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We investigate the value distribution of difference product 𝑓(𝑧)𝑛∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
), for 𝑛 ≥ 2 and 𝑛 = 1, respectively, where 𝑓(𝑧) is a

transcendental entire function of finite order and 𝑎
𝑖
, 𝑐
𝑖
are constants satisfying ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0.

1. Introduction

In this paper, we assume that the reader is familiar with the
basic notions of Nevanlinna’s value distribution theory (see
[1–3]). The notation 𝑆(𝑟, 𝑓) is defined to be any quantity
satisfying 𝑆(𝑟, 𝑓) = 𝑜{𝑇(𝑟, 𝑓)} as 𝑟 → ∞, possibly
outside a set of finite linear measures. In addition, we use
the notation 𝜎(𝑓) to denote the order of growth of the
meromorphic function𝑓(𝑧) and 𝜆(𝑓) to denote the exponent
of convergence of zeros of 𝑓(𝑧).

Hayman proved the following theorem in [4].

Theorem 1. Let𝑓(𝑧) be a transcendental integral function and
let 𝑛 ≥ 2 be an integer; then 𝑓𝑛𝑓(𝑧) assumes all values except
possibly zero infinitely often.

Clunie proved that if 𝑛 = 1, thenTheorem 1 remains valid.
Recently, many papers (see [5–17]) focus on complex

difference. They obtain many new results on difference using
the value distribution theory of meromorphic functions.

In [12], Laine and Yang found a difference analogue of
Hayman’s result as follows.

Theorem 2. Let 𝑓(𝑧) be a transcendental entire function of
finite order and 𝑐 a nonzero complex constant. Then for 𝑛 ≥ 2,
𝑓(𝑧)𝑛𝑓(𝑧 + 𝑐) assumes every nonzero value 𝑎 ∈ C infinitely
often.

Liu and Yang [14] proved the following theorem.

Theorem 3. Let 𝑓(𝑧) be a transcendental entire function of
finite order and let 𝑐 be a nonzero complex constant, Δ𝑓(𝑧) =

𝑓(𝑧 + 𝑐) − 𝑓(𝑧) ̸≡ 0. Then for 𝑛 ≥ 2, 𝑓(𝑧)𝑛Δ𝑓(𝑧) − 𝑝(𝑧) has
infinitely many zeros, where 𝑝(𝑧) ̸≡ 0 is a polynomial in 𝑧.

Chen [6] proved the following theorem.

Theorem 4. Let 𝑓(𝑧) be a transcendental entire function of
finite order and let 𝑐 ∈ C\{0} be a constant satisfying𝑓(𝑧+𝑐) ̸≡
𝑓(𝑧). Set 𝐻

𝑛
(𝑧) = 𝑓(𝑧)𝑛Δ𝑓(𝑧) where Δ𝑓(𝑧) = 𝑓(𝑧 + 𝑐) − 𝑓(𝑧),

and 𝑛 ≥ 2 is an integer. Then the following statements hold.

(i) If 𝑓(𝑧) satisfies 𝜎(𝑓) ̸= 1 or has infinitely many zeros,
then 𝐻

𝑛
(𝑧) has infinitely many zeros.

(ii) If 𝑓(𝑧) has only finitely many zeros and 𝜎(𝑓) = 1, then
𝐻
𝑛
(𝑧) has only finitely many zeros.

It is natural to ask what condition will guarantee that

𝑓(𝑧)
𝑛𝐿 (𝑓) (1)

assumes every nonzero and zero value infinitely often, where
𝐿(𝑓) is a linear 𝑘th order difference operator with varying
shifts, operating on a transcendental entire function of finite
order.

In this paper, we consider the above question for 𝑛 ≥ 2
and 𝑛 = 1, respectively, and obtain the following results.

Theorem 5. Let 𝑓 be a transcendental entire function of
finite order and let 𝑎

𝑖
, 𝑐
𝑖

(𝑖 = 1, . . . , 𝑘) be constant satisfying
∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0 and 𝑐

𝑖
̸= 𝑐
𝑗
when 𝑖 ̸= 𝑗. Set 𝐻

𝑛
(𝑧) =

𝑓(𝑧)𝑛∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
), where 𝑛, 𝑘 ≥ 2 are integers. Then the

following statements hold.
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(i) If 𝑓(𝑧) satisfies 𝜎(𝑓) ̸= 1 or has infinitely many zeros,
then 𝐻

𝑛
(𝑧) has infinitely many zeros.

(ii) If 𝑓(𝑧) has only finitely many zeros and 𝜎(𝑓) = 1, then
𝐻
𝑛
(𝑧) has only finitely many zeros.

(iii) 𝐻
𝑛
(𝑧) − 𝛼(𝑧) has infinitely many zeros, and 𝜆(𝐻

𝑛
(𝑧) −

𝛼(𝑧)) = 𝜎(𝑓), where 𝛼(𝑧) ̸≡ 0 is a small function of 𝑓.

