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Abstract

We are concerned with the existence of mild solutions to the Cauchy problem for
fractional evolution equations of neutral type with almost sectorial operators

dq

dtq
(x(t) − h(t, x(t))) = −A(x(t) − h(t, x(t))) + f (t, x(t)), t > 0,

x(0) = x0,

where 0 <q < 1, the fractional derivative is understood in the Caputo sense, A is an
almost sectorial operator on a complex Banach space, and f, h are given functions.
With the help of the theory of measure of noncompactness and a fixed point
theorem of Darbo type, we establish a new existence theorem of mild solutions for
the Cauchy problem above. By the way, the global attractive property of the
solutions is also obtained. Moreover, we give two examples to illustrate our abstract
results.

Keywords: fractional evolution equations, mild solutions, almost sectorial operators,
neutral type, measure of noncompactness, global attractive

1 Introduction
The fractional evolution equations have received increasing attention during recent

years and have been studied extensively (see, e.g., [1-13] and references therein) since

they can be used to describe many phenomena arising in engineering, physics, econ-

omy, and science.

We mention that much of the previous research on the evolution equations was

done provided that the operator in the linear part is the infinitesimal generator of a

strongly continuous operator semigroup, an analytic semigroup, or a compact semi-

group, or is a Hille-Yosida operator (see, e.g., [1-12,14,15] and references therein). On

the other hand, when the operator in the linear part is an almost sectorial operator,

for which the resolvent operators do not satisfy the required estimate to be a sectorial

operator (see the example of almost sectorial operators which are not sectorial given

by von Wahl in [16]), much less is known about the fractional evolution equations of

neutral type with almost sectorial operators.

In this article, we will pay our attentions to the existence of mild solutions to the fol-

lowing Cauchy problem for fractional evolution equations of neutral type with almost
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sectorial operators

dq

dtq
(x(t) − h(t, x(t))) = −A(x(t) − h(t, x(t))) + f (t, x(t)), t > 0, (1:1)

x(0) = x0, (1:2)

where 0 < q <1, the fractional derivative is understood in the Caputo sense, A is an

almost sectorial operator on a complex Banach space, and f, h are given functions. We

will use the theory of measure of noncompactness and a fixed point theorem of Darbo

type to establish a new existence theorem for the problem (1.1)-(1.2). By the way, the

global attractive property of the solutions are also obtained. Moreover, we give two

examples to illustrate our abstract results.

This article is organized as follows: In Section 2, we state some basic concepts, nota-

tions and properties about fractional order operator and measure of noncompactness.

A new existence result and the global attractive property of the solutions will be given

and proved in Section 3. Finally, in Section 4, we present two concrete examples,

whose physical background is statistical physics and fractional quantum mechanics

(see, e.g., [12,13]).

2 Basic concepts, notations and lemmas
Let X be a complex Banach space with norm ||·|| and B(x, r) denote the closed ball

centered at x and with radius r. Suppose MX denotes the family of all nonempty and

bounded subsets of X and subfamily consisting of all relatively compact sets is denoted

by NX . As usual, for a linear operator A, we denote by D(A) the domain of A, by the

family R(z; A) = (zI - A)-1, z Î r(A) of bounded linear operators the resolvent of A.

Moreover, we denote by L(X, X) the space of all bounded linear operators from Banach

space X to X with the usual operator norm ||·||L(X, X), and we abbreviate this notation

to L(X).

Definition 2.1 [12] The fractional integral of order q with the lower limit zero for a

function f Î AC[0, ∞) is defined as

Iqf (t) =
1

�(q)

t∫
0

(t − s)q−1f (s)ds, t > 0, 0 < q < 1,

provided the right side is point-wise defined on [0, ∞), where Γ(·) is the gamma

function.

Definition 2.2 [12] Riemann-Liouville derivative of order q with the lower limit zero

for a function f Î AC[0, ∞) can be written as

LDqf (t) =
1

�(1 − q)
d
dt

t∫
0

(t − s)−qf (s)ds, t > 0, 0 < q < 1.

Definition 2.3 [12] The Caputo derivative of order q for a function f Î AC[0, ∞) can

be written as

cDqf (t)=LDq(f (t) − f (0)), t > 0, 0 < q < 1.
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wherecDq :=
dq

dtq
.

