
Research Article
Discrete and Continuous Optimization Based on
Hierarchical Artificial Bee Colony Optimizer

Lianbo Ma,1,2 Kunyuan Hu,1 Yunlong Zhu,1 Ben Niu,3,4,5 Hanning Chen,1 and Maowei He1,2

1 Department of Information Service & Intelligent Control, Shenyang Institute of Automation,
Chinese Academy of Sciences, Shenyang 110016, China

2University of Chinese Academy of Sciences, Beijing 100039, China
3 College of Management, Shenzhen University, Shenzhen 518060, China
4Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong
5Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China

Correspondence should be addressed to Ben Niu; drniuben@gmail.com

Received 11 October 2013; Revised 23 January 2014; Accepted 4 February 2014; Published 17 March 2014

Academic Editor: Roberto Natalini

Copyright © 2014 Lianbo Ma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC), to tackle
complex high-dimensional problems. In the proposed multilevel model, the higher-level species can be aggregated by the
subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the
part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same
time, the comprehensive learning method with crossover and mutation operator is applied to enhance the global search ability
between species. Experiments are conducted on a set of 20 continuous and discrete benchmark problems.The experimental results
demonstrate remarkable performance of the HABC algorithm when compared with other six evolutionary algorithms.

1. Introduction

Swarm intelligence (SI) is a new paradigm of artificial intel-
ligence system whereby small entities are working together
to produce an intelligent behaviour from simple rules [1–
4]. Artificial bee colony algorithm (ABC) is one of the most
popular members of the family of swarm intelligence, which
simulates the social foraging behavior of a honeybee swarm
[5, 6]. Due to its simple arithmetic and good robustness,
the ABC algorithm has been widely used in solving many
numerical optimizations [7–9] and engineering optimization
problems [10–14].

However, when solving complex multimodal problems,
ABC algorithm suffers from the following drawbacks [8].
(1) It is easily trapped into local minimums in the early
generations, which leads to low population diversity in
successive generations. (2) With the dimension increasing,
the information exchange of each individual is limited in
a random dimension, resulting in a slow convergence rate.
(3) Due to the random selection of the neighbor bee and

dimensions, food sources with higher fitness are not utilized,
which influences the ability of global search.

Moreover, compared to the huge in-depth studies of
other evolutionary and swarm intelligence algorithms, such
as evolutionary algorithm (EA) [15–18] and particle swarm
optimization (PSO) [19–23], how to improve the diversity of
swarm or overcome the local convergence of ABC is still a
challenging to the researchers in optimization domain.

In order to improve the performance of ABC on com-
plex and high-dimensional problems, in this paper, a novel
optimization algorithm called hierarchical ABCoptimization
(HABC) is proposed to extend the topology of original
ABC algorithm from flat (one level) to hierarchical (multiple
levels), which adopts multipattern cooperative evolutionary
strategies.

It is noted that the hierarchical coevolutionary scheme
has been incorporated in these intelligent algorithms. For
instance, a hierarchical version of PSO was proposed in
[24] on IEEE Trans on Evol Comp, in which a tree type
hierarchy was incorporated in PSO. Chen et al. [25] proposed
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a hierarchical swarm model where each subswarm evolved
based on original PSO. Peng and Lu [26] presented a similar
PSO framework, in which several swarms evolve in parallel
with mutation operator.This paper further extends the above
studies based on hierarchical frameworks withmore complex
strategies, such as variables decomposing approach, random
grouping of variables, and cross and mutation operation. In
particular, instead of simply employing original SI algorithm
in parallel like other hierarchical algorithms, the HABC
employing the variables decomposing strategy with random
grouping technique divides the complex vectors into smaller
components assigned to different subswarms, which achieves
a significant improvement of solving high-dimensional prob-
lem.

In terms of neighborhood concept, Kennedy andMendes
[27] analyzed effects of different topologies-based PSO algo-
rithms. In 2004, a fully informed PSO using topologies and
index-based neighborhood was proposed in [28]. Recently,
Qu et al. [29] developed a neighborhood-based mutation
strategy and integrated it with various nichingDE algorithms,
in which various topology types were considered. A distance-
based locally informed particle swarm model was proposed
in [30], which eliminates the need to specify any niching
parameter and enhance the fine search ability of PSO.
Obviously, many topology patterns can be used in different
levels of ourmode. In thiswork,we employ themost common
topology, ring type, as the main structure of the proposed
model.

The proposed HABC model is inherently different from
others in the following aspects.

(1) The cooperative coevolving approach based on
divide-and-conquer strategy enhances the local
search ability (exploitation); that is, by applying this
method, the complex high-dimensional vectors can
be decomposed into smaller components that are
assigned to the lower hierarchy.

(2) The traditional evolution operators, namely, the
crossover and mutation, are applied to interaction of
different species instead of the traditional individ-
ual exchange between populations. In this case, the
neighbor bees with higher fitness can be chosen to
crossover and mutation, which effectively enhances
the global search ability and convergence speed to the
global best solution (exploration).

Extensive studies based on a suit of 20 benchmark
functions (including both continuous and discrete cases)
are conducted to evaluate the performance of HABC. For
comparison purposes, we also implemented the particle
swarm optimization algorithm (PSO), cooperative particle
swarm optimization algorithm (CPSO), artificial bee colony
algorithm (ABC), cooperative artificial bee colony algorithm
(CABC), covariance matrix adaptation evolution strategy
(CMA-ES), and HABC variants on these functions. The
experimental results are encouraging: the proposed HABC
algorithm achieved remarkable search performance in terms
of solution accuracy and convergence rate on almost all
benchmark functions.

The rest of the paper is organized as follows. Section 2
describes the canonical ABC algorithm. In Section 3, the
proposed hierarchical artificial bee colony (HABC) model
is given. Section 4 tests the algorithm on the benchmarks
and illustrates the results. Finally, Section 5 outlines the
conclusions.

2. Canonical ABC Algorithm

The ABC algorithm is a relatively new SI algorithm by sim-
ulating the foraging behaviors of honey bee swarm, initially
proposed by Karaboga and further developed by Basturk
and Li et al. [8, 9, 31, 32]. In ABC, the colony of artificial
bees are classified as three types: employed bees, onlookers,
and scouts. Employed bees exploit the specific food sources;
meanwhile, they pass the food information to onlooker
bees. Onlooker bees choose good food sources based on the
received information and then further exploit the food near
their selected food source. The employed bee will become a
scout when its food source has been abandoned. The funda-
mental mathematic representations are listed as follows.

In initialization phase, a group of food sources are
generated randomly in the search space using the following
equation:

𝑥
𝑖,𝑗

= 𝑥
min
𝑗

+ rand (0, 1) (𝑥max
𝑗

− 𝑥
min
𝑗

) , (1)

where 𝑖 = 1, 2, . . . , SN and 𝑗 = 1, 2, . . . , 𝐷. SN is the number
of food sources.𝐷 is the number of variables, that is, problem
dimension. 𝑥min

𝑗
and 𝑥max

𝑗
are the lower upper and upper

bounds of the 𝑗th variable, respectively.
In the employed bees’ phase, the neighbor food source

(candidate solution) can be generated from the old food
source of each employed bee in its memory using the
following expression:

V
𝑖,𝑗

= 𝑥
𝑖,𝑗
+ 𝜑 (𝑥

𝑖,𝑗
− 𝑥
𝑘,𝑗
) , (2)

where 𝑘 is a randomly selected food source and must be
different from 𝑖; 𝑗 is a randomly chosen indexes;𝜙 is a random
number in range [−1, 1].

