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This paper presents a three-dimensional analytical solution for acoustic emission source location using time difference of arrival
(TDOA) measurements from N receivers, 𝑁 ⩾ 5. The nonlinear location equations for TDOA are simplified to linear equations,
and the direct analytical solution is obtained by solving the linear equations. There are not calculations of square roots in solution
equations. The method solved the problems of the existence and multiplicity of solutions induced by the calculations of square
roots in existed close-formmethods. Simulations are included to study the algorithms’ performance and compare with the existing
technique.

1. Introduction

The solution of the problem of locating a signal source
using time difference of arrival (TDOA) measurements has
numerous applications in aerospace, surveillance, structural
health, nondestructive testing, navigation, industrial process,
speaker location, machine condition, the monitoring of
nuclear explosions, and mining induced areal seismology
[1–17]. Many authors have discussed and faced numerous
problems connected with the location of acoustic emission.
The time difference of arrival TDOA method, based on
estimates of time delay for a correlated signal as detected by
spatially distributed sensor elements in an array, remains a
commonly used technique for source location [5].

The TDOAs are proportional to the differences in sensor-
source range, called range differences (RDs). Conventionally,
the source location is estimated from the intersection of
a set of hyperboloids defined by the RD measurements
and the known sensor locations [18]. The inverse problem
for TDOA source location is usually solved by an iterative
technique such as nonlinear least squares, minimum error,
or an optimization method in recognizing that the equations
are nonlinear with respect to source location [19–23]. Kalman
filtering has also been used to iteratively solve the TDOA

source location problem for microphone speaker location
[24, 25]. Although these iterative algorithms are resilient to
varying extents to errors in arrival time data, they may be
computationally expensive. This is a key consideration in
some real-time applications [21, 22].

Closed-form solutions are usually less computationally
burdensome than iterative, nonlinear minimization, or the
ML method and achieve good accuracy [18]. Several closed-
form analytical solutions to the TDOA source location
problem have been developed [4, 21, 26, 27]. Closed-form
solutions have been found in terms of intersecting spheres
of distance from each sensor to an arbitrarily located source
spherical intersection method, for a monitoring array of four
ormore sensors, in some cases admitting dual source location
solutions [28, 29]. A spherical interpolation (SI) method
based on linear least-squares equation error minimization
with respect to source range has also been developed [30].The
two-dimensional (2D) TDOA source location problem has
also been solved [21, 31]. A technique has been successfully
developed by Kundu et al. [32] for localizing acoustic source
in anisotropic plates that avoids the need to solve a system of
nonlinear equations. The advantage of the technique is that
the knowledge of the wave velocity in isotropic or anisotropic
plate is not required in two-dimensional structure, but the
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three-dimensional conditions are not considered. A family of
exact solutions for 2D TDOA based on arrival times at four
sensors in a plane is also known [33]. A linear intersection
(LI) estimator for 3D source location has also been proposed,
based on the closest intersection of source bearing lines
calculated for four sensor element subarrays under a far-field
assumption [22, 34].This method is claimed to closely model
the behavior of the maximum likelihood estimator and to
be consistently less sensitive to noise in the time differences
than the SI method. A similar but less heuristic closed-form
solution based on the far-field assumption has also been pro-
posed [4]. A simultaneous analytical solution for the spatial
coordinates of a source and the redundant radial distance of
the source/time of origin of the signal has also been reported
in the literature [29]. A direct and short derivation of an
algorithm based on the closed-form solution of the nonlinear
equations for emitter location using time difference of arrival
(TDOA) is given [18], and the influences of imaginary roots
on solutions were discussed. Spencer developed closed-form
solutions for both two-dimensional and three-dimensional
source locations by formulating the TDOA equations in,
respectively, polar and spherical coordinate systems, with the
radial direction coincident with the assumed geodesic path of
signal propagation to a reference sensor [5].

Nevertheless, the existence andmultiplicity of the closed-
form solutions are affected by square root calculation in
solution equation. In this paper, we simplify the nonlinear
location equations for TDOA to linear equations and develop
a unique three-dimensional analytical solution without hav-
ing square root calculation.