Remark 6. The result of Theorem 5 may be false if 𝑘 = 1. For
example, if𝑓(𝑧) = 𝑒𝑧

2

, we have that𝑓(𝑧)2𝑓(𝑧+𝑐) = 𝑒3𝑧
2
+2𝑐𝑧+𝑐

2

(where 𝑐 ∈ C \ {0} is a constant satisfying 𝑓(𝑧 + 𝑐) ̸≡ 𝑓(𝑧))
has no zero, but 𝑓(𝑧)2(𝑓(𝑧 + 𝑐) − 𝑓(𝑧)) = 𝑒3𝑧

2

(𝑒2𝑐𝑧+𝑐
2

− 1)
has infinitely many zeros. This also shows that the restriction
𝜎(𝑓) = 1 in Theorem 5(ii) is sharp. The following example
shows that the assumption 𝜎(𝑓) ̸= 1 in Theorem 5(i) cannot
be deleted. In fact, let 𝑓(𝑧) = 𝑒𝑧; we have 𝐻

2
= 𝑓2(𝑓(𝑧 + 𝑐) −

𝑓(𝑧)) = 𝑒2𝑧(𝑒𝑧+1 − 𝑒𝑧) = 𝑒3𝑧(𝑒 − 1) ̸= 0.

By (i) and (iii) of Theorem 5, we can easily obtain the
following corollary.

Corollary 7. Let 𝑓 be a transcendental entire function of
finite order and let 𝑎

𝑖
, 𝑐
𝑖

(𝑖 = 1, . . . , 𝑘) be constants satisfying
∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0 and 𝑐

𝑖
̸= 𝑐
𝑗
when 𝑖 ̸= 𝑗. Set 𝐻

𝑛
(𝑧) =

𝑓(𝑧)𝑛∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧+𝑐

𝑖
), where 𝑛, 𝑘 ≥ 2 are integers. If 𝜎(𝑓) ̸= 1 or

has infinitely many zeros, then 𝐻
𝑛
(𝑧) takes every value 𝑎 ∈ C

infinitely often.

Theorem 8. Let 𝑓 be a finite-order transcendental entire
function with a finite Borel exceptional value 𝑑, and let 𝑎

𝑖
, 𝑐
𝑖

be constants satisfying ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0 where ∑

𝑘

𝑖=1
𝑎
𝑖

= 0.
Set𝐻(𝑧) = 𝑓(𝑧) ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧+𝑐

𝑖
).Then the following statements

hold.

(i) 𝐻(𝑧) takes every nonzero value 𝑎 ∈ C infinitely often
and satisfies 𝜆(𝐻 − 𝑎) = 𝜎(𝑓).

(ii) If 𝑑 ̸= 0, then𝐻(𝑧) has no finite Borel exceptional value.
(iii) If 𝑑 = 0, then 0 is also the Borel exceptional value

of 𝐻(𝑧). So that 𝐻(𝑧) has no nonzero finite Borel
exceptional value.

Theorem 9. Let 𝑓 be a transcendental entire function of finite
order and let 𝑎

𝑖
, 𝑐
𝑖
be constants satisfying ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0.

Set 𝐻(𝑧) = 𝑓(𝑧) ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
).

If there exists an infinite sequence {𝑧
𝑛
} satisfying 𝑓(𝑧

𝑛
) =

∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧
𝑛

+ 𝑐
𝑖
) = 0, then 𝐻(𝑧) takes every value 𝑎 ∈ C

(including 𝑎 = 0) infinitely often.

Theorem10. Let𝑓 be a transcendental entire function of finite
order and let 𝑐

𝑖
be distinct constants satisfying∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧+𝑐

𝑖
) ̸≡

0. Set 𝐻(𝑧) = 𝑓(𝑧) ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(z + 𝑐

𝑖
), where 𝑘 ≥ 2 is an integer.

(i) If 𝑓(𝑧) has only finitely many zeros and 𝜎(𝑓) ̸= 1 or has
infinitely many zeros, then 𝐻(𝑧) has infinitely many
zeros.

(ii) If 𝑓(𝑧) has only finitely many zeros and 𝜎(𝑓) = 1, then
𝐻(𝑧) has only finitely many zeros.

Example 11. An entire function 𝑓(𝑧) = 𝑒𝑧
2

satisfies
Theorem 8 (iii), it has Borel exceptional value 0, and let 𝑎

1
=

𝑎
2

= 1, 𝑎
3

= −2, 𝑎
4

= ⋅ ⋅ ⋅ = 𝑎
𝑘

= 0, 𝑐
1

= 1, 𝑐
2

= −1, and 𝑐
3

= 0.
Then

𝐻 (𝑧) = 𝑓 (𝑧) (𝑓 (𝑧 + 1) + 𝑓 (𝑧 − 1) − 2𝑓 (𝑧))

= 𝑒2𝑧
2

((𝑒 +
1

𝑒
) 𝑒2𝑧 − 2)

(2)

has also the Borel exceptional value 0 since 𝜆(𝐻) = 1 <
𝜎(𝐻) = 2.

