the new space. RBF
network is a sort of NNwhich useGaussian kernel frequently.
But this kernel could not approach the target appropriately
when it encounters more complex signal in the calculation
process. There are some literatures indicating that Gaussian
kernel in RBF network and SVM could not generate a set of
complete bases in the subspace ideally by translation [27].
Some potential wavelet functions could be transformed as
kernel functions, which are competitive to produce a set of
complete bases in 𝐿

2
(𝑅) space (square and integrable space)

by stretching and translating.Meanwhile, RBF network needs
to identify the model of object and obtain the Jacobian
information when it tunes the network weights, and it is
hard to gain the Jacobian information of complex industrial
system. But the conventional WNN could tune the PID
controller without such information and is more appropriate
to be the parent body for improvement. Thus, this paper
proposes a novel neural network based on wavelet kernel
function and combines with fuzzy logic rules to achieve the
online tuning of FOPID. Experiment results validate that the
control strategy and controller design improve the accuracy
and speed, which could control the nuclear reactor power
operation and enhances the overall efficiency.

The next content is composed of six sections. Section 2
provides a short introduction to LMS algorithm and kernel
LMS algorithm. Section 3 presents the related theory of
wavelet kernel function and proposes the method of wavelet
kernel neural network including the discussion of adaptive
parameters. The model of nuclear reactor is structured by

RELAP 5 program in Section 4. Then the control strategy
and the fractional-order PID controller are designed with
fuzzy logic and wavelet kernel neural network in Section 5.
In Section 6, experiments illustrate the effectiveness of the
wavelet kernel neural network and the fractional-order PID
controller. As some controllers are faced with the problem
of losing efficacy in practice, Section 6 also emulates and
analyzes the control process in the basis of reactor model.
Finally, conclusion of this paper has been described in
Section 7.

2. The Description of Kernel LMS Algorithm

In this section, the algorithm of kernel LMS is introduced as a
show review for wavelet kernel neural network. Kernel LMS
is an approach to perform the LMS algorithm in the kernel
feature space. In the LMS algorithm, the hypothesis space
𝐻
1
is composed by all the linear operators on 𝑈 (mapping

𝑤 : 𝑈 → 𝑅) [28], which is embedded in a Hilbert space,
and the linear operator represents standard inner product.
The LMS algorithm minimizes the total instantaneous error
of the system output:

𝐸 (𝑛) =
1

2
∑ e2 (𝑛) , (1)

where e(𝑛) = norm(𝑛) − x(𝑛)w(𝑛), norm is the desired value,
w(𝑛) is the weight vector, x(𝑛) is the input vector, and 𝑛 is the
instant. Using the straightforward stochastic gradient descent
update rule, the weight vector w is approximated based on
input vector x:

w (𝑛 + 1) = w (𝑛) + 𝜂e (𝑛) x (𝑛) , (2)

where 𝜂 is the step-size. By training step by step, the weightw
is updated as a linear combination of the previous and present
input vector.

This LMS algorithm learns linear patterns satisfactorily
while it could not approach the same sound effect in non-
linear pattern. Motivated by the drawback, Pokharel with
other scholars extended the LMS algorithm to RKHS by the
kernel trick [28, 29]. Kernel methods map the input into a
high dimensional space (HDS) [30]. And any kernel function
based on Mercer’s theorem has the follow mapping [31]:

𝑘 (𝑥, 𝑥
󸀠

) = ⟨𝜙 (𝑥) , 𝜙 (𝑥
󸀠

)⟩ = 𝜙
𝑇

(𝑥) 𝜙 (𝑥
󸀠

) . (3)

When the input in (2) consists of {𝜙(x(1)), 𝜙(x(2)), . . . ,
𝜙(x(𝑛))} but not {x(1), x(2), . . . , x(𝑛)}, 𝜙(x(𝑛)) is the infinite
feature vector transformed from input vector x(𝑛). The LMS
algorithm is no longer applicable, and the total instantaneous
error of the system output is as follows:

𝐸 =
1

2
∑(norm − 𝜙 (x (𝑛))w (𝑛))2, (4)

where 𝜙(x(𝑛)) is matrixes of input vector, norm is desired
value vector, and w(𝑛) is weight vector in RKHS.

Then build the hypothesis that w(0) = 0 for convenience,
and (2) could convert to

w (𝑛) = 𝜂
𝑛−1

∑

𝑖=0

e (𝑖) 𝜙 (x (𝑖)) , (5)
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and the final output in 𝑛 step updating of the learning
algorithm is

z (𝑛) = 𝜂
𝑛−1

∑

𝑖=0

e (𝑖) ⟨𝜙 (x (𝑖)) , 𝜙 (x (𝑛))⟩ = 𝜂e𝑇 (𝑛 − 1) k, (6)

and k = [𝑘(x(1), x(𝑛)), 𝑘(x(2), x(𝑛)), . . . , 𝑘(x(𝑛 − 1), x(𝑛))].
From (4)–(6), the KLMS algorithm remedies the defect
of the LMS algorithm of its relatively small dimensional
input space and improves the well-posedness study in the
infinite dimensional space with finite training data [28]. As
the application of adaptive filter theory, the neural network
could take advantage of the KLMS algorithm, which endows
the learning of neural network with more efficiency and
reliability.

3. Wavelet Kernel Neural Network

Following the principle above, this paper acquires the wavelet
kernel function by Mercer theorem and proposes a more
competent method to update parameters on basis of con-
ventional WNN. With the kernel LMS above, the wavelet
kernel neural network is proposed in this section on the basis
of wavelet kernel function and conventional wavelet neural
network. First, the wavelet kernel function is constructed,
which is admissible neural network kernel. Second, the
wavelet kernel neural network is proposed including neuron
explanation and weight updating. Then the modulations
of adaptive variable step-size and wavelet kernel width are
discussed in Sections 3.3 and 3.4.