2. Analytical Solutions

An acoustic emission source is located at source (𝑥, 𝑦, 𝑧) and
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where 𝑡
0
is acoustic wave propagation time from source to the

nearest sensor. The signal arrives first to the nearest sensor.
After identification of the nearest sensor and calculation of
propagation time delay between nearest sensor and other
sensors, the sensors are numbered. The nearest sensor from
source is numbered as sensor 1 (S
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the propagation time delay between sensor 1 and sensors 2,
3, 4, and 5, respectively. V is the P wave velocity. Equations
(1)–(5) represent spheres, with the center at respective sensor
position, passing through the source. Any two of the spheres

(1)–(5) intersect and the source is located on the intersecting
circle. The equation of the intersecting plane for the spheres
(1) and (2) can be obtained by taking difference of (1) and
(2). This equation of intersecting plane is given in (6). In the
following equations, 𝑙
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Similarly, the equations for the intersecting planes for
spheres (1) and (3), for spheres (1) and (4), and for spheres (1)
and (5) are obtained by taking difference of (1) and (3) and (1)
and (4), as well as (1) and (5), respectively.These equations are
given in (7), (8), and (9), respectively:
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Equations (6), (7), (8), and (9) constitute a set of linear
equations, which were rewritten as
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Therefore, the 𝑥, 𝑦, 𝑧, which can be obtained by solving
the linear equations, can be expressed and simplified as
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The 𝑥, 𝑦, and 𝑧 can be also obtained by solving the linear
systems. The proposed method is suitable for known wave
velocity system.The closed-form solution for unknown wave
velocity system is reported in [35].

3. Validated Examples

3.1. Example 1: Simulations for Sound Sources. For example,
consider five receivers and a speed of sound of 330m/s.
The Cartesian coordinates of five sensors are S1 (250.25,
450.17, and 150.28), S2 (290.11, 180.13, and 140.18), S3 (150.35,
190.21, and 30.33), S4 (380.38, 250.28, and 98.15), and S5
(500.55, 350.25, and 210.45)m.The two source locations with
Cartesian coordinates of P1 (310.75, 200.33, and 125.11) and
P2 (210.88, 290.99, and 175.89) m and the original times of
two sources are 0 s. The trigger times are obtained according
to the distance formula between spatial two points as well
as distance and velocity formula. The trigger times of five
receivers (S1–S5) of P1 are 0.782697, 0.098713, 0.565408,
0.272225, and 0.777218 s, respectively. The trigger times of
five receivers (S1–S5) of P2 are 0.502922, 0.426859, 0.566984,
0.578392, and 0.902068 s, respectively.

To validate the proposed method, the coordinates of
receivers and their trigger time were used to calculate 𝑙

𝑖
(𝑖 =

1, 2, . . . , 20) according to (7)–(10).Then, the calculated 𝑙
𝑖
(𝑖 =

1, 2, . . . , 20) were substituted in (11) to resolve the source
location. The calculated results of sources P1 and P2 are
(310.7499, 200.3302, and 125.1101) and (210.8797, 290.9899,
and 175.8904) m, respectively. Results show that the calcu-
lated coordinates of P1 and P2 are consistent with authentic
results.

3.2. Example 2: Simulations of a Mine Acoustic Emission
Location System and Location Error Analysis. A numerical
test for an acoustic emission/microseismic monitoring sys-
tem of a mine was used to validate the proposed method
and analyze location errors. The locations of five sensors are
shown in Figure 1, and the coordinates are (200, 500, and
300), (300, 100, and 100), (400, 350, and 280), (600, 250,
and 250), and (700, 200, and 180). The locations of acoustic
emission/microseismic sources E1, E2, E3, E4, and E5 are 1
(250, 300, and 120), 2 (310, 450, and 130), 3 (450, 260, and 110),
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Figure 1: Sketch map of acoustic emission/microseismic source
location: A indicates analytical solution; N indicates numerical
solution.

4 (650, 180, and 135), and 5 (780, 250, and 125), respectively,
and the unit is m; P-wave velocity is 5000 m/s. Errors of wave
velocity and arrivals were discussed.