Next, we recall the concept of measure of noncompactness (cf. [17]).

Definition 2.4 μ: MX → R+is said to be a measure of noncompactness in X if it

satisfies the following conditions:

(1) the family Kerμ = {� ∈ MX;μ (�) = 0} is nonempty and Kerμ ⊂ NX ;

(2) Ω ⊂ Ω0 ⇒ μ(Ω) ≤ μ(Ω0), for Ω and �0 ∈ MX ;

(3) μ(Conv(Ω)) = μ(Ω), where Conv(Ω) denotes the convex hull of Ω;

(4) μ(�̄) = μ(�) , where �̄ denotes the closure of � ∈ MX ;

(5) μ(lΩ + (1 - l)Ω0) ≤ lμ(Ω) + (1 - l)μ(Ω0), for l Î [0, 1] and any

�, �0 ∈ MX ;

(6) If {Ωn} is a sequence of sets from MX such that Ωn+l ⊂ Ωn,

�̄n = �n(n = 1, 2, . . .), and if limn®∞ μ(Ωn) = 0, then the intersection

�∞ =
⋂∞

n=1 �n is nonempty.

The following is a fixed point theorem of Darbo type (see [17]).

Lemma 2.5 Let Mbe a nonempty, bounded, closed and convex subset of a Banach

space X, and let H : M → Mbe a continuous mapping. Assume that there exists a con-

stant k Î [0, 1), such that

μ(H(�)) ≤ kμ(�)

for any nonempty subset Ω of M . Then H has a fixed point in M .

Let -1 < g <0, and S0μ with 0 < μ < π be the open sector

{z ∈ C\{0}; ∣∣arg z∣∣ < μ}

and Sμ be its closure, that is

Sμ = {z ∈ C\{0}; ∣∣arg z∣∣ ≤ μ} ∪ {0},

for more details, we refer to [18,19].

As in [18], we state the concept of almost sectorial operators as follows.

Definition 2.6 Let -1 < g <0 and 0 < ω <
π

2
. By �

γ
ω(X)we denote the family of all

linear closed operators A: D(A) ⊂ X ® X which satisfy

(1) s(A) ⊂ Sω = {z Î C\{0}; | arg z| ≤ ω} ∪ {0} and

(2) for every ω < μ < π there exists a constant Cμ such that∥∥R(z;A)∥∥L(X) ≤ Cμ|z|γ , for all z ∈ C\Sμ.

A linear operator A will be called an almost sectorial operator on X if A ∈ �
γ
ω(X) .

Remark 2.7 Let A ∈ �
γ
ω(X) . Then the definition implies that 0 Î r(A).
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We denote the semigroup associated with A by {T (t)}t≥0. For
t ∈ S0π

2
−ω ,

T(t) = e−tz(A) =
1
2π i

∫
�θ

e−tzR(z;A)dz,

here ω < θ < μ <
π

2
− ∣∣arg t∣∣ , forms an analytic semigroup of growth order 1 + g.

We have the following lemma on T (t) [[19], Theorem 3.9].

Lemma 2.8 Let A ∈ �
γ
ω(X)with -1 < g <0 and 0 < ω <

π

2
Then

(i) T(t) is analytic in
S0π
2

−ω and

dn

dtn
T(t) = (−A)nT(t), for all t ∈ S0π

2
−ω

;

(ii) T(s + t) = T(s) T(t) for all
s, t ∈ S0π

2
−ω ;

(ii) There exists a constant C0 = C0(g) >0 such that∥∥T(t)∥∥L(X) ≤ C0t
−γ−1, for all t > 0;

(iv) The range R(T(t)) of T(t) for each
t ∈ S0π

2
−ω is contained in D(A∞). Particularly,

for all a Î C with Reb >0, R(T(t)) ⊂ D(Ab) and

AβT(t)x =
1
2π i

∫
�θ

zβe−tzR(z;A)xdz, for all x ∈ X,

and hence there exists a constant C’= C’(g, b) >0 such that∥∥AβT(t)
∥∥
L(X) ≤ C′t−γ−Reβ−1, for all t > 0;

(v) If b >1 + g, then D(Ab) ⊂ ΣT , where ΣT is the continuity set of the semigroup {T

(t)}t ≥ 0, that is,


T =
{
x ∈ X; lim

t→0; t>0
T(t)x = x

}
.