In the onlooker bees’ phase, a onlooker bee selects a food
source depending on the probability value associated with
that food source, and 𝑃

𝑖
can be calculated as follows:

𝑃
𝑖
=

fitness
𝑖

∑
SN
𝑗=1

fitness
𝑗

, (3)

where fitness
𝑖
is the fitness value of 𝑗th solution.

In scout bees’ phase, if a food source cannot be improved
further through a predetermined cycle (called “limit” in
ABC), the food source is supposed to be abandoned. The
employed bee subsequently become a scout. A new food
source will be produced randomly in the search space using
(1).

The employed, onlooker, and scout bees’ phases will
recycle until the termination condition is met.
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Figure 1: Hierarchical optimization model.

3. Hierarchical Artificial Bee
Colony Algorithm

The HABC integrates a two-level hierarchical coevolution
scheme inspired by the concept and main ideas of multi-
population coevolution strategy and crossover and mutation
operation.The flowchart of the HABC is shown in Figure 1. It
includes four key strategy approaches: variables decomposing
approach, random grouping of variables, background vector
calculating approach, and crossover and mutation operation,
which is presented as follows.

3.1. Hierarchical Multipopulation Optimization Model. As
described in Section 2, we can see that the new food source
is produced by a perturbation coming from a random
single dimension in a randomly chosen bee. This causes an
individual to may have discovered some good dimensions,
while the other individuals that follow this bee are likely to
chooseworse vectors in𝐷-dimensions and abandon the good
ones. On the other hand, when solving complex problems,
single population-based artificial bee algorithms suffer from
the following drawback of premature convergence at the early
generations.

Hence, theHABC contains two levels, namely, the bottom
level and top level, to balance exploring and exploiting ability.
In Figure 1, in the bottom level, with the variables decompos-
ing strategy, each subpopulation employs the canonical ABC
method to search the part-dimensional optimum in parallel;
that is, in each iteration,𝐾 subpopulations in the bottom level
generate𝐾 best solutions, which are constructed into a com-
plete solution species that are updated to the top level. In the
top level, themultispecies community adopts the information
exchange mechanism based on crossover operator, by which
each species can learn from its neighborhoods in a specific
topology.The vectors decomposing strategy and information
exchange crossover operator can be described in detail as
follows.

3.2. Variables Decomposing Approach. The purpose of this
approach is to obtain finer local search in single dimensions
inspired by the divide-and-conquer approach. Notice that
two aspects must be analyzed: (1) how to decompose the
whole solution vector, and (2) how to calculate the fitness of
each individual of each subpopulation. The detailed proce-
dure is presented as follows.

Step 1. The simplest grouping method is permitting a 𝐷-
dimensional vector to be split into 𝐾 subcomponents, each
corresponding to a subpopulation of 𝑠-dimensions, with 𝑀

individuals (where 𝐷 = 𝐾 ∗ 𝑠). The 𝑗th subpopulation is
denoted as 𝑃

𝑗
, 𝑗 ∈ [1 ⋅ ⋅ ⋅ 𝐾].

Step 2. Construct complete evolving solution𝐺𝑏𝑒𝑠𝑡, which is
the concatenation of the best subcomponents’ solutions 𝑃

𝑗
by

following:

𝐺𝑏𝑒𝑠𝑡 = (𝑃
1
⋅ 𝑔, 𝑃
2
⋅ 𝑔, 𝑃
𝑗
⋅ 𝑔 ⋅ ⋅ ⋅ 𝑃

𝐾
⋅ 𝑔) , (4)

where 𝑃
𝑗
⋅ 𝑔 represents the personal best solution of the 𝑗th

subpopulation.

Step 3. For each component 𝑃
𝑗
, 𝑗 ∈ [1 ⋅ ⋅ ⋅ 𝐾], do the

following.
(a) At employed bees’ phase, for each individual 𝑋

𝑖
, 𝑖 ∈

[1 ⋅ ⋅ ⋅𝑀], replace the 𝑖th component of the 𝐺𝑏𝑒𝑠𝑡 by
using the 𝑖th component of individual 𝑋

𝑖
. Caculate

the new solution fitness: 𝑓(𝑛𝑒𝑤𝐺𝑏𝑒𝑠𝑡(𝑃
1
⋅ 𝑔, 𝑃
2
⋅

𝑔, 𝑋
𝑖
, . . . 𝑃
𝑘
⋅ 𝑔)). If 𝑓(𝑛𝑒𝑤𝑔𝑏𝑒𝑠𝑡) < 𝑓(𝐺𝑏𝑒𝑠𝑡), then

𝐺𝑏𝑒𝑠𝑡 is replaced by 𝑛𝑒𝑤𝐺𝑏𝑒𝑠𝑡.
(b) Update𝑋

𝑖
positions by using (8).

(c) At onlooker bees’ phase, repeat (a)-(b).

Step 4. Memorize the best solution achieved so far, and
compare the best solution with 𝐺𝑏𝑒𝑠𝑡 and memorize the best
one.
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Figure 2: The information exchange mechanism based on crossover operator.

3.2.1. Random Grouping of Variables. To increase the prob-
ability of two interacting variables allocated to the same
subcomponent, without assuming any prior knowledge of
the problem, according to the random grouping of variables
proposed by [21], we adopt the same random grouping
scheme by dynamically changing group size. For example, for
a problem of 100 dimensions, we can define that

𝐺 = {2, 5, 10, 20, 100} ,

𝐾 ⊂ 𝐺.
(5)

Here, if we randomly decompose the 𝐷-dimensional
object vector into𝐾 subcomponents at each iteration (i.e., we
construct each of the 𝐾 subcomponents by randomly select-
ing 𝑆-dimensions from the𝐷-dimensional object vector), the
probability of placing two interacting variables into the same
subcomponent becomes higher, over an increasing number
of iterations [21].

3.3.The Information ExchangeMechanism Based on Crossover
Operator between Multispecies. In the top level, we adopt
crossover operator with a specific topology to enhance the
information exchange between species, in which each species
𝑃
𝑗
can learn from its symbiotic partner in the neighborhood.

The key operations of this crossover procedure are described
in Figure 2.

Step 5 (Select elites to the best-performing list (BPL)). First,
a set of competent individuals from current species 𝑃

𝑗
’s

neighborhood (i.e., ring topology) is selected to construct
the best-performing list (BPL) with higher fitness that has
larger probability to be selected.The size of BPL is equal with
the number of current species 𝑃

𝑗
. These individuals of BPL

are regarded as elites. The selection operation tries to mimic
the maturing phenomenon in nature, where the generated
offspring will become more suitable to the environment by
using these elites as parents.

Table 1: Eight versions of HABC.