3.1. The Wavelet Kernel Function. The wavelet analysis is
executed to express or approximate functions or signals
generated family functions given by dilations and translations
from the mother wavelet 𝜓

𝑎,𝑏
(𝑥) ∈ 𝐿

2
(𝑅). Hypothesize

that 𝐿1(𝑅) is linear integrable space and 𝐿
2

(𝑅) is square
integrable space. When the wavelet function 𝜓(𝑥) ∈ 𝐿1(𝑅) ∩
𝐿
2

(𝑅) (𝜓̂(0) = 0), the wavelet function group could be
defined as

𝜓
𝑎,𝑏
(𝑥) = 𝑎

−1/2

𝜓(
𝑥 − 𝑏

𝑎
) , (7)

where 𝑥, 𝑎, 𝑏 ∈ 𝑅, 𝑎 is a dilation factor, and 𝑏 is a translation
factor. And 𝜓(𝑥) satisfy the condition [32, 33]

𝐶
𝜓
= ∫
𝑅

󵄨󵄨󵄨󵄨𝜓̂ (𝑤)
󵄨󵄨󵄨󵄨

2

|𝑤|
𝑑𝑤 < ∞, (8)

where 𝜓̂(𝑤) is the Fourier transform of 𝜓(𝑥). For a common
multidimensional wavelet function, if the wavelet function of
one dimension is 𝜓(𝑥) which satisfies the condition (8), the
product of one-dimensional (1D) wavelet functions could be
described by tensor theory [29, 31]:

𝜓
𝑑
(𝑥) =

𝑑

∏

𝑖=1

𝜓 (𝑥
𝑖
) , (9)

where {x = (𝑥
1
, . . . , 𝑥

𝑑
) ∈ 𝑅
𝑑

}.

The conception above is the foundation of wavelet anal-
ysis and theory. Note that the wavelet kernel function for
neural network is a special kernel function and comes from
wavelet theory; it would be the horizontal function 𝑘(𝑥, 𝑥󸀠) =
𝑘(𝑥 − 𝑥

󸀠

) and satisfied the condition of Mercer theorem [34],
which could be summarized as follows.

Lemma 1. A continuous symmetric kernel is 𝑘(𝑥, 𝑥󸀠), and 𝑥
is bounded, likewise for 𝑥󸀠. Then 𝑘(𝑥, 𝑥󸀠) is the valid kernel
function for wavelet neural network if and only if it holds for
any nonzero function ℎ(𝑥)which makes ∫

𝑅
𝑑
ℎ
2

(𝜉)𝑑𝜉 < ∞, and
the following condition will be satisfied:

∬
𝑅
𝑑
⊗𝑅
𝑑

𝑘 (𝑥, 𝑥
󸀠

) ℎ (𝑥) ℎ (𝑥
󸀠

) 𝑑𝑥𝑑𝑥
󸀠

≥ 0. (10)

With regard to the horizontal floating function, there
is an analogous theory for support vector machine (SVM)
[35]. Allowing for the affiliation between SVM and NN [34],
an approved horizontal floating kernel function of SVM is
effective in NN. When 𝜓(𝑥) is a mother wavelet, 𝑎 is a
dilation factor and 𝑏 is a translation factor, 𝑥, 𝑎 ∈ 𝑅;
the horizontal floating translation-invariant wavelet kernels
could be expressed as [36]

𝑘 (𝑥, 𝑥
󸀠

) =

𝑑

∏

𝑖=1

𝜓(
𝑥
𝑖
− 𝑥
󸀠

𝑖

𝑎
𝑖

) . (11)

Since the number of wavelet kernel functions which
satisfy the horizontal floating function condition [37] is not
much up to now, the neural network in this paper adopts an
existent wavelet kernel function, Morlet wavelet function:

𝜓 (𝑥) = cos (𝑤
0
𝑥) exp(−𝑥

2

2
) . (12)

Then the Morlet wavelet kernel function is defined as

𝑘 (𝑥, 𝑥
󸀠

)

=

𝑑

∏

𝑖=1

cos(𝑤
0
(
𝑥
𝑖
− 𝑥
󸀠

𝑖

𝑎
𝑖

)) exp(−
(𝑥
𝑖
− 𝑥
󸀠

𝑖
)
2

2𝑎
2

𝑖

) .

(13)

Figure 1 displays the Morlet wavelet kernel function in
the four-dimensional space. As a continuously differentiable
function, the derived function of Morlet kernel is illustrated
in Figure 2.

3.2. The Wavelet Kernel-LMS Neural Network. The neural
network on basis of wavelet kernel function focuses on the
matter relating to the performance of a multilayer perception
trainedwith the backpropagation algorithm by adding KLMS
theory to wavelet neural network. This paper utilizes the
multilayer perception (MLP) fully connected structure and
chooses three layers for understanding.The network consists
of input layer 𝐼, hidden layer 𝐽, and output layer 𝐾. The
activation functions in hidden layer and output layer are
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Figure 2: Morlet kernel derived function.

wavelet kernel function 𝜑(𝑥) and sigmoid function 𝑓(𝑥),
respectively. Weights between input layer and hidden layer
are regarded as w

𝐽𝐼
, and the one between hidden layer and

output layer is w
𝐾𝐽
.

In the WKNN, hypothesize that the input set is {x
𝐼
(1),

x
𝐼
(2), . . . , x

𝐼
(𝑛)}, practical output set and norm output set

are {z
𝐾
(1), z
𝐾
(2), . . . , z

𝐾
(𝑛)} and {norm

𝐾
(1),norm

𝐾
(2), . . . ,

norm
𝐾
(𝑛)}, respectively, and then the cost function is defined

as 𝜀(𝑛):

𝜀 (𝑛) =
1

2
e2 (𝑛) , (14)

where e(𝑛) = norm(𝑛) − z
𝐾
(𝑛).