Simultaneously, 𝑓(𝑧) = 𝑒𝑧
2

also satisfies Theorem 10(i),
although 𝑓(𝑧) has no zero, we can also get 𝐻(𝑧) has infinitely
many zeros since 𝜎(𝑓) ̸= 1.

Example 12. An entire function 𝑓(𝑧) = 𝑒𝑧 + 1 satisfies
Theorem 8(ii), it has Borel exceptional value 1, and let 𝑎

1
=

𝑎
2

= 1, 𝑎
3

= −2, 𝑎
4

= ⋅ ⋅ ⋅ = 𝑎
𝑘

= 0, 𝑐
1

= 1, 𝑐
2

= −1, and 𝑐
3

= 0.
Then

𝐻 (𝑧) = 𝑓 (𝑧) (𝑓 (𝑧 + 1) + 𝑓 (𝑧 − 1) − 2𝑓 (𝑧))

= 𝑒𝑧 (𝑒𝑧 + 1) (𝑒 +
1

𝑒
− 2)

(3)

has no finite Borel exceptional value.

2. Some Lemmas

Lemma 13 (see [9]). Let 𝑓(𝑧) be a meromorphic function of
finite order, 𝑐 ∈ C \ {0}, 𝛿 < 1. Then

𝑚 (𝑟,
𝑓 (𝑧 + 𝑐)

𝑓 (𝑧)
) = 𝑜 (

𝑇 (𝑟 + |𝑐| , 𝑓)

𝑟𝛿
) = 𝑆 (𝑟, 𝑓) , (4)

for all 𝑟 outside an exceptional set of finite logarithmic mea-
sures.

Lemma 14 (see [7]). Let 𝑓(𝑧) be a nonconstant, finite-order
meromorphic solution of

𝑓𝑛𝑃
1

(𝑧, 𝑓) = 𝑄
1

(𝑧, 𝑓) , (5)

where 𝑃
1
(𝑧, 𝑓), 𝑄

1
(𝑧, 𝑓) are difference polynomials in 𝑓(𝑧)

with meromorphic coefficients 𝑎
𝑗
(𝑧) (𝑗 = 1, . . . , 𝑠), and let

𝛿 < 1. If the degree of 𝑄
1
(𝑟, 𝑓) as a polynomial in 𝑓(𝑧) and

its shifts is at most 𝑛, then

𝑚 (𝑟, 𝑃
1

(𝑧, 𝑓)) = 𝑜 (
𝑇 (𝑟 + |𝑐| , 𝑓)

𝑟𝛿
) + 𝑜 (𝑇 (𝑟, 𝑓))

+ 𝑂 (
𝑠

∑
𝑗=1

𝑚 (𝑟, 𝑎
𝑗
))

= 𝑆 (𝑟, 𝑓) + 𝑂 (
𝑠

∑
𝑗=1

𝑚 (𝑟, 𝑎
𝑗
)) ,

(6)

for all 𝑟 outside an exceptional set of finite logarithmic
measures.
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Lemma 15 (see [3]). Let 𝑓
𝑗
(𝑧) (𝑗 = 1, . . . , 𝑛) (𝑛 ≥ 2) be

meromorphic functions, and let 𝑔
𝑗
(𝑧) (𝑗 = 1, . . . , 𝑛) be entire

functions that satisfy the following:

(i) ∑
𝑛

𝑗=1
𝑓
𝑗
(𝑧)𝑒𝑔𝑗(𝑧) ≡ 0;

(ii) when 1 ≤ 𝑗 < 𝑘 ≤ 𝑛, 𝑔
𝑗
(𝑧) − 𝑔

𝑘
(𝑧) is not a constant;

(iii) when 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ ℎ < 𝑘 ≤ 𝑛,

𝑇 (r, 𝑓
𝑗
) = 𝑜 {𝑇 (𝑟, 𝑒𝑔ℎ−𝑔𝑘)} (𝑟 → ∞, 𝑟 ∉ 𝐸) , (7)

where 𝐸 ⊂ (1, ∞) is of finite linear measure or finite
logarithmic measure. Then 𝑓

𝑗
(𝑧) ≡ 0 (𝑗 = 1, . . . , 𝑛).

Lemma 16. Let 𝑓 be a transcendental entire function of finite
order and let 𝑎

𝑖
, 𝑐
𝑖
be constants satisfying ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0.

Then 𝐻
𝑛
(𝑧) = 𝑓(𝑧)𝑛∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) (𝑛 ≥ 1) is transcendental.

Proof. If 𝐻
𝑛
(𝑧) ≡ 0, then ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ≡ 0 which

contradicts our condition ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0. Now we

suppose that

𝐻
𝑛

(𝑧) = 𝑓(𝑧)
𝑛

𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
) = 𝑃 (𝑧) , (8)

where 𝑃(𝑧) ̸≡ 0 is a polynomial. Applying Lemma 14 to (8),
we obtain that

𝑇 (𝑟,
𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
)) = 𝑚 (𝑟,

𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
)) = 𝑆 (𝑟, 𝑓) .