Algorithms Selection methods Crossover mode
HABC SB Select the best individuals Single point
HABC SW Select the worst individuals Single point
HABC SM Select medium individuals Single point
HABC SR Select random individuals Single point
HABC AB Select the best individuals Arithmetic point
HABC AW Select the worst individuals Arithmetic point
HABC AM Select medium individuals Arithmetic point
HABC AR Select random individuals Arithmetic point

Step 6 (Crossover and mutation between species). To pro-
duce well-performing individuals, parents are selected from
the BPL’s elites only for the crossover operation. To select
parents effectively, the tournament selection scheme is used.
Firstly, two enhanced elites are selected randomly, and their
fitness values are compared to select the elites. Then, the
one with better fitness value is viewed as parent. Then,
another parent is selected in the same way. Two offsprings are
created by performing crossover on the selected parents.This
paper adopts two representative crossover methods: single-
point crossover and arithmetic crossover. For single-point
crossover, the offspring is produced as the traditional GA
crossover method [33]. For arithmetic crossover method, the
offspring is produced by (6) as follows:

𝑠new = rand (0, 1) × parent1 + rand (0, 1) × parent2, (6)

where 𝑆new is newly produced offspring, parent1 and parent2
are randomly selected from BPL.

Step 7 (Update with greedy selection strategy). Not all cur-
rent species are replaced by the elites from BPL; we set
a selecting rate CR to determine the replaced individuals.
Assuming that species size of 𝑃

𝑗
is 𝑀, then the replaced

individuals number is 𝑀 ∗ CR. For the selected individual,
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Figure 3: Flowchart of the HABC algorithm.

𝑆
𝑗
, the newly produced offspring 𝑆new is then compared with

𝑆
𝑗
, applying a greedy selection mechanism, in which the best

one is remained. We can choose four selecting approaches:
selecting the best individuals (i.e., 𝑀 ∗ CR individuals),
a medium level of individuals, the worst individuals, and
random individuals.

Hence, there are eight HABC variants according to differ-
ent crossover and selection approaches, as listed in Table 1.
In the next experiments, we will study the effect of different

crossovers, selection modes, and CRs. With applying the
effective social learning strategy, the information exchange
between species is enhanced and the food sources with higher
fitness are fully utilized.

In summary, in order to facilitate the below presentation
and test formulation, we define a unified parameters for
HABCmodel in Table 2. According to the process description
as mentioned above, the flowchart of HABC algorithm is
summarized in Figure 3, while the pseudocode for HABC
algorithm is presented in Algorithm 1.
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HABC algorithm

Set 𝑡 := 0;
INITIALIZE.

Randomly divide the whole population into N species (𝑃
𝑖
) each possesses𝐾 sub-populations (𝑃

𝑖𝑗
), each possesses𝑀 bees;

Randomize 𝑃
𝑖𝑗
’s D-dimensions food source positions 𝑃

𝑖𝑗
⋅ 𝑋
𝑘
; 𝑖 ∈ [1 : 𝑁], 𝑗 ∈ [1 : 𝐾], 𝑘 ∈ [1 : 𝑀].

Each sub-population 𝑃
𝑖𝑗
with S dimensions (where S is randomly chosen from a set G, and𝐷 = 𝐾 ∗ 𝑆).

WHILE (the termination conditions are not met)
for each species i, 𝑖 = [1 : 𝑁]

Initialize D-dimensions complete vector 𝐺𝑏𝑒𝑠𝑡 =(𝑃
𝑖1
⋅ 𝑔, 𝑃
𝑖2
⋅ 𝑔, . . . , 𝑃

𝑖l−1 ⋅ 𝑔, 𝑧, 𝑃𝑖l+1 ⋅ 𝑔, . . . , 𝑃𝑖𝐾 ⋅ 𝑔),
which consists of the S-dimensions
best solution 𝑃

𝑖𝑙
𝑦.

Randomly all D dimension indices;
WHILE (the termination conditions are not met)

for each sub-population 𝑃
𝑖𝑗
, 𝑗 = [1 : 𝐾] do

repeat
Employed Bees’ Phase:
For each employed bee 𝑃

𝑖𝑗
⋅ 𝑥
𝑘:

Produce a new solution by using (2)
Evaluate the new solution
Apply Greedy selection choosing the better solution

end
Calculate the probability values Pi for the solution by using (2)
Onlooker Bees’ Phase:

for each employed bee 𝑃
𝑖𝑗
⋅ 𝑥
𝑘

Probabilistically choose a solution according to 𝑃
𝑖

Produce a new solution by (2)
Evaluate the new solution
Apply Greedy selection choosing the better solution

end
Re-initialize solutions not improved for Limit cycles
Memorize the best solution 𝑃

𝑖𝑗
⋅ 𝑥

for each individual of 𝑃
𝑖𝑗
⋅ 𝑥
𝑘
, 𝑘 = [1 : 𝑀] do

Place best solution in the complete solution newGbest by:
𝑛𝑒𝑤𝐺𝑏𝑒𝑠𝑡 =(𝑃

𝑖1
⋅ 𝑔,𝑃
𝑖2
⋅ 𝑔, . . . , 𝑃

𝑖𝑗
⋅ 𝑥
𝑘
, . . . , 𝑃

𝑖𝐾
⋅ 𝑔)

Update complete solution if it improves:
If (newGbest) < f (Gbest))

Then 𝑃
𝑖𝑗
⋅ 𝑔 = 𝑃

𝑖𝑗
⋅ 𝑥
𝑘

end
end

end WHILE
Select elites form neighborhood of 𝑃

𝑖

BPL = the top𝑀 best individuals of the ring topology {𝑃
𝑖−1

, 𝑃
𝑖
, 𝑃
𝑖+1

}

Crossover and Mutation 𝑃
𝑖

󸀠 by (4)
Update 𝑃

𝑖
with applying Greedy selection mechanism from 𝑃

𝑖

󸀠

end
find the global best solution gbest from the whole population P
memorize the best solution of each 𝑃

𝑖𝑗

Set 𝑡 := 𝑡 + 1;
end WHILE

Algorithm 1: Pseudocode for the HABC algorithm.

4. Experimental Study

In the experimental studies, to fully evaluate the perfor-
mance of the HABC algorithm fairly, we employ a set of
20 benchmark functions as listed in the appendix, which
can be classified as basic continuous benchmarks (𝑓

1
–𝑓
8
),

CEC2005 benchmarks (𝑓
9
–𝑓
15
), and discrete benchmarks

(𝑓
16

∼ 𝑓
20
) [34]. The number of function evaluations (FEs) is

adopted as the time measure criterion substitute the number
of iterations.

4.1. Experimental Settings. Eight variants of HABC based on
different crossover methods and CR values were executed
with six state-of-the-art EA and SI algorithms for compar-
isons: artificial bee colony algorithm (ABC) [4], cooperative
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Table 2: Parameters of the HABC.