Clearly, we note that the condition (ii) of the Lemma 2.8 does not satisfy for t = 0 or

s = 0.
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The relation between the resolvent operators of A and the semigroup T(t) is charac-

terized by

Lemma 2.9 [[19], Theorem 3.13] Let A ∈ �
γ
ω(X)with -1 < g <0 and 0 < ω <

π

2
.

Then for every l Î C with Rel >0, one has

R(λ;−A) =

∞∫
0

e−λtT(t)dt.

Now, we give the definition of mild solution to (1.1)-(1.2).

Definition 2.10 A continuous function x: (0, T ] ® X satisfying the equation

x(t) = Sq(t)x0 + h(t, x(t)) +

t∫
0

(t − s)q−1Pq(t − s)f (s, x(s))ds

for t Î (0, T ] is called a mild solution of (1.1)-(1.2), where

Sq(t)x =

∞∫
0

�q(σ )T(σ tq)xdσ , t ∈ S0π
2

−ω

, x ∈ X,

Pq(t)x =

∞∫
0

qσ�q(σ )T(σ tq)xdσ , t ∈ S0π
2

−ω

, x ∈ X,

and Ψq(s) is the function of Wright type such that

�q(z) :=
∞∑
n=0

(−z)n

n!�(−qn + 1 − q)

=
1
π

∞∑
n=1

(−z)n

(n − 1)!
�(nq) sin(nπq), z ∈ C,

with 0 < q <1.

Remark 2.11 [[13], Remark 4.1] For every x0 Î D(Ab) (b >1 + g), this mild solution

(if any) is continuous at t = 0.

Remark 2.12 [13] It is not difficult to verify that for -1 < r <∞, l >0 and -1 < a + g
<0,

(1) Ψq(t) ≥ 0, t >0;

(2)
∞∫
0

�q(t)trdt =
�(1 + r)
�(1 + qr)

.

Then we have

∥∥Sq(t)x
∥∥ ≤ C0�(−γ )

�(1 − q(1 + γ ))
t−q(1+γ ) ‖x‖ , (2:1)

∥∥Pq(t)x
∥∥ ≤ qC0�(1 − γ )

�(1 − qγ )
t−q(1+γ ) ‖x‖ , (2:2)
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∥∥AαPq(t)x
∥∥ ≤

∥∥∥∥∥∥
∞∫
0

qσ�q(σ )AαT(σ tq)dσ

∥∥∥∥∥∥ ‖x‖

≤ qC′
∞∫
0

�q(σ )t−q(γ+α+1)σ−γ−αdσ ‖x‖

≤ qC′ �(1 − γ − α)
�(1 − q(γ + α))

t−q(γ+α+1) ‖x‖ .

(2:3)

Lemma 2.13 [[13], Theorem 3.2] For t >0, {Sq (t)}and Pq (t) are continuous in the

uniform operator topology.

Let

Xα = D(Aα),

and let BC(R+,, Xa) denote the Banach space consisting of all real functions defined

bounded and continuous from R+ to Xa with the norm

‖x‖∞ = sup
t∈R+

‖x‖α,

for x Î BC(R+, Xa).

It is clear that D(Ab) ⊂ D(Aa).

Next, we present a measure of noncompactness introduced in [17].

For any nonempty and bounded subset Y of the space BC(R+, X) and a positive num-

ber T, we denote ωT (x, ε) as the modulus of continuity of function x on the interval

[0, T ], where x Î Y and ε ≥ 0. Namely,

ωT(x, ε) = sup{∥∥x(t) − x(s)
∥∥ ; t, s ∈ [0,T], |t − s| ≤ ε}.

We then assume additionally

ωT(Y, ε) = sup{ωT(x, ε); x ∈ Y},

ωT
0(Y) = lim

ε→0
ωT(Y, ε),

ω0(Y) = lim
T→∞

ωT
0(Y),

and

diam(Y) = sup{∥∥x(t) − y(t)
∥∥ ; x, y ∈ Y}.

Finally, consider the function μ defined on the family MBC(R+,X) by the formula:

μ(Y) = ω0(Y) + lim sup
t→∞

diam(Y). (2:4)

It is known that μ is a measure of noncompactness.