(9)

Thus by (8), (9), and the first fundamental theorem of
Nevanlinna theory, we obtain that

𝑇 (𝑟, 𝑓(𝑧)
𝑛) = 𝑇 (𝑟,

𝑃 (𝑧)

∑
𝑘

𝑖=1
𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
)

) = 𝑆 (𝑟, 𝑓) . (10)

Since 𝑛 ≥ 1, this is a contradiction. Hence 𝐻
𝑛
(𝑧) is a

transcendental entire function.

Lemma 17 (see [17]). Let 𝑓(𝑧) be a nonconstant finite-order
meromorphic function and let 𝑐 ̸= 0 be an arbitrary complex
number. Then

𝑇 (𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) . (11)

3. Proof of Theorems 5 and 10

Proof of Theorem 5. (i) If 𝑓(𝑧) has infinitely many zeros, then
𝐻
𝑛
(𝑧) has infinitely many zeros since ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) is an

entire function and ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0.

Now we suppose that 𝑓(𝑧) has only finitely many zeros
and 𝜎(𝑓) ̸= 1. Thus since 𝑓 is transcendental, 𝑓(𝑧) can be
written as follows:

𝑓 (𝑧) = 𝑔 (𝑧) 𝑒ℎ(𝑧), (12)

where 𝑔(𝑧)( ̸≡ 0), ℎ(𝑧) are polynomials, deg ℎ(𝑧) ≥ 2. Thus

𝑓 (𝑧 + 𝑐
𝑖
) = 𝑔 (𝑧 + 𝑐

𝑖
) 𝑒ℎ(𝑧+𝑐𝑖). (13)

Now we suppose that 𝐻
𝑛
(𝑧) has only finitely many zeros. By

Lemma 16, we see that 𝐻
𝑛
(𝑧) is transcendental. So 𝐻

𝑛
(𝑧) can

be written as

𝐻
𝑛

(𝑧) = 𝑔(𝑧)
𝑛

𝑘

∑
𝑖=1

𝑎
𝑖
𝑔 (𝑧 + 𝑐

𝑖
) 𝑒𝑛ℎ(𝑧)+ℎ(𝑧+𝑐𝑖)

= 𝑔
1

(𝑧) 𝑒ℎ1(𝑧),

(14)

where 𝑔
1
(𝑧)( ̸≡ 0), ℎ

1
(𝑧) are polynomials, deg ℎ

1
(𝑧) ≥ 1. Set

ℎ (𝑧) = 𝑏
𝑚

𝑧𝑚 + 𝑏
𝑚−1

𝑧𝑚−1 + ⋅ ⋅ ⋅ + 𝑏
0
, 𝑏
𝑚

̸= 0, (15)

where 𝑏
𝑚

, . . . , 𝑏
0
are constants and 𝑚 ≥ 2. Thus

ℎ (𝑧 + 𝑐
𝑖
) = 𝑏
𝑚

𝑧𝑚 + (𝑏
𝑚

𝑚𝑐
𝑖

+ 𝑏
𝑚−1

) 𝑧𝑚−1

+𝑏
𝑚−2

𝑧𝑚−2 + ⋅ ⋅ ⋅ + 𝑏
0
,

(16)

where 𝑏
𝑚−2

, . . . , 𝑏
0
are constants. Since 𝑚 ≥ 2 and

ℎ (𝑧 + 𝑐
𝑖
) − ℎ (𝑧 + 𝑐

𝑗
) = 𝑏
𝑚

𝑚 (𝑐
𝑖

− 𝑐
𝑗
) 𝑧𝑚−1 + ⋅ ⋅ ⋅ (𝑖 ̸= 𝑗) ,

(17)

we see that 𝑛ℎ(𝑧) + ℎ(𝑧 + 𝑐
𝑖
) − (𝑛ℎ(𝑧) + ℎ(𝑧 + 𝑐

𝑗
)) (𝑖 ̸= 𝑗) are

not constants.

Case 1. If for any 𝑖, 𝑛ℎ(𝑧) + ℎ(𝑧 + 𝑐
𝑖
) − ℎ
1
(𝑧) are not constants,

then by Lemma 15 and (14), we see that

𝑎
𝑖
𝑔(𝑧)
𝑛𝑔 (𝑧 + 𝑐

𝑖
) ≡ 0, 𝑔

1
(𝑧) ≡ 0, (18)

which is a contradiction.