HABC = (𝑁,𝑀, 𝑃
𝑖𝑗
, 𝐶,CR, 𝑇, 𝑂, 𝑆)

𝑁 The number of species in top level
𝐾 Subpopulation dividing D-dimensions into S-dimensions
𝑀 Subpopulation size

𝑆
Corresponding to a population of S-dimensions,
where 𝑆 = 𝐷/𝐾

𝐷 Dimensions of optimization problem
𝑖 Top level population’s (species) ID counter from 1 to N
𝑗 Button level population’s ID counter from 1 to K
𝑃
𝑖𝑗 The ith population (of the jth species)

CR Selection rate for replacing the offspring to the selected
individuals

𝑇 The hierarchical interaction topology of HABC
𝑂 The objective optimization goals

artificial bee colony algorithm (CABC) [35], canonical PSO
with constriction factor (PSO) [36], cooperative PSO (CPSO)
[20], standard genetic algorithm (GA) [33], and covariance
matrix adaptation evolution strategy (CMA-ES) [37].

CABC adopts the similar cooperative approach into
original ABC algorithm. CPSO is a cooperative PSO model,
cooperatively coevolving multiple PSO subpopulations. GA
is the classical stochastic search technique mimicking the
process of natural selection; the principle of CMA-ES is to
apply the information of successful search steps to adjust
the covariance matrix of the mutation distribution within an
iterative procedure.

The population size and total generation number of
all involved algorithms in this experiment are set as 50
and 100000. For the continuous testing functions used, the
dimensions are all set as 100D. For the five discrete testing
functions, the dimensions are set as Goldberg-30D, Bipolar-
60D, Mulenbein-120D, Clerc’s problem 1-120D, and Clerc’s
problem 2-120D.

According to the original literatures about the control
parameters for the other algorithms involved, in continuous
optimization experiment, the initialization conditions of
CMA-ES are the same as in [37], and the number of offspring
candidate solutions generated per time step is 𝜆 = 4𝜇; for
ABC andCABC, the limit parameter is set to be SN×𝐷, where
𝐷 is the objective function dimension and SN is the employed
bees number. The split factor for CABC and CPSO is equal
to the dimensions [20, 35]. For PSO and CPSO, the learning
rates 𝑐

1
and 𝑐
2
were both set as 2.05 and the constriction factor

𝜒 = 0.729.
In discrete optimization experiment, HABC is compared

with the binary PSO version, ABC and GA. GA employs
single point crossover operation (i.e., crossover rate is 0.8 and
mutation rate is 0.01). For discrete HABC and discrete ABC,
the update process used in the employ and onlooker stages is
changed based on (1). The learning factor of producing new
solution is calculated using (7). Then, the position update
equation is defined by (8) for discrete problems. Discrete

HABC variant adopts single-point crossover method. Con-
sider

𝑞
𝑖𝑗
=
󵄨󵄨󵄨󵄨󵄨
𝜙
𝑖𝑗
(𝑥
𝑘𝑗
− 𝑥
𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨
, (7)

V
𝑖𝑗
= {

𝑥
𝑖𝑗

if rand
𝑗
≤ 𝑞
𝑖𝑗

𝑥
𝑖𝑗

otherwise.
(8)

4.2. Parameter Sensitivity Analysis of HABC

4.2.1. Effects of Species Number𝑁. The species number of the
top level in HABC needs to be tuned. Six continuous bench-
mark functions, Sphere 100D, Rosenbrock 100D, Rastrigin
100D, Schwefel 100D, Ackley 100D, and Griewank 100D and
three discrete benchmark functions—Goldberg 30D, Bipolar
30D, and Clerc problem 1 120D—are employed to investigate
the impact of this parameter. Set CR equal to 1 and all the
functions run 30 sample times. As shown in Figure 4, it is
visible that our proposedABCgot faster convergence rate and
better optimal solutions on the involved test functions with
increased 𝑁. However, the performance improvement is not
very remarkable using this parameter.

4.2.2. Choices of Crossover Mode and CR Value. The basic
benchmark functions (𝑓

1
–𝑓
8
) are adopted to evaluate the per-

formance of HABC variants with different crossover modes
andCRs. Four discrete benchmark functions (𝑓

16
–𝑓
20
) are

used to test the discrete versions of HABC AB, HABC AW,
HABC AM, and HABC AR, which adopt single-point
crossover mode.

Firstly, when CR is fixed at 0.2, all the functions are
implemented for 30 times. From Table 3, we can observe
that HABC AW outperformed other variants on seven func-
tions, except 𝑓

2
, while HABC AM and HABC AR get

nearly the same results as HABC AW on four functions.
From the discrete functions results, HABC SB markedly
outperformed other variants, except 𝑓

18
. According to the

rank listed in Table 3, the performances of the continuous
algorithms involved are ordered as HABC AW > HABC AB
> HABC AR > HABC AM > HABC SR > HABC SM
> HABC SB > HABC SW and for the discrete versions
are ordered as HABC SB > HABC SM > HABC SW >

HABC SR.
Then, the HABC AW for continuous functions and

HABC SB for discrete functions are implemented to deter-
mine CR value. Form Tables 4 and 5, we can find that HABC
variant with CR equal to 1 performs best on four functions
among all five functions while CR equal to 0.05 gets best
result on one function. According to the results with different
CRs, we chose CR equal to 1 as an optimal value for the next
experiments.

4.2.3. Effects of Dynamically Changing Group Size 𝐾. Obvi-
ously, the choice of value for split factor𝐾 (i.e., subpopulation
number) had a significant impact on the performance of the
proposed algorithm. In order to vary 𝐾 during a run, we
defined 𝑆 = {2, 5, 10, 50, 100} for 100D function optimization
and set 𝐾 randomly to choose one element of 𝑆. Then, the
variant of HABC with dynamically changing 𝐾 is compared
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Figure 4: HABC’s results on nine-test functions with different species numbers𝑁.

with that with fixed split number on four benchmark func-
tions for 30 sample runs. From the results listed in Table 6
and Figure 5, we can observe that the performance is sensitive
to the predefined 𝐾 value. HABC, with the dynamically
changing 𝐾, consistently obtained superior performance to
other variants except𝑓

2
.Moreover, it is not very easy to obtain

the prior knowledge about the optimal 𝑠 value of the most
real-world cases, so the random grouping scheme can be a
suitable solution.

4.3. Comparing HABC with Other State-of-the-Art Algorithms
on Benchmark Problems. To validate the effectiveness of the
proposed algorithm, the basic benchmark functions (𝑓

1
–𝑓
8
)

and CEC2005 functions (𝑓
9
–𝑓
15
) are employed [38]. HABC

(adopting HABC AW for continuous problems, CR = 1)
is tested on a set of benchmark functions (𝑓

1
∼𝑓
15
) in com-

parison with CABC, CPSO, CMA-ES, ABC, PSO, and GA
algorithms. Table 7 demonstrates the corresponding results
of mean and standard deviation for each algorithm on 𝑓

1
∼

𝑓
15

with 100 dimensions. Figure 6 shows the convergence
characteristics in terms of the best mean run of each algo-
rithm for 𝑓

1
∼𝑓
15
with 100 dimensions.

4.3.1. Results on Basic Benchmark Continuous Functions.
On the unimodal basic benchmark functions (𝑓

1
–𝑓
4
), from

Table 7 and Figures 6(a)–6(d), HABC converged faster than
all other algorithms. HABC was able to consistently find the
minimum to functions 𝑓

1
, 𝑓
2
, and 𝑓

3
within 100000 FEs.