Definition 2.14 The solution x(t) of (1.1)-(1.2) is said to be globally attractive, if

lim
t→∞(x(t) − y(t)) = 0,

for any solution y(t) of equation (1.1)-(1.2).
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3 Main result
In this section, we assume -1 < a + g <0 and 0 < a < b <1.

Theorem 3.1 Let A ∈ �
γ
ω(X) and 0 < ω <

π

2
. Assume that

(H1) f: R+ × Xa ® X is continuous, and there exists a positive function ν(·): R+ ® R+

such that⎧⎪⎨⎪⎩
∥∥f (t, x)∥∥ ≤ ν(t),

the function s 
→ ν(s)

(t − s)1 + q(γ + α)
belongs to L1([0, t],R + ),

(3:1)

lim
t→∞ η(t) := lim

t→∞

t∫
0

ν(s)

(t − s)1+q(γ+α)
= 0. (3:2)

(H2) The function h Î BC(R+, Xa) and there exists a constant L Î (0, 1) such that∥∥h(t1, x(t1)) − h(t2, x(t2))
∥∥

α
≤ L(|t1 − t2| +

∥∥x(t1) − x(t2)
∥∥

α
).

(H3) For each nonempty, bounded set D ⊂ BC(R+, Xa), the family of functions

{t → h(t,ϕ);ϕ ∈ D}

is equicontinuous.

Then

(1) for every x0 Î D(Ab) with b >1 + g, the problem (1.1)-(1.2) has at least a mild

solution on BC(R+, Xa);

(2) all solutions are globally attractive.

Proof. Consider the operator as follows:

(Hx)(t) = Sq(t)x0 + h(t, x(t)) +

t∫
0

(t − s)q−1Pq(t − s)f (s, x(s))ds, t ≥ 0.

Step 1: We prove that there exists a ball

Br = {x ∈ BC(R+,Xα); ‖x‖∞ ≤ r}

with radius r and centered at 0, such that H(Br) ⊂ Br.

For any r >0 and x Î Br, in view of (H2),∥∥h(t, x(t))∥∥
α

≤ ∥∥h(t, x(t)) − h(t, 0)
∥∥

α
+

∥∥h(t, 0)∥∥
α

≤ Lr +M1,
(3:3)

where

M1 = sup
t∈R+

∥∥h(t, 0)∥∥
α
.
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By (3.2), we get

sup{η(t)} ≤ K

for a positive constant K.

Moreover, for arbitrary x Î Br, by (2.3) and (3.1) we have

∥∥(Hx)(t)
∥∥

α
≤ ∥∥Sq(t)x0

∥∥
α
+

∥∥h(t, x(t))∥∥
α
+

t∫
0

(t − s)q−1∥∥Pq(t − s)f (s, x(s))
∥∥

α
ds

≤ ∥∥Sq(t)x0
∥∥

α
+ Lr +M1 + qC′ �(1 − γ − α)

�(1 − q(γ + α))

t∫
0

(t − s)−1−q(γ+α)ν(s)ds

≤ sup
t∈R+

∥∥Sq(t)Aαx0
∥∥ + Lr +M1 + qC′ �(1 − γ − α)

�(1 − q(γ + α))
K

Choose r such that

r ≥
sup
t∈R+

∥∥Sq(t)Aαx0
∥∥ +M1 +

qC′K�(1 − γ − α)
�(1 − q(γ + α))

1 − L
.

Then∥∥(Hx)(t)
∥∥

α
≤ r,

that is H(Br) ⊂ Br .

Step 2: We prove that the operator H is continuous on Br .

Let {xn} be a sequence of Br such that xn ® × in Br as n ® ∞. Then

f (s, xn(s)) → f (s, x(s)), as n → ∞ (3:4)

since the function f is continuous on R+ × Xa.

For every t Î [0, T], using (H2) and (2.3), we obtain∥∥(Hxn)(t) − (Hx)(t)
∥∥

α

≤ ∥∥h(t, xn(t)) − h(t, x(t))
∥∥

α
+

∥∥∥∥∥∥
t∫

0

(t − s)q−1Pq(t − s)[f (s, xn(s)) − f (s, x(s))]ds

∥∥∥∥∥∥
α

≤L‖xn − x‖∞ +

t∫
0

(t − s)q−1∥∥Pq(t − s)[f (s, xn(s)) − f (s, x(s))]
∥∥

α
ds

≤L‖xn − x‖∞ +M2

t∫
0

(t − s)−1−q(γ+α) ∥∥f (s, xn(s)) − f (s, x(s))
∥∥ ds,

(3:5)

where

M2 = qC′ �(1 − γ − α)
�(1 − q(γ + α))

.