Case 2. If there exists a 𝑗 satisfying 𝑛ℎ(𝑧)+ℎ(𝑧+𝑐
𝑗
)−ℎ
1
(𝑧) = 𝛿

where 𝛿 is a constant, then by (14), we have

(𝑔(𝑧)
𝑛𝑎
𝑗
𝑔 (𝑧 + 𝑐

𝑗
) − 𝑒−𝛿𝑔

1
(𝑧)) 𝑒𝑛ℎ(𝑧)+ℎ(𝑧+𝑐𝑗)

+ 𝑔(𝑧)
𝑛∑
𝑖 ̸= 𝑗

𝑎
𝑖
𝑔 (𝑧 + 𝑐

𝑖
) 𝑒𝑛ℎ(𝑧)+ℎ(𝑧+𝑐𝑖) = 0.

(19)

By (19), Lemma 15, and 𝑘 ≥ 2, we obtain that

𝑎
𝑖
𝑔(𝑧)
𝑛𝑔 (𝑧 + 𝑐

𝑖
) ≡ 0 (𝑖 ̸= 𝑗) ,

𝑔(𝑧)
𝑛𝑎
𝑗
𝑔 (𝑧 + 𝑐

𝑗
) − 𝑒−𝛿𝑔

1
(𝑧) ≡ 0,

(20)

which is also a contradiction. Hence, 𝐻
𝑛
(𝑧) has infinitely

many zeros.
(ii) Suppose that 𝑓(𝑧) has only finitely many zeros and

𝜎(𝑓) = 1. Then 𝑓(𝑧) can be written as

𝑓 (𝑧) = 𝑔
2

(𝑧) 𝑒𝑏𝑧+𝑑, (21)
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where𝑔
2
(𝑧)( ̸≡ 0) is a polynomial and 𝑏( ̸= 0),𝑑 are constants.

Thus

𝑓 (𝑧 + 𝑐
𝑖
) = 𝑔
2

(𝑧 + 𝑐
𝑖
) 𝑒𝑏𝑐𝑖𝑒𝑏𝑧+𝑑,

𝐻
𝑛

(𝑧) =
𝑘

∑
𝑖=1

𝑎
𝑖
𝑔
2
(𝑧)
𝑛𝑔
2

(𝑧 + 𝑐
𝑖
) 𝑒𝑏𝑐𝑖𝑒(𝑛+1)(𝑏𝑧+𝑑).

(22)

By the condition∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧+𝑐

𝑖
) ̸≡ 0, we see that∑

𝑘

𝑖=1
𝑎
𝑖
𝑔
2
(𝑧+

𝑐
𝑖
)𝑒𝑏𝑐𝑖 ̸≡ 0.
Hence 𝐻

𝑛
(𝑧) has only finitely many zeros.

(iii) Case 1. 𝜎(𝑓) = 0. From 0 ≤ 𝜆(𝐻
𝑛
(𝑧) − 𝛼(𝑧)) ≤

𝜎(𝐻
𝑛
(𝑧) − 𝛼(𝑧)) ≤ 𝜎(𝑓) = 0, we get 𝜆(𝐻

𝑛
(𝑧) − 𝛼(𝑧)) =

𝜎(𝐻
𝑛
(𝑧) − 𝛼(𝑧)) = 𝜎(𝑓) = 0. If 𝐻

𝑛
(𝑧) − 𝛼(𝑧) has only finitely

zeros, then 𝐻
𝑛
(𝑧) − 𝛼(𝑧) can be written as

𝐻
𝑛

(𝑧) − 𝛼 (𝑧) = 𝑝 (𝑧) , i.e., 𝐻
𝑛

(𝑧) = 𝑝 (𝑧) + 𝛼 (𝑧) , (23)

where 𝑝(𝑧) is a polynomial. By using a similar method as in
the proof of Lemma 16, we get a contradiction. Thus 𝐻

𝑛
(𝑧) −

𝛼(𝑧) has infinitely many zeros.
Case 2. 𝜎(𝑓) > 0. Suppose on contrary to the assertion

that 𝜆(𝐻
𝑛
(𝑧) − 𝛼(𝑧)) < 𝜎(𝑓). If 𝑓(𝑧)𝑛∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) − 𝛼(𝑧) ≡

0, that is, 𝑓(𝑧)𝑛∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ≡ 𝛼(𝑧). By using a similar

method as in the proof of Lemma 16, we get a contradiction.
So we have 𝑓(𝑧)𝑛∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) − 𝛼(𝑧) ̸≡ 0. Thus, by

Hadamard’s theorem, 𝐻
𝑛
(𝑧) − 𝛼(𝑧) can be written as

𝐻
𝑛

(𝑧) − 𝛼 (𝑧) = 𝑓(𝑧)
𝑛

𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
) − 𝛼 (𝑧)

=
𝑃 (𝑧)

𝑄 (𝑧)
𝑒ℎ(𝑧),

(24)

where ℎ(𝑧) is a polynomial and𝑃(𝑧)( ̸≡ 0), 𝑄(𝑧)( ̸≡ 0) are the
canonical products formed by zeros and poles of𝐻

𝑛
(𝑧)−𝛼(𝑧),

respectively, such that

𝜆 (𝑃 (𝑧)) = 𝜎 (𝑃 (𝑧)) = 𝜆 (𝐻
𝑛

(𝑧) − 𝛼 (𝑧)) < 𝜎 (𝑓) = 𝜎. (25)