As the hidden layer 𝐽, the signal of single neuron 𝑗 is
provided by input layer, and the induced local field k

𝐽
and

output of hidden layer x
𝐽
could be displayed as

k
𝐽
(𝑛) =

𝐼

∑

𝑖=1

𝑤
𝑗𝑖
(𝑛) 𝑥
𝑖
(𝑛) = x𝑇

𝐼
(𝑛)w
𝐽𝐼
(𝑛) ,

x
𝐽
(𝑛) = 𝜑 (k

𝐽
(𝑛)) ,

(15)

where k
𝐽
(𝑛) is weights, 𝑤

𝑖𝑗
(𝑛) is the input of input layer

neurons,w
𝐽𝐼
(𝑛) and x

𝐼
(𝑛) are thematrix or vector constituted

by𝑤
𝑖𝑗
(𝑛) and 𝑥

𝑖
(𝑛), 𝐼 represents the sum of the neurons in the

input layer, and 𝜑(⋅) is the wavelet kernel function in 𝐽 layer.
As the output layer 𝐾, the signal of single neuron 𝑘 is

provided by hidden layer, and the induced local field k
𝐾
and

output of output layer z
𝐾
could be displayed as

k
𝐾
(𝑛) =

𝐽

∑

𝑗=1

𝑤
𝑘𝑗
(𝑛) 𝑥
𝑗
(𝑛) = x𝑇

𝐽
(𝑛)w
𝐾𝐽
(𝑛) , (16)

z
𝐾
= 𝑓 (k

𝐾
(𝑛)) = 𝑓 (𝜑

𝑇

(k
𝐽
(𝑛))w

𝐾𝐽
(𝑛)) , (17)

where𝑤
𝑘𝑗
(𝑛) is weights,𝑥

𝑗
(𝑛) is the input of hidden layer neu-

rons,w
𝐾𝐽
(𝑛) and x

𝐽
(𝑛) are the matrix or vector constituted by

𝑤
𝑘𝑗
(𝑛) and 𝑥

𝑗
(𝑛), 𝐼 represents the sum of the neurons in the

input layer, and 𝑓(⋅) is the sigmoid function in𝐾 layer.
Similar to theWNN algorithm, this paper achieves a gra-

dient search to solve the optimum weight. For convenience,
it chooses w

𝐾𝐽
(0) to be zero. Then, based on (17), the weight

matrixw
𝐾𝐽
(𝑛) between output layer and hidden layer is given

as follows:

w
𝐾𝐽
(𝑛) = 𝜂

𝐾
(𝑛) 𝜑 (k

𝐽
(𝑛))

𝑛−1

∑

𝑝=0

e (𝑝) 𝑓󸀠 (𝜑𝑇 (k
𝐽
(𝑝))w

𝐾𝐽
(𝑝)) ,

(18)

where 𝜂
𝐾
(𝑛) is adaptive variable step-size, and the method to

find appropriate step-size will be illustrated in the following
subsection. By the kernel trick and (17), z

𝐾
(𝑛) could be

determined as

z
𝐾
(𝑛) = 𝑓(𝜂

𝐾
(𝑛)

𝑛−1

∑

𝑝=0

𝛼
𝑝
𝑘 (k
𝐽
(𝑝) , k

𝐽
(𝑛)))

= 𝑓 (𝜂
𝐾
(𝑛)𝛼
𝑇

(𝑛 − 1) k
𝐾
) ,

(19)

where 𝛼(𝑛) = e(𝑛)𝑓󸀠(𝜂
𝐾
(𝑛 − 1)𝛼

𝑇

(𝑛 − 1)k
𝐾
).

Then the weight matrix w
𝐽𝐼
(𝑛) between hidden layer and

input layer is obtained on the basis of (18) as follows:

w
𝐽𝐼
(𝑛) = 𝜂

𝐽
(𝑛) x
𝐼
(𝑛)

𝑛−1

∑

𝑝=0

𝜑
󸀠

(x𝑇
𝐼
(𝑝)w
𝐽𝐼
(𝑝))

×∑

𝐾

e (𝑝) 𝑓󸀠 (𝜑𝑇 (k
𝐽
(𝑝))w

𝐾𝐽
(𝑝))w

𝐾𝐽
(𝑝) ,

(20)
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and the output of hidden neuron could be determined as

x
𝐽
= 𝜑 (⟨w

𝐽𝐼
(𝑛) , x
𝐼
(𝑛)⟩)

= 𝜑(𝜂
𝐽
(𝑛)

𝑛−1

∑

𝑝=0

𝛽 (𝑝) 𝑘
𝐽
(x
𝐼
(𝑝) , x

𝐼
(𝑛)))

= 𝜑 (𝜂
𝐽
(𝑛)𝛽
𝑇

(𝑛 − 1) k
𝐽
) ,

(21)

where 𝛽(𝑛) = 𝜑󸀠(𝜂
𝑗
(𝑛)𝛽
𝑇

(𝑛 − 1) k
𝐽
)𝛼(𝑛 − 1)w

𝐾𝐽
(𝑛 − 1).

3.3. The Updating of Adaptive Variable Step. According to
the algorithm presented above (see Section 2), it stresses that
the adaptive variable step could be regarded as a significant
coefficient with the ability to influence the adaptivity and
effectivity of the algorithm. The stability and convergence
of the algorithm are influenced by step-size parameter and
the choice of this parameter reflects a compromise between
the dual requirements of rapid convergence and small mis-
adjustment. A large prediction error would cause the step-
size to increase to provide faster tracking while a small
prediction error will result in a decrease in the step-size
to yield smaller misadjustment [37]. Therefore, this paper
improves the NLMS algorithm derived from LMS algorithm,
which is propitious to multidimensional nonlinear structure
and avoids the limitation of linear structure.