Clearly, the first term of (3.5) tends to zero as n ® ∞. From the fact that∥∥f (s, xn(s)) − f (s, x(s))
∥∥ ≤ 2ν(s), s ∈ R+,
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(3.4), and the Lebesgue Dominated Convergence Theorem, it follows that the second

term of (3.5) tends to zero too as n ® ∞.

Therefore, H is continuous on Br .

Step 3: Let Ω be arbitrary nonempty subset of Br, we prove that

μ(H(�)) ≤ μ(�).

Let us choose x Î Ω and tl, t2 with |t2 - tl| < ε. Without loss of generality we may

assume that tl < t2.

For any T >0, when 0 = tl < t2 ≤ T, we have

t2∫
0

∥∥∥(t2 − s)q−1Pq(t2 − s)f (s, x(s))
∥∥∥

α
ds ≤ M2

∫ t2

0
(t2 − s)−1−q(γ+α)

ν(s)ds.

Hence ||(Hx)(t2)|| is small as t2 is small independently of x Î Ω.

For 0 < tl < t2 ≤ T, taking into account our assumptions, we get∥∥(Hx)(t2) − (Hx)(t1)
∥∥

α
≤ ∥∥(Sq(t2) − Sq(t1))x0

∥∥
α

+
∥∥h(t2, x(t2)) − h(t1, x(t1))

∥∥
α

+

∥∥∥∥∥∥
t1∫

0

[(t2 − s)q−1 − (t1 − s)q−1]Pq(t2 − s)f (s, x(s))ds

∥∥∥∥∥∥
α

+

∥∥∥∥∥∥
t2∫

t1

(t2 − s)q−1Pq(t2 − s)f (s, x(s))ds

∥∥∥∥∥∥
α

+

∥∥∥∥∥∥
t1∫

0

(t1 − s)q−1[Pq(t2 − s) − Pq(t1 − s)]f (s, x(s))ds

∥∥∥∥∥∥
α

= I1 + I2 + I3 + I4 + I5.

(3:6)

As a consequence of the continuity of {Sq (t)} in the uniform operator topology for t

>0, we know that

I1 → 0, as t2 → t1.

By (H3), we see that

I2 → 0, as t2 → t1.

Using (2.3) and (H1), we have

I3 =

∥∥∥∥∥∥
t1∫

0

[(t2 − s)q−1 − (t1 − s)q−1]Pq(t2 − s)f (s, x(s))ds

∥∥∥∥∥∥
α

≤ qC′ �(1 − γ − α)
�(1 − q(γ + α))

t1∫
0

∣∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣∣

(t2 − s)q−1

ν(s)

(t2 − s)1+q(γ+α)
ds.

Therefore, by (3.2), we get

I3 → 0, as t2 → t1.
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Moreover, we have

I4 =

∥∥∥∥∥∥
t2∫

t1

(t2 − s)q−1Pq(t2 − s)f (s, x(s))ds

∥∥∥∥∥∥
α

≤ qC′ �(1 − γ − α)
�(1 − q(γ + α))

t2∫
t1

(t2 − s)−1−q(γ+α)ν(s)ds

→ 0, as t2 → t1.

Finally, for ε >0 small enough, we obtain

I5 =

∥∥∥∥∥∥
t1∫

0

(t1 − s)q−1[Pq(t2 − s) − Pq(t1 − s)]f (s, x(s))ds

∥∥∥∥∥∥
α

≤ q

t1∫
0

∞∫
0

σ�q(σ )(t1 − s)q−1
∥∥T((t2 − s)qσ ) − T((t1 − s)qσ )

∥∥
α

· ν(s)dσds

≤ q

t1−2ε∫
0

∞∫
0

σ�q(σ )(t1 − s)q−1
∥∥T((t2 − s)qσ − εqσ ) − T((t1 − s)qσ − εqσ )

∥∥
· ∥∥AαT(εqσ )