Since 𝑇(𝑟, 𝛼(𝑧)) = 𝑆(𝑟, 𝑓), we get that

𝜆 (𝑄 (𝑧)) = 𝜎 (𝑄 (𝑧)) = 𝜆 (
1

𝛼 (𝑧)
) < 𝜎 (𝑓) = 𝜎. (26)

We set 𝑔(𝑧) = 𝑃(𝑧)/𝑄(𝑧); then from (25) and (26), we get

𝜎 (𝑔) = max {𝜎 (𝑃 (𝑧)) , 𝜎 (𝑄 (𝑧))} < 𝜎 (𝑓) = 𝜎. (27)

Differentiating (24) and eliminating 𝑒ℎ(𝑧), we get

𝑓(𝑧)
𝑛−1𝐹 (𝑧, 𝑓) = 𝛼 (𝑧) 𝑔 (𝑧) − 𝛼 (𝑧) (𝑔 (𝑧) ℎ (𝑧) + 𝑔 (𝑧)) ,

(28)

where

𝐹 (𝑧, 𝑓) = 𝑛𝑓 (𝑧) 𝑔 (𝑧)
𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
)

+ 𝑓 (𝑧) 𝑔 (𝑧)
𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
)

− (𝑔 (𝑧) ℎ (𝑧) + 𝑔 (𝑧)) 𝑓 (𝑧)
𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
) .

(29)

Case 2.1. 𝐹(𝑧, 𝑓) ≡ 0. Then from (28), we have

𝛼 (𝑧) 𝑔 (𝑧) − 𝛼 (𝑧) (𝑔 (𝑧) ℎ (𝑧) + 𝑔 (𝑧)) ≡ 0. (30)

By integrating, we have

𝛼 (𝑧) = 𝑐𝑔 (𝑧) 𝑒ℎ(𝑧), (31)

where 𝑐 is a nonzero constant. From (24) and (31), we have

𝑓(𝑧)
𝑛

𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
) = (1 +

1

𝑐
) 𝛼 (𝑧) . (32)

By using a similar method as in the proof of Lemma 16, we
get a contradiction.

Case 2.2. 𝐹(𝑧, 𝑓) ̸≡ 0. Let

𝐹∗ (𝑧, 𝑓) =
𝐹 (𝑧)

𝑓(𝑧)2
= 𝑛

𝑓 (𝑧)

𝑓 (𝑧)
𝑔 (𝑧)

𝑘

∑
𝑖=1

𝑎
𝑖

𝑓 (𝑧 + 𝑐
𝑖
)

𝑓 (𝑧)

+ 𝑔 (𝑧)
𝑘

∑
𝑖=1

𝑎
𝑖

𝑓 (𝑧 + 𝑐
𝑖
)

𝑓 (𝑧 + 𝑐
𝑖
)

⋅
𝑓 (𝑧 + 𝑐

𝑖
)

𝑓 (𝑧)

− (𝑔 (𝑧) ℎ (𝑧) + 𝑔 (𝑧))
𝑘

∑
𝑖=1

𝑎
𝑖

𝑓 (𝑧 + 𝑐
𝑖
)

𝑓 (𝑧)
.

(33)

Then from (28), we have

𝑓(𝑧)
𝑛+1𝐹∗ (𝑧, 𝑓) = 𝛼 (𝑧) 𝑔 (𝑧) − 𝛼 (𝑧) (𝑔 (𝑧) ℎ (𝑧) + 𝑔 (𝑧)) .

(34)

From Lemma 13 and Lemma 14, we have

𝑚 (𝑟, 𝑓(𝑧)
𝑘𝐹∗ (𝑧, 𝑓)) ≤ 𝑆 (𝑟, 𝑓) + 𝑂 (𝑚 (𝑟, 𝑔))

+ 𝑂 (
𝑘

∑
𝑖=1

𝑚 (𝑟,
𝑓 (𝑧 + 𝑐

𝑖
)

𝑓 (𝑧 + 𝑐
𝑖
)

)) , 𝑘 = 1, 2.
(35)

Now for any given 𝜀 (0 < 𝜀 < 1), we obtain from Lemma 17
and (27) that

𝑚 (𝑟,
𝑓 (𝑧 + 𝑐

𝑖
)

𝑓 (𝑧 + 𝑐
𝑖
)

) = 𝑆 (𝑟, 𝑓 (𝑧 + 𝑐
𝑖
))

= 𝑆 (𝑟, 𝑓 (𝑧)) , 𝑇 (𝑟, 𝑔) = 𝑂 (𝑟𝜎−𝜀) .