NLMS focuses on the main problem of LMS algorithm’s
constant step-size, which designs an adaptive step-size to
avoid instability and picks the convergence speedup:

𝑤 (𝑛 + 1) = 𝑤 (𝑛) +
1

⟨𝑢 (𝑛) , 𝑢 (𝑛)⟩
𝑒 (𝑛) × 𝑢 (𝑛) , (22)

where 1/⟨𝑢(𝑛), 𝑢(𝑛)⟩ is regarded as the variable step-size
compared with the LMS algorithm. But the NLMS has little
ability to perform in the nonlinear space. By the kernel trick,
the kernel function could not only improve thewavelet neural
network, but also update the step-size of neural network
self-adaptively. As what (17) reveals, z

𝐾
is a consequence

of nonlinear function 𝑓(⋅). Since 𝑓(⋅) is continuously dif-
ferentiable, this function could be matched by innumerable
linear function following the principle of the definition of
differential calculus.

Theorem 2. The weights updating satisfies the NLMS condi-
tion in the linear integrable space 𝐿1(𝑅) as follows:

𝑤 (𝑛 + 1) = 𝑤 (𝑛) + 𝜂 (𝑛) × 𝑒 (𝑛) × 𝑢 (𝑛) , (23)

where 𝜂(𝑛) = 1/⟨𝑢(𝑛), 𝑢(𝑛)⟩ is the adaptive variable step-size.
Then weights are expanded to 𝐾 dimension matrix w

𝐾
(𝑛) and

adjusted as

w
𝐾
(𝑛 + 1) = w

𝐾
(𝑛) + 𝜂

𝐾
(𝑛) × 𝑓

󸀠

(w
𝐾
(𝑛) × u

𝐾
(𝑛))

× e
𝐾
(𝑛) × u

𝐾
(𝑛) ,

(24)

where the nonlinear function𝑓(⋅) is continuously differentiable
everywhere, the 𝜂

𝐾
(𝑛) will have𝐾 elements, and each step-size

𝜂
𝑘
(𝑛) (𝑘 = 1, 2 . . . 𝐾) is given as

𝜂
𝑘
(𝑛) =

1

𝑓󸀠 (w
𝐾
(𝑛) × u

𝐾
(𝑛)) ⟨u

𝐾
(𝑛) , u

𝐾
(𝑛)⟩

. (25)

Proof. Hypothesize that 𝜀 is small enough and linear function
𝐹(𝑛) = 𝜅(𝑛)u

𝐾
(𝑛)+𝛾(𝑛) exists, which has the relationship that

𝐹(𝑛) − 𝑓(𝑛) < 𝜀 in the closed interval [𝑎, 𝑏]; therefore, regard
that 𝐹(𝑛) ≈ 𝑓(𝑛) and 𝑓󸀠(𝑛) ≈ 𝜅 are satisfied.

Consider the equations

ℎ (𝜂
𝐾
(𝑛)) = norm − 𝑓 (w

𝐾
(𝑛) × u

𝐾
(𝑛))

≈ norm − 𝜅 (𝑛) (w
𝐾
(𝑛) × u

𝐾
(𝑛)) − 𝑏 (𝑛)

= E𝑇
𝐾
(𝑛) [𝐼 − 𝜂

𝐾
(𝑛) 𝜅
2

(𝑛) u𝑇
𝐾
(𝑛) u
𝐾
(𝑛)]E

𝐾
,

𝑔 (𝜂
𝐾
(𝑛)) =

1

2
ℎ
2

(𝜂
𝐾
(𝑛)) ,

(26)

where 𝜂
𝐾
(𝑛) = [

𝜂1(𝑛) ⋅⋅⋅ 0

... d
...

0 ⋅⋅⋅ 𝜂𝐾(𝑛)

], and minimize the functions

𝑔(𝜂
𝐾
(𝑛)) and 𝑔󸀠(𝜂

𝐾
(𝑛)) = 0, and then 𝜂

𝐾
(𝑛) (𝑘 = 1, 2, . . . , 𝐾)

could be inferred as follows:

𝜂
𝐾
(𝑛) =

[
[

[

𝜂
1
(𝑛) ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝜂
𝐾
(𝑛)

]
]

]

, (27)

𝜂
𝑘
(𝑛) =

1

𝜅
2

𝑘
(𝑛) ⟨u

𝐾
(𝑛) , u

𝐾
(𝑛)⟩

. (28)

Equations (27) and (28) reveal that the 𝜂
𝐾
(𝑛) is indepen-

dent of the linear function intercept 𝛾(𝑛) and only relates
to the input and slope 𝜅

𝑘
(𝑛). Motivated by the drawback of

slight error 𝜀 from 𝐹(𝑛) − 𝑓(𝑛), the 𝜅2
𝑘
(𝑛) in (28) is replaced

by 𝑓󸀠(w
𝐾
(𝑛) × u

𝐾
(𝑛)), which improves the accuracy and

completes the proof.

On the basis of the discussion above, (22) could be
represented as a special situation by Theorem 2 when the
slope of function 𝑓(⋅) is 1. Theorem 2 expands the NLMS to
the multidimensional nonlinear space from the linear space
and broadens the application of NLMS. Compared with the
variable step-size in (22), (27) and (28) could be defined as the
adaptive variable step-size of NLMS in the extended space.

When ⟨u
𝐾
(𝑛), u
𝐾
(𝑛)⟩ is too small, the problem caused by

numerical calculation has to be considered. To overcome this
difficulty, (28) is altered to

𝜂
𝑘
(𝑛) =

1

𝜅
2

𝑘
(𝑛) ⟨u

𝐾
(𝑛) , u

𝐾
(𝑛)⟩ + 𝜎

2

V
, (29)

where 𝜎2V > 0 which is set as a pretty small value. The weights
updating in (20) is more complicated than that between
output layer and hidden layer. Because the updating in (20)
is based on the output layer, meanwhile the existence of
∑
𝐾
e(𝑝)𝑓󸀠(𝜑𝑇(k

𝐽
(𝑝))w

𝐾𝐽
(𝑝))w

𝐾𝐽
(𝑝) helps every neuron of

output layer have the relationship with the updating process
between 𝑖th neuron of hidden layer and the previous layer;
in other words, every neuron of output layer contributes to
𝜂
𝐽
(𝑛).Therefore, this paper adopts the same step-size in 𝜂

𝐽
(𝑛)
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Input: Input signal x
𝐼
Ideal output norm

Output: Observe output z
𝑘
(𝑛)Weights w(𝑛)

Initialize: The number of layers in WNN structure𝑁layer
The number of neurons in every layer𝑀

1
,𝑀
2
, . . .