Statistically, HABC has significantly superior performance
on continuous unimodal functions 𝑓

1
∼𝑓
3
. On 𝑓

4
, HABC,

CABC, and CMA-ES have almost the same average value and
CMA-ES is a little better. According to the rank in Table 7, the
performance order of the algorithms involved is CMA-ES >

HABC > CABC > ABC > CPSO > PSO > GA.
On the multimodal functions (𝑓

5
∼𝑓
8
), from Table 7

and Figures 6(e)–6(i), it is visible that, on most functions,
HABC algorithm markedly outperforms other algorithms.
For example, HABC quickly finds the global minimum on
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Figure 5:Themedian convergence results of 100D continuous functions. (a) Sphere function. (b) Sin problem function. (c) Rastrigin function.
(d) Schwefel function. (e) Ackley function. (f) Griewank function.
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Figure 6: The median convergence results of 100D continuous functions. (a) Sphere function. (b) Rosenbrock function. (c) Quadratic
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function 𝑓
5
and 𝑓

8
, and CABC also can consistently find

the minimum of 𝑓
5
within relatively more FEs while other

algorithms perform poorer. On 𝑓
6
and 𝑓

7
, the HABC and

CABC obtain similar performance. This can be explained
that the multipopulation cooperative coevolution strategy
integrated by HABC and CABC enhance the local search
ability, contributing to their better performances in the mul-
timodal problems. According to the rank values in Table 7,
the performance order of the algorithms tested is HABC >

CABC > ABC > CPSO> CMA-ES > PSO > GA.

4.3.2. Results onCEC2005Continuous Functions. Seven shift-
ed and rotated functions 𝑓

9
∼𝑓
15
are viewed as the most dif-

ficult functions to tackle. From Table 7, HABC outperformed
CMA-ES on five out of the seven functions, except 𝑓

10
and

𝑓
13
. CMA-ES also outperformed CABC on six functions,

except 𝑓
14
. HABC can find the global optimum for 𝑓

9
and

𝑓
14

within 10000 Fes, because HABC balances the explo-
ration and exploitation by decomposing high-dimensional
problems and using crossover and mutation operations to
maintain its population diversity, which is a key contributing
factor. On the other hand, CMA-ES converged extremely
fast. However, CMA-ES either converged very fast or tended
to be trapped into local minima very quickly, especially on
multimodal functions. According to the rank values, the
performance order of the algorithms involved is HABC >

CMA-ES > CABC > ABC > CPSO > PSO > GA.

4.3.3. Results on Discrete Functions. In this experiment, the
HABC SB version (CR = 0.1) is employed on a set of
discrete benchmark functions 𝑓

16
∼𝑓
20
. The results obtained

by HABC SB, ABC, GA, and PSO on each function are
listed in Table 8, consisting of mean and standard deviations
found over 30 runs. Figure 7 shows the search progress of
the average values found by the four algorithms over 30 runs
on 𝑓
16
∼𝑓
20
. From the results in Table 8, we can observe that

HABC gets the best means, and converges faster than other
algorithms on all discrete cases. According to the rank values
presented in Table 9; the search performance order of the
algorithms involved is HABC > PSO > ABC > GA.

4.3.4. Algorithm Complexity Analysis. Algorithm complexity
analysis is presented briefly as follows. If we assume that
the computation cost of one individual in the HABC is
𝐶𝑜𝑠𝑡 𝑎, the cost of the crossover operator is 𝐶𝑜𝑠𝑡 𝑐 and
the total computation cost of HABC for one generation is
𝑁 ∗ 𝐾 ∗ 𝑀 ∗ 𝐶𝑜𝑠𝑡 𝑎 + 𝑁 ∗ 𝐶𝑜𝑠𝑡 𝑐. However, because
the heuristic algorithms used in this paper cannot ensure
comprehensive convergence, it is very difficult to give a
brief analysis in terms of time for all algorithms. Through
directly evaluating the algorithmic time response on different
objective functions, the average computing time in 30 sample
runs of all algorithms is given in Figure 8. From the results
in Figure 8, it is observed that the HABC takes the most
computing time in all compared algorithms and its time
increasing rate is the highest one. This can be explained
that the multipopulation cooperative coevolution strategy
integrated by HABC enhanced the local search ability at cost
of increasing the computation amount. In summary, it is
concluded that, compared with other algorithms, the HABC
requires more computing time to achieve better results.

5. Conclusion

In this paper, we propose a novel hierarchical artificial bee
colony algorithm (HABC), extending single-level to multi-
level aiming to improve the performance of solving complex
and high-dimensional problem. The concept and main idea
is extending single artificial bee colony (ABC) algorithm
to hierarchical and cooperative mode by combining the
multipopulation cooperative coevolution approach based on
vector decomposing strategy and the comprehensive learning
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Figure 7: The median results of discrete functions. (a) Goldberg’s order-3. (b) Bipolar order-6. (c) Mulenbein’s order-5. (d) Clerc’s order-3
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Table 3: Results of all algorithms on benchmark continuous functions 𝑓
1
–𝑓
8
and discrete functions 𝑓

16
–𝑓
19
. In bold are the best results.

Function HABC SB HABC SW HABC SM HABC SR HABC AB HABC AW HABC AM HABC AR

𝑓
1

Mean 3.84𝑒 − 20 9.87𝑒 − 4 2.14𝑒 − 14 1.25𝑒 − 7 4.66𝑒 − 144 4.52e − 300 5.84𝑒 − 301 5.67𝑒 − 259

Std 5.44𝑒 − 20 1.390𝑒 − 3 3.03𝑒 − 14 1.77𝑒 − 7 6.59𝑒 − 144 0 0 0
Rank 5 8 6 7 4 1 2 3

𝑓
2

Mean 2.12𝑒 − 002 2.15𝑒 + 001 1.0𝑒 + 001 7.54 3.96𝑒 − 005 1.26𝑒 − 004 2.75 1.10e − 005
Std 5.03𝑒 − 002 1.54𝑒 + 001 1.39𝑒 + 001 1.26𝑒 + 001 7.43𝑒 − 005 3.38𝑒 − 004 8.69 1.92e − 005
Rank 4 8 7 6 2 3 5 1

𝑓
3

Mean 2.20𝑒 − 005 2.36𝑒 − 018 2.99𝑒 − 007 1.21𝑒 − 009 3.57𝑒 − 148 1.07e − 282 4.02𝑒 − 282 6.57𝑒 − 278

Std 2.65𝑒 − 005 4.74𝑒 − 018 5.99𝑒 − 007 2.41𝑒 − 009 7.14𝑒 − 148 0 0 0
Rank 8 5 7 6 4 1 2 3

𝑓
4

Mean 1.77𝑒 − 004 4.11𝑒 − 007 8.44𝑒 − 007 0 0 0 0 0
Std 2.27𝑒 − 004 5.66𝑒 − 007 1.12𝑒 − 006 0 0 0 0 0
Rank 8 6 7 1 1 1 1 1

𝑓
5

Mean 1.74𝑒 − 004 9.39 3.59𝑒 − 006 9.12𝑒 − 001 0 0 0 0
Std 3.87𝑒 − 004 11.47 6.14𝑒 − 006 8.61𝑒 − 001 0 0 0 0
Rank 6 8 5 7 1 1 1 1