(36)
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It follows from (35) and (36) that

𝑚 (𝑟, 𝑓 (𝑧) 𝐹∗ (𝑧, 𝑓)) = 𝑂 (𝑟𝜎−𝜀) + 𝑆 (𝑟, 𝑓) , (37)

𝑚 (𝑟, 𝑓(𝑧)
2𝐹∗ (𝑧, 𝑓)) = 𝑂 (𝑟𝜎−𝜀) + 𝑆 (𝑟, 𝑓) . (38)

We obtain from the definition of 𝐹(𝑧, 𝑓) that

𝑁 (𝑟, 𝐹 (𝑧, 𝑓)) = 𝑂 (𝑁 (𝑟, 𝑔 (𝑧))) = 𝑂 (𝑟𝜎−𝜀) . (39)

Thus from (38) and (39), we have

𝑇 (𝑟, 𝑓 (𝑧)
2𝐹∗ (𝑧, 𝑓) ) = 𝑇 (𝑟, 𝐹 (𝑧, 𝑓))

= 𝑂 (𝑟𝜎−𝜀) + 𝑆 (𝑟, 𝑓) .
(40)

Note that a zero of 𝑓(𝑧) which is not a pole of 𝑔(𝑧) is a pole
of 𝑓(𝑧)𝐹∗(𝑧, 𝑓) with the multiplicity at most 1, so from (34)
and (27) we get that, for 𝜀 (> 0) sufficiently small,

(𝑛 − 1) 𝑁 (𝑟,
1

𝑓 (𝑧)
)

≤ 𝑁 (𝑟,
1

𝛼 (𝑧) 𝑔 (𝑧) − 𝛼 (𝑧) (𝑔 (𝑧) ℎ (𝑧) + 𝑔 (𝑧))
)

+ 𝑂 (𝑁 (𝑟, 𝑔 (𝑧))) = 𝑂 (𝑟𝜎−𝜀) + 𝑆 (𝑟, 𝑓) .

(41)

Hence from (33) and the above formula, we have

𝑁 (𝑟, 𝑓 (𝑧) 𝐹∗ (𝑧, 𝑓)) = 𝑂 (𝑁 (𝑟,
1

𝑓 (𝑧)
) + 𝑁 (𝑟, 𝑔 (𝑧)))

= 𝑂 (𝑟𝜎−𝜀) + 𝑆 (𝑟, 𝑓) .

(42)

It follows from (37) and (42) that

𝑇 (𝑟, 𝑓 (𝑧) 𝐹∗ (𝑧, 𝑓)) = 𝑂 (𝑟𝜎−𝜀) + 𝑆 (𝑟, 𝑓) . (43)

Therefore, from (40) and (43), we have

𝑇 (𝑟, 𝑓 (𝑧)) = 𝑂 (𝑟𝜎−𝜀) + 𝑆 (𝑟, 𝑓) , (44)

which contradicts the assumption that 𝑓(𝑧) is a transcenden-
tal entire function of finite order 𝜎. This completes the proof
of Theorem 5.

By using the same methods as in the proof of Theorem 5
(i) and (ii), we complete the proof of Theorem 10.

4. Proof of Theorem 8

Proof. Firstly, we prove (ii) and (iii). (ii) Suppose that 𝑑( ̸= 0)
is the Borel exceptional value of 𝑓(𝑧). Then 𝑓(𝑧) can be
written as follows:

𝑓 (𝑧) = 𝑑 + 𝑝 (𝑧) 𝑒𝛼𝑧
𝑘

, (45)

where 𝑘 is a positive integer, 𝛼 ( ̸= 0) is a constant, and𝑝(𝑧)( ̸≡
0) is an entire function satisfying

𝜎 (𝑝) < 𝜎 (𝑓) = 𝑘. (46)

Thus

𝑓 (𝑧 + 𝑐
𝑖
) = 𝑑 + 𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧) 𝑒𝛼𝑧

𝑘

, (47)

where 𝑝
𝑖
( ̸≡ 0) is an entire function satisfying 𝜎(𝑝

𝑖
) = 𝑘 − 1.

So by using ∑
𝑘

𝑖=1
𝑎
𝑖

= 0, we have

𝐻 (𝑧) =
𝑘

∑
𝑖=1

𝑎
𝑖
(𝑑 + 𝑝 (𝑧) 𝑒𝛼𝑧

𝑘

) (𝑑 + 𝑝 (𝑧 + 𝑐
𝑖
) 𝑝
𝑖
(𝑧) 𝑒𝛼𝑧

𝑘

)

=
𝑘

∑
𝑖=1

𝑑𝑎
𝑖
𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧) 𝑒𝛼𝑧

𝑘

+
𝑘

∑
𝑖=1

𝑎
𝑖
𝑝 (𝑧) 𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧) 𝑒2𝛼𝑧

𝑘

.