The activation function of every layer 𝑓
1
(⋅), 𝑓
2
(⋅), . . .

Loop count𝑁𝑢𝑚
Begin:

Initialize weights w(0)
Repeat
Wavelet kernel neural network output z

𝐾
(𝑛)

Output layer step-size 𝜂
𝐾
(𝑛)

Hidden layer step-size 𝜂
𝐽
(𝑛)

Synaptic weight updating w
𝐾𝐽

Synaptic weight updating w
𝐽𝐼

Wavelet kernel Width modulating 𝑎(𝑛)
Until 𝑛 > 𝑁𝑢𝑚

End

Algorithm 1: Algorithm process.

based on𝜂
𝐾
(𝑛), and the elements 𝜂

𝑗
(𝑛) of𝜂

𝐽
(𝑛) could be given

as follows:

𝜂
𝑗
(𝑛) =

1

𝐾

𝐾

∑

𝑘=1

𝜂
𝑘
(𝑛) . (30)

3.4. The Modulation of Wavelet Kernel Width. The goal
of minimizing the mean square error could be achieved
by gradient search. If kernel space structure cost function
is derivable, the wavelet kernel of neural network could
also be deduced by gradient algorithm. In consideration of
conventional wavelet neural network, the gradient search
method could be utilized for updating wavelet kernel weight
due to the derivability of the wavelet kernel function. Besides
the synaptic weights among various layers of network, there
is another coefficient—dilation factor 𝑎—in (11) which also
influences the mean square error. With respect to the cost
function (14), the dilation factor 𝑎 is corrected by

𝑎 (𝑛 + 1) = 𝑎 (𝑛) − 𝜇
󸀠

∇
𝑎(𝑛)

(e2 (𝑛)) , (31)

where 𝜇󸀠 is the constant step-size and ∇
𝑎(𝑛)

is the partial
derivative function, that is, gradient function. According to
the chain rule of calculus, this gradient is expressed as

∇
𝑎(𝑛)

= e (𝑛) ( 𝜕z
𝐾

𝜕𝑎 (𝑛)
) = e (𝑛) ( 𝜕z

𝐾

𝜕𝑢 (𝑛)

𝜕𝑢 (𝑛)

𝜕𝑎 (𝑛)
) ,

𝜕𝑢 (𝑛)

𝜕𝑎 (𝑛)
=
𝜕𝑢 (𝑛)

𝜕𝑘 (𝑛)

𝜕𝑘 (𝑛)

𝜕𝑎 (𝑛)
= 𝜂
𝐾
(𝑛)

𝑛−1

∑

𝑝=0

𝛼 (𝑝)𝐻𝑘 (𝑥 (𝑝) , 𝑥 (𝑛)) ,

(32)

where 𝐻 = 𝜕𝑘/𝜕𝑎 and 𝑢 = 𝜂
𝐾
(𝑛)∑
𝑛−1

𝑝=0
𝛼(𝑝)𝑘(𝑥(𝑝), 𝑥(𝑛)).

Then ∇
𝑎(𝑛)

could be represented as

∇
𝑎(𝑛)

= 𝜂
𝐾
(𝑛) e (𝑛) 𝑓󸀠 (𝑢)

𝑛−1

∑

𝑝=0

𝛼 (𝑝)𝐻𝑘 (𝑥 (𝑝) , 𝑥 (𝑛)) . (33)

Allowing for (19) and (33), the updating formulation of
dilation factor 𝑎(𝑛) is

𝑎 (𝑛 + 1) = 𝑎 (𝑛) − 𝜇 (𝑛)𝛼 (𝑛)

𝑛−1

∑

𝑝=0

𝛼 (𝑝)𝐻𝑘 (𝑥 (𝑝) , 𝑥 (𝑛)) ,

(34)

where 𝜇(𝑛) = 𝜇󸀠𝜂
𝐾
(𝑛).

The WKNN process is presented as Algorithm 1 as fol-
lows.

4. The Model Design of IPWR

In order to reduce the volume of the pressure vessel, the
integration reactor generally uses compactOTSG. Since there
is no separator in the steam generator, the superheated steam
produced by OTSG could improve the thermal efficiency
of the secondary loop systems. Compared with natural
circulation steam generator U-tube, the OTSG is designed
with simpler structure but less water volume in heat transfer
tube. Since it is difficult to measure the water level in OTSG
especially during variable load operation, the OTSG needs
a high-efficiency control system to ensure safe operation.
Primary coolant average temperature is an important param-
eter to ensure steam generator heat exchange. The control
scheme with a constant average temperature of the coolant
can achieve accurate control of the reactor power and avoid
generation of large volume coolant loop changes.

In the integrated pressurized water reactor (IPWR) sys-
tem, the essential equation of thermal-hydraulic model is
listed as follows.

(1) Mass continuity equations:

𝜕

𝜕𝑡
(𝛼
𝑔
𝜌
𝑔
) +

1

𝐴

𝜕

𝜕𝑥
(𝛼
𝑔
𝜌
𝑔
V
𝑔
𝐴) = Γ

𝑔
,

𝜕

𝜕𝑡
(𝛼
𝑓
𝜌
𝑓
) +

1

𝐴

𝜕

𝜕𝑥
(𝛼
𝑓
𝜌
𝑓
V
𝑓
𝐴) = Γ

𝑓
.