𝑓
6

Mean 5.01𝑒 − 004 3.84𝑒 − 002 3.87𝑒 − 004 3.84𝑒 − 004 4.14𝑒 − 004 3.81e − 004 3.99𝑒 − 004 3.82𝑒 − 004

Std 2.86𝑒 − 004 5.15𝑒 − 002 7.92𝑒 − 006 3.42𝑒 − 006 3.99𝑒 − 005 6.43𝑒 − 012 2.54𝑒 − 012 0
Rank 7 8 5 4 6 1 2 3

𝑓
7

Mean 1.77𝑒 − 003 1.21 6.83𝑒 − 005 2.78𝑒 − 001 8.88e − 016 8.88e − 016 8.88e − 016 8.88e − 16
Std 5.12𝑒 − 003 1.93 2.13𝑒 − 004 8.24𝑒 − 001 0 0 0 0
Rank 6 8 5 7 1 1 1 1

𝑓
8

Mean 1.76𝑒 − 004 4.10𝑒 − 007 8.44𝑒 − 007 0 0 0 0 0
Std 2.27𝑒 − 004 5.80𝑒 − 007 1.19𝑒 − 006 0 0 0 0 0
Rank 8 6 7 1 1 1 1 1

Total Rank 52 57 49 39 20 10 15 14

𝑓
16

Mean 0.12 0.3 0.34 0.26
Std 0.10 0.19 0.09 0.16
Rank 1 3 4 2

𝑓
17

Mean 0.07 0.25 0.21 0.26
Std 0.08 0.18 0.73 0.13
Rank 1 3 2 4

𝑓
18

Mean 1.76𝑒 − 004 4.11𝑒 − 007 8.44𝑒 − 007 0
Std 2.22𝑒 − 004 5.81 1.19 0
Rank 4 2 3 1

𝑓
19

Mean 1.94 3.61 2.72 3.86
Std 0.59 0.95 0.90 1.10
Rank 1 3 2 4

Total Rank 7 11 11 11

method. At the same time, the discrete version of HABC is
presented in this paper. We demonstrate that the hierarchical
cooperative framework proposed is useful to improve ABC’s
performance to tackle high-dimensional optimization prob-
lems (up to 100 dimensions).

The effects of using random grouping scheme has shown
that the performance is sensitive to the grouping number,

and without any prior knowledge, the random grouping can
be a suitable solution. Subsequently, a group of appropriate
parameters consisting of crossover modes, selection meth-
ods, and CRshas been determined for both continuous and
discrete optimizations, respectively.

Then, HABC was compared with other SI and EA
algorithms on a set of 20 benchmark functions (including
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Table 4: Results of HABC AW on benchmark functions 𝑓
1
–𝑓
8
with different CR. In bold are the best results.

Function 0.05 0.1 0.2. 0.4 0.6 1

𝑓
1

Mean 1.69𝑒 − 109 3.74𝑒 − 215 4.25𝑒 − 290 0 (64800) 0 (56000) 0 (36000)
Std 3.79879𝑒 − 109 0 0 0 0 0

𝑓
2

Mean 2.17𝑒 − 004 1.16𝑒 − 006 1.08𝑒 − 005 5.50 4.26𝑒 − 006 4.35e − 007
Std 4.07𝑒 − 004 2.1𝑒 − 006 8.15𝑒 − 006 12.30 6.38𝑒 − 006 5.69e − 007

𝑓
3

Mean 2.36𝑒 − 101 2.99𝑒 − 194 1.71𝑒 − 267 0 (69700) 0 (49800) 0 (38000)
Std 4.74𝑒 − 101 0 0 0 0 0

𝑓
4

Mean 1.93e − 028 4.46𝑒 − 028 4.97𝑒 − 028 5.14𝑒 − 026 7.62𝑒 − 25 7.87𝑒 − 022

Std 2.03e − 028 8.01𝑒 − 028 3.44𝑒 − 028 5.77𝑒 − 026 5.55𝑒 − 025 1.34𝑒 − 021

𝑓
5

Mean 0 (20000) 0 (13500) 0 (7900) 0 (6860) 0 (4400) 0 (3100)
Std 0 0 0 0 0 0

𝑓
6

Mean 3.84e − 004 3.81𝑒 − 004 3.81𝑒 − 004 3.96𝑒 − 004 6.11𝑒 − 004 5.79𝑒 − 004

Std 1.25e − 012 1.62𝑒 − 012 8.42𝑒 − 013 3.22𝑒 − 005 3.43𝑒 − 004 2.84𝑒 − 004

𝑓
7

Mean 8.88𝑒 − 016 (22000) 8.88𝑒 − 016 (21500) 8.88𝑒 − 016 (15400) 8.88𝑒 − 016 (14220) 8.88𝑒 − 016 (13800) 8.88e − 016 (12500)
Std 0 0 0 0 0 0

𝑓
8

Mean 0 (19000) 0 (15800) 0 (13000) 0 (9800) 0 (6100) 0 (5400)
Std 0 0 0 0 0 0

Table 5: Results of HABC SB on benchmark functions 𝑓
16
–𝑓
20
with different CR. In bold are the best results.

Function 0.05 0.1 0.2 0.4 0.6 1

𝑓
16

Mean 5.11𝑒 − 001 3.00e − 002 9.00𝑒 − 002 1.00𝑒 − 001 2.6𝑒 − 001 1.6𝑒 − 001

Std 1.61𝑒 − 001 6.03e − 002 1.03𝑒 − 001 8.32𝑒 − 002 1.68𝑒 − 001 2.11𝑒 − 001

𝑓
17

Mean 2.00𝑒 − 002 0 2.00𝑒 − 002 1.50𝑒 − 001 2.61𝑒 − 001 5.15𝑒 − 001

Std 6.37𝑒 − 002 0 6.35𝑒 − 002 1.23𝑒 − 001 2.38𝑒 − 001 1.69𝑒 − 001

𝑓
18

Mean 4.86 6.81 8.25 1.69𝑒 + 001 2.22𝑒 + 001 4.21𝑒 + 001

Std 2.34 2.24 2.45 3.32 4.79 5.00

𝑓
19

Mean 6.70 1.69 1.75 3.61 5.28 8.73
Std 6.1𝑒 − 001 5.11e − 001 3.11𝑒 − 001 5.77𝑒 − 001 7.44𝑒 − 001 1.41

𝑓
20

Mean 5.34e − 001 1.51 1.96 2.36 3.31 6.53
Std 2.25e − 002 3.32𝑒 − 001 5.82𝑒 − 001 3.42𝑒 − 001 6.03𝑒 − 001 9.54𝑒 − 004

Table 6: Performance of HABC AW on 100D 𝑓
1
and 𝑓

4
–𝑓
8
with the different grouping number 𝐾. In bold are the best results.