∥∥ ν(s)dσds

+M2

t1∫
t1−2ε

(
(t1 − s)q−1

(t1 − s)q(α+γ+1)
+

(t1 − s)q−1

(t2 − s)q(α+γ+1)

)
ν(s)ds

≤ qC′

εq(γ+α+1)

t1−2ε∫
0

∞∫
0

σ−γ−α�q(σ )
∥∥T((t2 − s)qσ − εqσ ) − T((t1 − s)qσ − εqσ )

∥∥
· ν(s)

(t1 − s)1−q dσds

+M2

t1∫
t1−2ε

(
(t1 − s)q−1

(t1 − s)q(α+γ+1)
+

(t1 − s)q−1

(t2 − s)q(α+γ+1)

)
ν(s)ds

= I′5 + I′′5.

The continuity of the function t ® ||T (t) ||k for t Î (0, T) implies that

I′5 → 0, as t2 → t1.

Furthermore, it is easy to see that

I′′5 → 0, as ε → 0.

Thus, we obtain

ωT
0(H�) = 0.

Consequently, we have

ω0(H�) = 0. (3:7)
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Now, by our assumptions, for arbitrarily fixed t Î R+ and x, y Î Ω we deduce that∥∥(Hx)(t) − (Hy)(t)
∥∥

α

≤ ∥∥h(t, x(t)) − h(t, y(t))
∥∥

α
+

t∫
0

(t − s)q−1∥∥Pq(t − s)[f (s, x(s)) − f (s, y(s))]
∥∥

α
ds

≤L
∥∥x(t) − y(t)

∥∥
α
+ 2M2η(t).

By (3.2), we have

lim sup
t→∞

diam(H�)(t) ≤ L lim sup
t→∞

diam�(t). (3:8)

Therefore, using the measure of noncompactness μ defined by the formula (2.4) and

keeping in mind (3.7) and (3.8), we obtain

μ(H�) ≤ Lμ(�). (3:9)

Step 4: We prove that the conclusion (1) is true.

Since 0 < L <1, in view of (3.9) and Lemma 2.5, we deduce that the operator H has a

fixed point x in the ball Br . Hence equation (1.1)-(1.2) has at least one mild solution x

(t).

Step 5: We prove that the conclusion (2) is true.

Clearly, for any other mild solution y(t) of Equation (1.1)-(1.2), we have∥∥x(t) − y(t)
∥∥

α
=

∥∥(Hx)(t) − (Hy)(t)
∥∥

α

≤ L
∥∥x(t) − y(t)

∥∥
α
+ 2M2η(t).

Then by (3.2) we have

lim
t→∞

∥∥x(t) − y(t)
∥∥

α
≤ 2M2

1 − L
lim
t→∞ η(t) = 0.

That is, all mild solutions of (1.1)-(1.2) are globally attractive. □
From the proof of Theorem 3.1, we can also see that the following theorem holds.

Theorem 3.2 Let A ∈ �
γ
ω(X) and 0 < ω <

π

2
. If the maps f and h satisfy

(H1) The function f: R+ × X ® X is continuous, and there exists a positive function v

(·): R+ ® R+ such that

∥∥f (t, x)∥∥ ≤ ν(t), the function s 
→ ν(s)

(t - s)1 + qγ belongs to L1([0, t],R + ),

lim
t→∞ η(t) : = lim

t→∞

∫ t

0

ν(s)

(t - s)1 + qγ ds = 0.

(H2) The function h Î BC(R+, X) and there exists a constant L Î (0, 1) such that∥∥h(t1, x(t1)) − h(t2, x(t2))
∥∥ ≤ L(|t1 − t2| +

∥∥x(t1) − x(t2)
∥∥), t1, t2 ≥ 0.

(H3) For each nonempty, bounded set D ⊂ BC(R+, X), the family of functions

{t → h(t,ϕ);ϕ ∈ D}

is equicontinuous.
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Then for every x0 Î D(Ab) with b >1 + g, the problem (1.1)-(1.2) has at least a mild

solution on BC (R+, X) and all solutions are globally attractive.

4 Applications
Example 4.1: Let Ω be a bounded domain in RN (N ≥ 1) with boundary ∂Ω of class

C4. Let X = Cl(�̄)(0 < l < 1) . Set

Ã = −�, D(Ã) = {v ∈ C2+l(�̄); v = 0on∂�}.