(35)
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(2) Momentum conservation equations:

𝛼
𝑔
𝜌
𝑔
𝐴

𝜕V
𝑔

𝜕𝑡
+
1

2
𝛼
𝑔
𝜌
𝑔
𝐴

𝜕V2
𝑔

𝜕𝑥

= −𝛼
𝑔
𝐴
𝜕𝑃

𝜕𝑥
+ 𝛼
𝑔
𝜌
𝑔
𝐵
𝑥
𝐴 − (𝛼

𝑔
𝜌
𝑔
𝐴) FWG (V

𝑔
)

+ Γ
𝑔
𝐴(V
𝑔𝐼
− V
𝑔
) − (𝛼

𝑔
𝜌
𝑔
𝐴) FIG (V

𝑔
− V
𝑓
)

− 𝐶𝛼
𝑔
𝛼
𝑓
𝜌
𝑚
𝐴[

𝜕 (V
𝑔
− V
𝑓
)

𝜕𝑡
+ V
𝑓

𝜕V
𝑔

𝜕𝑥
− V
𝑔

𝜕V
𝑓

𝜕𝑥
] ,

𝛼
𝑓
𝜌
𝑓
𝐴

𝜕V
𝑓

𝜕𝑡
+
1

2
𝛼
𝑓
𝜌
𝑓
𝐴

𝜕V2
𝑓

𝜕𝑥

= −𝛼
𝑓
𝐴
𝜕𝑃

𝜕𝑥
+ 𝛼
𝑓
𝜌
𝑓
𝐵
𝑥
𝐴 − (𝛼

𝑓
𝜌
𝑓
𝐴) FWF (V

𝑓
)

− Γ
𝑔
𝐴(V
𝑓𝐼
− V
𝑓
) − (𝛼

𝑓
𝜌
𝑓
𝐴) FIF (V

𝑓
− V
𝑔
)

− 𝐶𝛼
𝑓
𝛼
𝑔
𝜌
𝑚
𝐴[

𝜕 (V
𝑓
− V
𝑔
)

𝜕𝑡
+ V
𝑔

𝜕V
𝑓

𝜕𝑥
− V
𝑓

𝜕V
𝑔

𝜕𝑥
] .

(36)

(3) Energy conservation equations:

𝜕

𝜕𝑡
(𝛼
𝑔
𝜌
𝑔
𝑈
𝑔
) +

1

𝐴

𝜕

𝜕𝑥
(𝛼
𝑔
𝜌
𝑔
𝑈
𝑔
V
𝑔
𝐴)

= −𝑃

𝜕𝛼
𝑔

𝜕𝑡
−
𝑃

𝐴

𝜕

𝜕𝑥
(𝛼
𝑔
V
𝑔
𝐴) + 𝑄

𝑤𝑔

+ 𝑄
𝑖𝑔
+ Γ
𝑖𝑔
ℎ
∗

𝑔
+ Γ
𝑤
ℎ
󸀠

𝑔
+ DISS

𝑔
,

𝜕

𝜕𝑡
(𝛼
𝑓
𝜌
𝑓
𝑈
𝑓
) +

1

𝐴

𝜕

𝜕𝑥
(𝛼
𝑓
𝜌
𝑓
𝑈
𝑓
V
𝑓
𝐴)

= −𝑃

𝜕𝛼
𝑓

𝜕𝑡
−
𝑃

𝐴

𝜕

𝜕𝑥
(𝛼
𝑓
V
𝑓
𝐴) + 𝑄

𝑤𝑓

+ 𝑄
𝑖𝑓
− Γ
𝑖𝑔
ℎ
∗

𝑓
− Γ
𝑤
ℎ
󸀠

𝑓
+ DISS

𝑓
.

(37)

(4) Noncondensables in the gas phase:

𝜕

𝜕𝑡
(𝛼
𝑔
𝜌
𝑔
𝑋
𝑛
) +

1

𝐴

𝜕

𝜕𝑥
(𝛼
𝑔
𝜌
𝑔
V
𝑔
𝑋
𝑛
𝐴) = 0. (38)

(5) Boron concentration in the liquid field:

𝜕𝜌
𝑏

𝜕𝑡
+
1

𝐴

𝜕 (𝜌
𝑏
V
𝑓
𝐴)

𝜕𝑥
= 0. (39)

(6) The point-reactor kinetics equations are

𝑑𝑛

𝑑𝑡
=
𝜌 − 𝛽

𝑙
𝑛 +

6

∑

𝑖=1

𝜆
𝑖
𝐶
𝑖
+ 𝑞,

𝑑𝐶
𝑖

𝑑𝑡
=
𝛽
𝑖

𝑙
𝑛 − 𝜆
𝑖
𝐶
𝑖
.

(40)

The RELAP5 thermal-hydraulic model solves eight field
equations for eight primary dependent variables.Theprimary

dependent variables are pressure (𝑃), phasic specific internal
energies (𝑈

𝑔
,𝑈
𝑓
), vapor volume fraction (void fraction) (𝛼

𝑔
),

phasic velocities (V
𝑔
, V
𝑓
), noncondensable quality (𝑋

𝑛
), and

boron density (𝜌
𝑏
).The independent variables are time (𝑡) and

distance (𝑥). The secondary dependent variables used in the
equations are phasic densities (𝜌

𝑔
, 𝜌
𝑓
), phasic temperatures

(𝑇
𝑔
, 𝑇
𝑓
), saturation temperature (𝑇

𝑠
), and noncondensable

mass fraction in noncondensable gas phase (𝑋
𝑛𝑖
) [38]. The

point-reactor kinetics model in RELAP5 computes both the
immediate fission power and the power from decay of fission
fragments.