Function 𝐾 ⊂ 𝑆 𝐾 = 5 𝐾 = 10 𝐾 = 50 𝐾 = 100

𝑓
1

Mean 0 (91000) 0 (45000) 2.00𝑒 − 080 3.70𝑒 − 043 6.56𝑒 − 042

Std 0 0 1.03𝑒 − 001 6.31𝑒 − 043 1.27𝑒 − 041

𝑓
4

Mean 1.10𝑒 − 014 1.47 1.56 6.50𝑒 − 001 1.61e − 022
Std 1.37𝑒 − 014 3.12𝑒 − 001 2.47𝑒 − 001 1.1 3 1.38e − 022

𝑓
5

Mean 0 0 7.25𝑒 − 014 5.39𝑒 − 013 8.22𝑒 − 013

Std 0 0 1.45𝑒 − 013 2.32𝑒 − 013 1.33𝑒 − 013

𝑓
6

Mean 1.70e − 003 7.69𝑒 − 002 4.45𝑒 − 002 3.23𝑒 + 002 1.99𝑒 + 002

Std 1.10e − 003 1.11𝑒 − 001 2.71𝑒 − 002 5.37𝑒 + 002 3.94𝑒 + 002

𝑓
7

Mean 8.34e − 016 2.51𝑒 − 014 1.33𝑒 − 014 1.13𝑒 − 013 7.71𝑒 − 014

Std 0 5.25𝑒 − 015 1.25𝑒 − 014 2.42𝑒 − 014 2.03𝑒 − 015

𝑓
8

Mean 0 0 0 0 0
Std 0 0 0 0 0
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Table 7: Performance of all algorithms on benchmark continuous functions 𝑓
1
–𝑓
15
.

Function HABC CABC CPSO CMA-ES ABC PSO GA

𝑓
1

Mean 0 9.87𝑒 − 138 2.14𝑒 − 014 0 1.93𝑒 − 015 8.52𝑒 − 010 3.84𝑒 − 001

Std 0 1.390𝑒 − 3 1.93𝑒 − 137 0 8.59𝑒 − 016 1.83𝑒 − 009 1.50𝑒 − 001

Rank 1 3 5 1 4 6 7

𝑓
2

Mean 0 5.41 3.81 1.32𝑒 − 007 1.92𝑒 − 001 2.98𝑒 + 001 3.26𝑒 + 002

Std 0 6.25 2.56 5.03𝑒 − 002 2.03𝑒 − 001 2.48𝑒 + 001 7.61𝑒 + 002

Rank 1 5 4 2 3 6 7

𝑓
3

Mean 0 3.80𝑒 + 001 2.66𝑒 + 001 0 2.75𝑒 + 001 2.67𝑒 − 003 8.55𝑒 + 001

Std 0 8.47𝑒 + 001 3.65𝑒 + 001 0 4.79 4.45𝑒 − 003 3.76𝑒 + 001

Rank 1 6 4 1 5 3 7

𝑓
4

Mean 7.72𝑒 − 032 2.55𝑒 − 032 6.65𝑒 − 009 2.34e − 032 8.07𝑒 − 014 8.27𝑒 − 001 8.52𝑒 − 001

Std 5.75𝑒 − 032 3.55𝑒 − 032 1.38𝑒 − 008 8.75e − 034 6.23𝑒 − 014 6.22𝑒 − 001 3.54𝑒 − 001

Rank 3 2 5 1 4 7 6

Total Rank1 6 16 18 5 16 22 27

𝑓
5

Mean 0 0 2.58 3.61𝑒 + 001 7.65𝑒 − 009 3.42𝑒 + 001 5.29𝑒 + 001

Std 0 0 1.55 8.31 5.76𝑒 − 009 154𝑒 + 001 4.52
Rank 1 1 4 6 3 5 7

𝑓
6

Mean 2.19 4.50𝑒 + 002 1.02𝑒 + 003 2.53𝑒 + 003 2.31𝑒 + 001 3.43𝑒 + 003 1.99𝑒 + 002

Std 4.99 1.00𝑒 + 003 1.06𝑒 + 002 3.98𝑒 + 002 5.2𝑒 + 001 4.39𝑒 + 002 7.81𝑒 + 001

Rank 1 4 5 6 2 7 3

𝑓
7

Mean 8.01e − 016 3.44𝑒 − 014 1.15𝑒 − 004 1.89𝑒 + 001 2.24𝑒 − 006 2.42 5.29𝑒 + 001

Std 0 6.45𝑒 − 015 1.22𝑒 − 004 9.54𝑒 − 001 1.09𝑒 − 006 5.43 4.52
Rank 1 2 5 7 4 6 8

𝑓
8

Mean 0 1.20𝑒 − 008 3.43𝑒 − 002 1.97𝑒 − 003 6.23𝑒 − 002 4.37𝑒 − 002 2.21
Std 0 1.17𝑒 − 008 2.22𝑒 − 002 4.40𝑒 − 003 5.05𝑒 − 002 4.23𝑒 − 002 1.46𝑒 − 001

Rank 1 2 4 3 6 5 7

Total Rank2 4 9 18 22 15 23 25

𝑓
9

Mean 0 1.13𝑒 − 013 3.37𝑒 + 002 5.68𝑒 − 014 2.27𝑒 − 012 2.06𝑒 + 001 7.12𝑒 + 001

Std 0 4.92𝑒 − 014 5.84𝑒 + 002 4.92𝑒 − 014 1.58𝑒 − 012 4.61𝑒 + 001 1.66𝑒 + 001

Rank 1 3 7 2 4 5 6

𝑓
10

Mean 3.91𝑒 + 001 2.10𝑒 + 003 6.14𝑒 + 003 0 4.50𝑒 + 003 1.44𝑒 + 002 8.93𝑒 + 003

Std 4.96𝑒 + 001 1.52𝑒 + 002 1.17𝑒 + 004 5.68e − 014 1.32𝑒 + 003 1.10𝑒 + 002 5.18𝑒 + 003

Rank 2 4 6 1 5 3 7

𝑓
11

Mean 1.39 1.21𝑒 + 001 1.33𝑒 + 006 1.59 6.74 3.20𝑒 + 001 2.66𝑒 + 004

Std 8.90e − 001 7.09 1.21𝑒 + 006 2.18 4.47 3.31𝑒 + 001 2.11𝑒 + 004

Rank 1 4 7 2 3 5 6

𝑓
12

Mean 2.46e − 003 1.72𝑒 + 003 1.73𝑒 + 003 1.72𝑒 + 003 1.72𝑒 + 003 4.13𝑒 + 003 1.92𝑒 + 003

Std 5.51e − 003 2.39𝑒 − 011 3.30 3.02𝑒 − 001 4.41𝑒 − 008 4.23𝑒 + 002 4.62𝑒 + 001

Rank 1 3 5 2 3 7 6

𝑓
13

Mean 2.06e + 001 2.07𝑒 + 001 2.04𝑒 + 001 2.01e + 001 2.07𝑒 + 001 2.05𝑒 + 001 2.08𝑒 + 001

Std 5.22e − 002 1.01𝑒 − 001 6.10𝑒 − 002 3.82e − 001 4.04𝑒 − 002 1.40𝑒 − 001 1.69𝑒 − 002

Rank 3 5 2 1 5 4 7

𝑓
14

Mean 0 1.01𝑒 + 003 1.58𝑒 + 001 4.16𝑒 + 001 4.26𝑒 − 002 9.79𝑒 + 001 3.26𝑒 + 001

Std 4.04e − 014 3.82𝑒 + 001 1.15𝑒 + 001 9.98𝑒 + 001 9.51𝑒 − 002 7.66 8.18
Rank 1 3 4 6 2 7 5
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Table 7: Continued.