It follows from [[13], Example 1.2] that there exist ν, ε >0 such that

Ã + ν ∈ �
γ
π

2
−ε

(Cl(�̄)), γ =
l
2

− 1.

We consider the fractional initial boundary value problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂q

∂tq
[
u(t, x) − h(t, u(t, x))

]
= �

[
u(t, x) − h(t, u(t, x))

]
+ f (t, u(t, x)), x ∈ �,

(u − h)|∂� = 0,

u(0, x) = u0(x), x ∈ �,

(4:1)

where

h(t, u(t, x)) = arctan t · Ã−α sin(1 +
∣∣∣Ãαu(t, x)

∣∣∣) ∞∫
0

ζ (t)

1 +
∣∣u(t, x)∣∣dt,

f (t, u(t, x)) = (t + r0)a ·
∣∣u(t, x)∣∣

1 +
∣∣u(t, x)∣∣ ,

here t >0, r0 is a positive constant,

l
2

< α < 1, 0 < α +
l
2

< 1, −1 < a < q
(

α +
l
2

− 1
)
,

ζ(·) Î L1(R+, R) and
π

2

∞∫
0

∣∣ζ (t)∣∣ dt ≤ L < 1.

The problem (4.1) can be written abstractly as (1.1)-(1.2).

Moreover, for t ≥ 0, we can see∥∥f (t, u(t))∥∥ ≤ v(t),

where v(t): = (t + r0)
a.

It is clear that the function s → ν(s)
(t−s)1+q(γ +α) belongs to L1([0, t], R+) and

t∫
0

ν(s)

(t − s)1+q(γ+α)
ds ≤

t∫
0

sa

(t − s)1+q(γ+α)
ds

= ta−q(γ+α)

1∫
0

sa(1 − s)−1−q(γ+α)ds

= ta−q(γ+α)B(a + 1, − q(γ + α))

→ 0, t → ∞.
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where B(·, ·) is the Beta function.

Moreover, for tl, t2 ≥ 0 we have∥∥h(t1, u(t1)) − h(t2, u(t2))
∥∥

α

=

∥∥∥∥∥∥arctan t1 · sin(1 +
∣∣∣Ãαu(t1, x)

∣∣∣) ∞∫
0

ζ (t)

1 +
∣∣u(t, x)∣∣dt

− arctan t2 · sin(1 +
∣∣∣Ãαu(t2, x)

∣∣∣) ∞∫
0

ζ (t)

1 +
∣∣u(t, x)∣∣dt

∥∥∥∥∥∥
≤

[
|arctan t1 − arctan t2| ·

∥∥∥sin(1 +
∣∣∣Ãαu(t1, x)

∣∣∣)∥∥∥
+ |arctan t2| ·

∥∥∥sin(1 +
∣∣∣Ãαu(t1, x)

∣∣∣) − sin(1 +
∣∣∣Ãαu(t2, x)

∣∣∣)∥∥∥]
·

∞∫
0

∣∣ζ (t)∣∣dt
≤

[
|t1 − t2| + π

2

∥∥u(t1) − u(t2)
∥∥

α

]
·

∞∫
0

∣∣ζ (t)∣∣ dt
≤ L(|t1 − t2| +

∥∥u(t1) − u(t2)
∥∥

α
).

Consequently, it follows from Theorem 3.1 that, for every u0 ∈ D(Ãα+β ) with

1 > β > α > l
2 , the Equation (4.1) has at least a mild solution on BC(R+, Xa) and all

solutions are globally attractive.

For example, if we put

l =
1
12

, α =
1
8
, a = −8

9
, q =

1
2
, ζ (t) = e−π t,

then the assumptions can be satisfied.

Example 4.2: Let

Â = (−i� + σ )
1
2 , D(Â) = W1,3(R2) (a Sobolev space),

where iΔ is the Schro” dinger operator, s >0 is a suitable constant.