Firstly, the acoustic emission sources are located by
proposed method using true wave velocity. The results are
shown in Figure 2. It can be seen that the calculated results
are consistent with the true locations. Therefore, it can be
concluded that proposedmethod is reasonable. To investigate
the location errors induced by errors of velocities, themethod
STT was used to compare and analyze. The locations of
acoustic emissions by STT method without considering the
errors of velocities and arrivals are consistent with true
locations (Figure 2). The errors of absolute distant are shown
in Figure 2. It also can be seen that the results of STT are
consistent with true locations and results of the proposed
analytical solution method. It is proved that the STT method

0

1

2

3

4

5

6

7

4400 4600 4800 5000 5200 5400 5600

Er
ro

r o
f o

rig
in

al
 ti

m
e (

s)

D
ist

an
ce

 er
ro

r (
m

)
D1-N
D2-A
D2-N
D3-A
D3-N
D4-A

D5-A
D5-N
TS1-A
TS1-N
TS2-A
TS2-N

TS3-A
TS3-N
TS4-A
TS4-N
TS5-A
TS5-N

D1-A

D4-N

−2

−1

0

1

2

3

4

5

V (m/s)

×10
2

×10
−2

Figure 2: Errors of distance error from located source to real source
and original time induced by insufficient know velocity error: D
indicates absolute distant error; TS indicates original time error.

is stable and reliable. The intervals of velocity errors are
from 4500m/s to 5500m/s. True velocity is 5000m/s. The
variable interval is 200m/s. Location results with analytical
solutions and numerical methods STT are shown in Figure 1.
The absolute distance errors between the real coordinates and
calculated coordinates are shown in Figure 2 under different
levels of velocity error. The left vertical axis is the absolute
distance error. The original time errors are also plotted
in the right vertical axis of Figure 2. It can be seen from
positioning results of Figures 1 and 2 that the positioning
accuracy is affected by the velocity value. In view of the spatial
distribution of positions, symmetrical changes of velocity will
result in a positioning results symmetry spatial location using
analytical solution positioning, since analytical solutions are
based on the results of each positioning operation param-
eters of the true value. The location errors are completely
dependent on the operator error parameters which are offset
from the true value. Symmetrical changes of velocity will
induce irregular spatial position using numerical iterative
method, STT. If velocity error is large, it may cause serious
positioning errors, which will locate a serious deviation from
the true value, such as the E4-N. It can be seen from Figure 2
that higher positioning analytical location method requires
measurement data with high quality, but when measurement
data is reasonable, it can obtain accurate positioning results.
Throughout all of located microseismic sources, it can be
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Figure 3: Errors of Distance and original time induced by arrival
time reading error: the left 𝑦 axil expressing the distance error from
located sources to real sources and right𝑦 axil expressing the error of
original time, E indicates absolute distant error; TS indicates original
time errors; A indicates analytical solutions; and N indicates STT
results.

easily found that the greatest absolute distance error is from
the numerical solution of STT. A velocity error of 500 m/s
can result in a big absolute distance error of 700m using
STT, while the positioning error of the analytical solution is
450m.

Secondly, to investigate the location errors induced by
errors of arrivals, the method STT was also used to compare
and analyze.The error of arrivals is limited between −1000𝜇s
and +1000 𝜇s. The 1000 errors are generated by the random
function of Microsoft Excel; then arrivals with errors were
obtained by true arrivals plus generated errors. In this study,
the minimum, average, and maximum of arrivals with errors
were used to investigate the location errors induced by arrival
errors. The calculated results are shown in Figure 3. The
absolute distance error is expressed in the left vertical axis.
Original time error is expressed in the right vertical axis.
It can be clearly seen in Figure 3 that arrival errors also
significantly affect the location errors. The absolute distant
errors and original errors of STT are always larger than those
of analytical method. The maximums of absolute distant
errors of STT and analytical method are 12.5m and 6.5m,
respectively. The maximums of original time errors of STT
and analytical method are 0.001 s and 0.00023 s, respectively.

4. Conclusions

We simplify the nonlinear location equations for TDOA to
linear equations. Based on solving simplified linear equations,
we obtain a unique three-dimensional analytical solution
for acoustic emission source location using TDOA measure-
ments from 𝑁 receivers, 𝑁 ⩾ 5. There are no calculations
of square roots in the solution equations of the proposed
method. The problems of the existence and multiplicity
induced by calculations of square roots in existed close-form
methodswere solved successfully. Simulations are included to
study the algorithms’ performance and comparewith existing
STT method.
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