5. The Control Strategy and
FOPID Controller Design

New control law is demanded in nuclear device [39]. When
the nuclear power plant operates stably on different con-
ditions, the variation of main parameters in primary and
secondary side is indeterminate. The operation strategy
employs the coolant average temperature 𝑇av to be constant
with load changing. The WKNN fuzzy fractional-order PID
system achieves coolant average temperature invariability by
controlling reactor power system (Figure 4).

The five parameters, including three coefficients and
two exponents, are acquired in two forms—fuzzy logic and
wavelet kernel neural network. The idea of this method
combination is born from the fact that the power level of
nuclear reactor tends to alter dramatically in a short while and
then maintain slight variation within a certain period. Due
to the boundedness of the WKNN excitation function, the
output range of FOPIDcoefficients could not bewide enough.
The initial parameters of FOPID are set byWKNN and fuzzy
logic. Moreover, the exponents of FOPID have no need to
vary with the small changing. As a consequence, the fuzzy
logic rule is executed when the reactor power transforms
remarkably to tune the five parameters of FOPID, and the
WKNN retains updating and tuning of the coefficients based
on the fuzzy logic all the while. The process is illustrated in
Figure 5.

Based on theoretical analysis and design experience,
fuzzy enhanced fractional-order PID controller is adopted
to achieve the reactor power changing with steam flow
and maintain the coolant average temperature 𝑇av constant.
Power control system regards the average temperature devi-
ation and steam flow as the main control signal and assistant
control signal, respectively. Since the thermal output of
reactor is proportional to the steamoutput of steamgenerator,
the consideration of steam flow variation could calculate the
power need immediately, which impels the reactor power
to follow secondary loop load changing and improves the
mobility of equipment. When the load alters, reactor power
could be determined by the following equation:

𝑛
0
= 𝐾
1
𝐺
𝑠
+ 𝐾
𝑃𝑝
Δ𝑇
𝑚
(𝑛) + 𝐾

𝑃𝑖
𝑠
𝜆

𝑛

∑

𝑗=0

𝑞
𝑗
Δ𝑇
𝑚
(𝑛 − 𝑗)

+ 𝐾
𝑃𝑑
𝑠
−𝜇

𝑛

∑

𝑗=0

𝑑
𝑗
Δ𝑇
𝑚
(𝑛 − 𝑗) ,

(41)
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where 𝑞
𝑗
= (1 − ((1 + 𝜆)/𝑗))𝑞

𝑗−1
, 𝑑
𝑗
= (1 − ((1 − 𝜇)/

𝑗))𝑑
𝑗−1

, 𝑠 is time step, 𝐾
1
is conversion coefficient, 𝐾

𝑃𝑝
, 𝐾
𝑃𝑖
,

and 𝐾
𝑃𝑑

are design parameters, 𝐺
𝑠
is new steam flow of

steam generator, and Δ𝑇
𝑚
is the coolant average temperature

deviation. Consider

Δ𝑇
𝑚
= 𝑇
(0)

𝑚
− 𝑇
𝑚
, (42)

where 𝑇(0)
𝑚

is norm value and 𝑇
𝑚
is measuring temperature:

𝑇
𝑚
=
𝑇
𝑜
+ 𝑇
𝑖

2
, (43)

where 𝑇
𝑜
and 𝑇

𝑖
are the coolant temperature of core inlet

and outlet, respectively. The signal from signal processor is
generated by

Δ𝑛 = 𝑛
0
− 𝑛. (44)

Following the fuzzy logic principle, the fuzzy FOPID con-
troller considers the error and its rate of change as incoming
signals. It adjusts 𝐾

𝑃𝑝−𝐹
, 𝐾
𝑃𝑖−𝐹

, 𝐾
𝑃𝑑−𝐹

, 𝜆, and 𝜇 online and
produces them with the fractional factors satisfying condi-
tions 0 < 𝜆, 𝜇 < 2. The coordination principle is establishing
the relationship among 𝑒, 𝑒𝑐, and parameters. The fuzzy sub-
set of fuzzy quantity chooses {NB,NM,NS,ZO,PS,PM,PB}
and the membership functions adopt normal distribution
functions. Larger 𝐾

𝑃𝑝−𝐹
, smaller 𝐾

𝑃𝑑−𝐹
, and 𝜇 could obtain

rapider system response and avoid the differential overflow
by initial 𝑒 saltus step when 𝑒 is large. Then adopt smaller
𝐾
𝑃𝑖−𝐹

and 𝜆 to prevent exaggerated overshooting. When 𝑒 is
medium, 𝐾

𝑃𝑝−𝐹
should reduce properly; meanwhile, 𝐾

𝑃𝑖−𝐹
,

𝐾
𝑃𝑑−𝐹

, and 𝜆 should be moderate to decrease the system
overshooting and ensure the response fast. If 𝑒 is small, the
larger𝐾

𝑃𝑝−𝐹
,𝐾
𝑃𝑖−𝐹

, and 𝜆 have the ability to fade the steady-
state error. At the same time, moderate 𝐾

𝑃𝑑−𝐹
and 𝜇 keep

output away from vibration around the norm value and
guarantee anti-interference performance of the system. For
more information, one could refer to the literature [40].

The WKNN proposed above in Section 3 has been
adopted to improve the performance of FOPID parameter
tuning, and three-layer structure has been applied. The
WKNN input and output could be displayed as follows:

x
1
(𝑛) = rin (𝑛) ,

x
2
(𝑛) = yout (𝑛) ,

x
3
(𝑛) = rin (𝑛) − yout (𝑛) ,

x
4
(𝑛) = 1,

z
1
(𝑛) = 𝐾

𝑃𝑝−𝑊
(𝑛) ,

z
2
(𝑛) = 𝐾

𝑃𝑖−𝑊
(𝑛) ,

z
3
(𝑛) = 𝐾

𝑃𝑑−𝑊
(𝑛) .