Then iΔ generates a β̃ -times integrated semigroup Sβ̃(t) with β̃ = 5
12 on L3(R2)

such that∥∥∥Sβ̃(t)
∥∥∥
L(L3(R2))

≤ M̂t
β̃

for all t ≥ 0 and some constant M̂ > 0 (see [20]). Therefore, by virtue of [[21], Theo-

rem 1.3.5 (P. 15)], [[21], Definition 1.3.1 (P. 12)] for C = I, we deduce that the operator

iΔ + s belongs to �
β̃−1
π

2

(L3(R2)) , which denotes the family of all linear closed opera-

tors A: D(A) ⊂ L3(R2) ®L3(R2) satisfying

σ (A) ⊂ Sπ

2

=
{
z ∈ C\{0}; ∣∣arg z∣∣ ≤ π

2

}
∪ {0},
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and for every π
2 < μ < π there exists a constant Cμ such that∥∥R(z;A)∥∥ ≤ Cμ|z|β̃−1

for all z Î C\Sμ. Thus, it follows from [[19], Proposition 3.6] that Â ∈ �γ
ω(L

3(R2))

for some 0 < ω <
π

2
, where

γ = −1 + 2β̃ = −1
6
.

Let X = L3(R2), we consider the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂q

∂tq

⎡⎣u(t, x) − sin t · e−(1+|u(t, x)|)
∞∫
0

k(t)

∣∣u(t, x)∣∣
1 +

∣∣u(t, x)∣∣dt
⎤⎦ =

−Â

⎡⎣u(t, x) − sin t · e−(1+|u(t, x)|)
∞∫
0

k(t)

∣∣u(t, x)∣∣
1 +

∣∣u(t, x)∣∣dt
⎤⎦

+(t + 1)b · cos(1 +
∣∣u(t, x)∣∣), x ∈ R2,

u(0, x) = u0(x), x ∈ R2,

(4:2)

where t >0, -1 < b < qg and k(·) Î L1(R+, R) and

∞∫
0

∣∣k(t)dt∣∣ ≤ L < 1 .

Set

u(t)(x) = u(t, x),

h(t, u(t))(x) = sin t · e−(1+|u(t, x)|)
∞∫
0

k(t)

∣∣u(t, x)∣∣
1 +

∣∣u(t, x)∣∣dt,
f (t, u(t))(x) = (t + 1)b · cos(1 +

∣∣u(t, x)∣∣).
Then the above Equation (4.2) can be reformulated as the abstract (1.1)-(1.2).

Moreover, for t ≥ 0, we can see∥∥f (t, u(t))∥∥ ≤ ν(t),

where v(t): = (t + 1)b.

It is clear that the function s → ν(s)
(t−s)1+qγ

belongs to L1([0, t], R+) and

t∫
0

ν(s)

(t − s)1+qγ
ds ≤

t∫
0

sb

(t − s)1+qγ
ds

= tb−qγ

1∫
0

sb(1 − s)−1−qγ ds

= tb−qγB(b + 1, − qγ )

→ 0, t → ∞.
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Moreover, for tl, t2 ≥ 0 we have∥∥h(t1, u(t1)) − h(t2, u(t2))
∥∥

=

∥∥∥∥∥∥sin t1 · e−(1+|u(t1, x)|)
∞∫
0

k(t)

∣∣u(t, x)∣∣
1 +

∣∣u(t, x)∣∣dt
− sin t2 · e−(1+|u(t2, x)|)

∞∫
0

k(t)

∣∣u(t, x)∣∣
1 +

∣∣u(t, x)∣∣dt
∥∥∥∥∥∥

≤
[
|sin t1 − sin t2| ·

∥∥∥e−(1+|u(t1, x)|)∥∥∥
+ |sin t2| ·

∥∥∥e−(1+|u(t1, x)|) − e−(1+|u(t2, x)|)∥∥∥]
·

∞∫
0

∣∣k(t)∣∣ dt
≤ [|t1 − t2| +

∥∥u(t1) − u(t2)
∥∥] ·

∞∫
0

∣∣k(t)∣∣ dt
≤ L(|t1 − t2| +

∥∥u(t1) − u(t2)
∥∥).

Consequently, it follows from Theorem 3.2 that, for every u0 ∈ D(Âβ) with

1 > β >
5
6
, the Equation (4.2) has at least a mild solution on BC(R+, X) and all solu-

tions are globally attractive.

For example, if we put

q =
1
2
, b = −1

2
, k(t) = e−2t ,

then the assumptions can be satisfied.
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