(48)

Since ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) ̸≡ 0, we see that

𝑘

∑
𝑖=1

𝑎
𝑖
𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧) ̸≡ 0. (49)

By (48) and (49), we see that

𝜎 (𝐻) = 𝜎 (𝑓) = 𝑘. (50)

If 𝐻(𝑧) has the Borel exceptional value 𝑑∗, then

𝐻 (𝑧) = 𝑑∗ + 𝑝∗ (𝑧) 𝑒𝛽𝑧
𝑘

, (51)

where 𝛽( ̸= 0) is a constant and 𝑝∗(𝑧)( ̸≡ 0) is an entire
function satisfying

𝜎 (𝑝∗ (𝑧)) < 𝜎 (𝐻) = 𝑘. (52)

By (48) and (51), we have

𝑘

∑
𝑖=1

𝑑𝑎
𝑖
𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧) 𝑒𝛼𝑧

𝑘

+
𝑘

∑
𝑖=1

𝑎
𝑖
𝑝 (𝑧) 𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧) 𝑒2𝛼𝑧

𝑘

− 𝑝∗ (𝑧) 𝑒𝛽𝑧
𝑘

− 𝑑∗ = 0.

(53)

Case 1. If𝛽 ̸= 2𝛼 and𝛽 ̸= 𝛼, then by Lemma 15 and (53), we can
obtain that

𝑘

∑
𝑖=1

𝑑𝑎
𝑖
𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧) ≡ 0. (54)

This contradicts with (49).
Case 2. If 𝛽 = 2𝛼 or 𝛽 = 𝛼, then using the same method as
above, we can also obtain a contradiction. Hence 𝐻(𝑧) has no
Borel exceptional value.

(iii) Suppose that 𝑑 = 0 is the Borel exceptional value of
𝑓(𝑧). Using the same method as above, we obtain

𝐻 (𝑧) =
𝑘

∑
𝑖=1

𝑎
𝑖
𝑝 (𝑧) 𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧) 𝑒2𝛼𝑧

𝑘

. (55)
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From (49) and

𝜎 (
𝑘

∑
𝑖=1

𝑎
𝑖
𝑝 (𝑧) 𝑝 (𝑧 + 𝑐

𝑖
) 𝑝
𝑖
(𝑧)) < 𝑘, (56)

we see that 0 is the finite Borel exceptional value of 𝐻(𝑧).
Thus, 𝐻(𝑧) has no nonzero finite Borel exceptional value.

Finally, we prove (i). By the assertion of (ii) and (iii), we
see that if𝑓(𝑧) has the finite Borel exceptional value, then any
nonzero finite value 𝑎must not be the Borel exceptional value
of𝐻(𝑧). Hence𝐻(𝑧) takes the value 𝑎 infinitely often. By (50),
we obtain 𝜆(𝐻 − 𝑎) = 𝜎(𝐻) = 𝜎(𝑓).

5. Proof of Theorem 9

Proof. Clearly, if 𝑎 = 0, then 𝐻(𝑧) has infinitely many zeros
since ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧+𝑐

𝑖
) ( ̸≡ 0) is an entire function and 𝑓(𝑧) has

infinitely many zeros.
Nowwe suppose that 𝑎 ̸= 0. Suppose that𝐻(𝑧)−𝑎 has only

finitely many zeros. Then 𝐻(𝑧) − 𝑎 can be written as follows:

𝐻 (𝑧) − 𝑎 =
𝑘

∑
𝑖=1

𝑎
𝑖
𝑓 (𝑧) 𝑓 (𝑧 + 𝑐

𝑖
) − 𝑎 = 𝑝 (𝑧) 𝑒𝑞(𝑧), (57)

where 𝑝(𝑧), 𝑞(𝑧) are polynomials. By Lemma 16, we see that
𝑝(𝑧) ̸≡ 0, deg 𝑞(𝑧) ≥ 1. Differentiating (57) and eliminating
𝑒𝑞(𝑧), we obtain

(𝑓 (𝑧) ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
))


𝑓 (𝑧) ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
)

=
𝑝 (𝑧) + 𝑝 (𝑧) 𝑞 (𝑧)

𝑝 (𝑧)

× (1 −
𝑎

𝑓 (𝑧) ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓 (𝑧 + 𝑐

𝑖
)

) .

(58)

Since there exists an infinite sequence {𝑧
𝑛
} satisfying 𝑓(𝑧

𝑛
) =

∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧
𝑛

+ 𝑐
𝑖
) = 0, we see that there is a sufficiently large

point 𝑧
0
such that 𝑓(𝑧

0
) = ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧
0

+ 𝑐
𝑖
) = 0 and 𝑝(𝑧

0
) +

𝑝(𝑧
0
)𝑞(𝑧
0
) ̸= 0, 𝑝(𝑧

0
) ̸= 0 at the same time.

From observation, we have the following:
(𝑓(𝑧) ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
))


/𝑓(𝑧) ∑
𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧+𝑐

𝑖
) has a simple pole

at 𝑧
0
and 𝑎/𝑓(𝑧) ∑

𝑘

𝑖=1
𝑎
𝑖
𝑓(𝑧 + 𝑐

𝑖
) has pole at 𝑧

0
of multiplicity

at least 2.This shows that (58) is a contradiction. Hence 𝐻(𝑧)
takes every value 𝑎 infinitely often.
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