(45)

As the boundedness of sigmoid function, WKNN output
parameters for enhanced PID are maintained in a range of
[−1, 1]. To solve this problem, the expertise improvement
unit is added between WKNN and power require counter

x1

x2

xI

Hidden layer J

Input layer I

Output layer K

... ...

wIJ wKJ

zK
e(n)

norm

f(·)

𝜑(·)

Figure 3: The structure of WKNN.

in Figure 4, which corrects parameters order of magnitudes.
This control strategy overcomes the limitation problemofNN
activation function and takes advantage of a priori knowledge
from the researchers in reactor power domain, which endows
the algorithm with reliability and simplifies the fuzzy logic
rules setting to reduce the control complexity.

6. Simulation Results and Discussion

In this section, simulations ofWKNNandWKNN fractional-
order PID controller have been carried out aiming to examine
performance and assess accuracy of the algorithm proposed
in the previous sections, and it compares experimentally the
performance of the WKNN algorithm and WNN algorithm.
To display the results clearly, simulations are divided into
two parts. One is achieved as numerical examples in Matlab
programwhich includesWKNNalgorithm and its fractional-
order PID application in time delay system. Another is
written in FORTRAN language and connected with RELAP
5 which implements the reactor power controlling.

6.1. Numerical Examples. To demonstrate the performance of
WKNNalgorithm, two simulations are conducted comparing
with the WNN algorithm. The structure of neural network
could be consulted in Figure 3, and the initial weights are
generated randomly.The first experiment shows the behavior
of WKNN and WNN in a stationary environment of which
norm output is 0.6 (Figures 5 and 6). And the second one
operates in the variable time process as 0.3 sin(0.02𝑡) + 0.5
(Figures 7 and 8).

Figures 6–9 adopt WKNN and WNN to calculate the
regression process in the constant and time varying environ-
ment, respectively. And both methods bring relatively large
system error in initial period. In Figures 6 and 7, the constant
norm output and straight regression process emphasize the
faster convergence of algorithms. In Figures 8 and 9, the time
varying impels the regression process more difficult than the
previous experiment. Firstly, there is overshoot from 0 s to
50 s in theWNN, which impels the error ofWNN to decrease
slowly. When the error of WNN starts to reduce, the one
of WKNN has approached zero. Secondly, comparing the
two error curves, the phenomenon could not be ignored in
which the WKNN curve has sharp points, while the WNN
curve has the relative smoothness. Thirdly, although the
initial parameters have randomness, the regression process is
periodical. The figures imply that the convergence rate and
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regression quality of WKNN are better than that of WNN
and initial condition brings no benefit to WKNN. From
the argument above, it indicates preliminary that WKNN
algorithm reduces the amplitude of error variation and has
better performance than WNN. However, it remains to be
verified whether or not the WKNN is more appropriate
for FOPID controller tuning in time delay system. Then, in
this paper, the algorithm proposed is designed to examine

the effectiveness of tuning the FOPID controller in time delay
control. To illustrate clearly, a known dynamic time delay
control system is proposed as follows:

𝐺 (𝑠) =
4

5𝑠 + 1
𝑒
−3𝑠

, (46)

and then analyze the performance of unit step response. The
control process is displayed in Figures 10 and 11.
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From the information of Figures 10 and 11, when the
time delay system utilizes FOPID controller with the same
order, the overshooting of WNN-FOPID controller and the
output oscillation frequency and amplitude are all higher
thanWKNN-FOPID obviously.The control curves and error
curves of different algorithm confirm that the whole tuning
performance of WKNN is better than that of WNN. To
validate the algorithm practicability and independence from
model, the next subsection will apply and control a more
complex nuclear reactor model with the strategy of Section 5.

6.2. RELAP5 Operation Example. This paper establishes
the integrated pressurized water reactor (IPWR) model by
RELAP5 transient analysis program, and the control strategy
in Figure 5 is applied to control the reactor power. As the
boundedness of sigmoid function, WNN output parameters
for enhanced PID remained in a range of [−1, 1]. To solve this
problem, the expertise improvement unit is added between
KWNN and power require counter in Figure 1, which cor-
rects parameters order of magnitudes. Through the analysis
of load shedding limiting condition of nuclear power unit,
the reliability and availability of the control method proposed
have been demonstrated. In the process of load shedding,
secondary feedwater reduces from 100% FP to 60% FP in
10 s and then reduces to 20% FP. The operating characteristic
could be displayed in Figure 7.

Figure 12(a) displays the variation of once-through steam
generator (OTSG) secondary feedwater flow and steam
flow. Due to the small water capacity in OTSG, the steam
flow decreased rapidly when water flow decreases. Then
the decrease in steam flow leads to the reduction of the
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Figure 11: The comparison of controller error.

heat by feedwater, and primary coolant average temperature
increases. The reactor power control system accords with
the deviation of average temperature and introduces negative
reactivity to bring the power down and maintain the temper-
ature constant. The variation of outlet and inlet temperature
is shown in Figure 12(c). The primary coolant flow stays
the same and reduces the core temperature difference to
guarantee the heat derivation. In the process of rapid load
variation, the change of coolant temperature causes the
motion of coolant loading and then leads to the variation
of voltage regulator pressure (Figure 12(d)). The pressure
maximum approaches 15.62MPa; however, it drops rapidly
with the power decrease and volume compression. Then
pressure comes to the stable state when coolant temperature
stabilizes.

7. Conclusions

The goal of this paper is to present a novel wavelet kernel
neural network. Before the proposed WKNN, the wavelet
kernel function has been confirmed to be valid in neural
network. The WKNN takes advantage of KLMS and NLMS,
which endow the algorithm with reliability, stability, and well
convergence. On basis of theWKNN, a novel control strategy
for FOPID controller design has been proposed. It overcomes
the boundary problem of activation functions in network and
utilizes the experiential knowledge of researchers sufficiently.
Finally, by establishing the model of IPWR, the method
above is applied in a certain simulation of load shedding, and
simulation results validate the fact that the method proposed
has the practicability and reliability in actual complicated
system.
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