Function HABC CABC CPSO CMA-ES ABC PSO GA

𝑓
15

Mean 4.63e + 001 1.34𝑒 + 002 1.87𝑒 + 002 1.21𝑒 + 002 1.35𝑒 + 002 1.79𝑒 + 002 4.22𝑒 + 002

Std 1.22e + 001 4.33𝑒 + 001 5.77𝑒 + 001 2.47𝑒 + 001 1.97𝑒 + 001 5.06𝑒 + 001 3.62𝑒 + 001

Rank 1 3 6 2 4 5 7

Total Rank3 9 25 30 16 26 36 44

Table 8: Performance of all algorithms on benchmark discrete functions 𝑓
16
–𝑓
20
.

Function HABC ABC PSO GA

𝑓
16

Mean 0 0 2.20𝑒 − 001 3.25𝑒 − 002

Std 0 0 7.27𝑒 − 002 7.27𝑒 − 002

Rank 1 1 4 3

𝑓
17

Mean 0.88 1.12 1.16 1.36
Std 1.09e − 001 1.78𝑒 − 001 2.60𝑒 − 001 3.57𝑒 − 001

Rank 1 3 6 7

𝑓
18

Mean 4.00 2.31𝑒 + 001 4.60 1.11𝑒 + 001

Std 1.76 7.53 1.19 4.95
Rank 1 4 2 3

𝑓
19

Mean 0 1.33 2.51𝑒 − 001 1.65
Std 0 1.12𝑒 − 002 7.07𝑒 − 002 3.56𝑒 − 001

Rank 1 3 2 4

𝑓
20

Mean 2.21e − 001 3.4𝑒 − 001 2.00 1.33
Std 2.11e − 002 1.67𝑒 − 001 1.09𝑒 − 001 2.05𝑒 − 001

Rank 1 2 4 3

Total rank 5 13 17 20

Table 9: Parameters of the test functions.

𝑓 Dimensions Initial range 𝑥∗ 𝑓 (𝑥∗)

𝑓
1

100 [−100, 100]D [0, 0, . . . , 0] 0
𝑓
2

100 [−30, 30]D [1, 1, . . . , 1] 0
𝑓
3

100 [−65.536, 65.536]D [0, 0, . . . , 0] 0
𝑓
4

100 [−10, 10]D [0, 0, . . . , 0] 0
𝑓
5

100 [−5.12, 5.12]D [0, 0, . . . , 0] 0
𝑓
6

100 [−500, 500]D [420.9867, . . . , 420.9867] 0
𝑓
7

100 [−32.768, 32.768]D [0, 0, . . . , 0] 0
𝑓
8

100 [−600, 600]D [0, 0, . . . , 0] 0
𝑓
9

100 [−100, 100]D [0, 0, . . . , 0] −450
𝑓
10

100 [−100, 100]D [0, 0, . . . , 0] −450
𝑓
11

100 [−100, 100]D [0, 0, . . . , 0] 390
𝑓
12

100 No bounds [0, 0, . . . , 0] −180
𝑓
13

100 [−32, 32]D [0, 0, . . . , 0] −140
𝑓
14

100 [−5, 5]D [0, 0, . . . , 0] −330
𝑓
15

100 [−5, 5]D [0, 0, . . . , 0] −330
𝑓
16

30 [0, 1] [1, 1, . . . , 1] 0
𝑓
17

60 [0, 1] [0, 0, . . . , 0] or [1, 1, . . . , 1] or [. . . , 6 ∗ 0, . . . , 6 ∗ 1, . . .] 0
𝑓
18

120 [0, 1] [0, 0, . . . , 0] 0
𝑓
19

120 [0, 1] [0, 1, 1, 0, 1, 1, . . .] 0
𝑓
20

120 [0, 1] [0, 0, 1, 0, 0, 1, . . .] 0
∗Represents the solution corresponding to the optimal value of the objective function, namely the optimal solution.
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Figure 8: Computing time of all algorithms on different RNP
problems.

continuous and discrete cases). Our results show that, for
all the test functions, HABC is more competitive than other
classical powerful algorithms. HABC is the only one to
consistently find the minimum of 𝑓

1
(Sphere), 𝑓

2
(Rosen-

brock), 𝑓
3
(Quadratic), 𝑓

5
(Rastrigin), and 𝑓

8
(Griewank),

though CMA-ES got significantly better performance on the
unimodal functions (𝑓

1
–𝑓
4
). On CEC2005 functions, HABC

exhibits more significant advantages in terms of accuracy,
convergence rate, and robustness. In the future work, we
will extend the optimization problem to higher-dimensional
(up to 1000 dimensions) objective function solved by our
proposed HABC.

Appendix

A. List of Test Functions

The involved benchmark functions consist of the basic
benchmark continuous functions 𝑓

1
∼ 𝑓
4
(unimodal), 𝑓

5
∼

𝑓
8
(multimodal), the shifted and rotated functions 𝑓

9
∼ 𝑓
15

(CEC2005), and the discrete functions 𝑓
16

∼ 𝑓
20
. Functions

𝑓
1
∼ 𝑓
8
were adopted widely in evolutionary computation

domain to show solution quality and convergence rate. 𝑓
9
∼

𝑓
15
are shifted and rotated functions selected from CEC2005

functions; their global optimum values are different to each
other. In particular, function 𝑓

12
has no bounds, and its

initialization range is [0, 600]. The discrete functions 𝑓
16

∼

𝑓
20

were used in Clerc’s literature [39, 40] and can be found
at http://clerc.maurice.free.fr/pso/.

A.1. Unimodal Benchmark Function

(1) Sphere function

𝑓
1 (𝑥) =

𝑛

∑
𝑖=1

𝑥
2

𝑖 (A.1)

(2) Rosenbrock function

𝑓
2 (𝑥) =

𝑛

∑
𝑖=1

100 × (𝑥
𝑖+1

− 𝑥
2

𝑖
)
2

+ (1 − 𝑥
𝑖
)
2 (A.2)

(3) Quadratic function

𝑓
3 (𝑥) =

𝑛

∑
𝑖=1

(

𝑖

∑
𝑗=1

𝑥
𝑗
)

2

(A.3)

(4) Sin function

𝑓
4 (𝑥) =

𝜋

𝑛
{10 sin2𝜋𝑥

1

+

𝑛−1

∑
𝑖=1

(𝑥
𝑖
− 1)
2
(1 + 10 sin2𝜋𝑥

𝑖+1
) + (𝑥

𝑛
− 1)
2
} .

(A.4)

A.2. Multimodal Benchmark Function

(5) Rastrigin function

𝑓
5 (𝑥) =

𝑛

∑
𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
)) + 10 (A.5)

(6) Schwefel function

𝑓
6 (𝑥) = 𝐷 ∗ 418.9829 +

𝐷

∑
𝑖=1

− 𝑥
𝑖
sin(√

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨) (A.6)

(7) Ackley’s function

𝑓
7 (𝑥) = −20 exp(−0.2√

1

𝑛

𝑛

∑
𝑖=1

𝑥2
𝑖
)

− exp(1

𝑛

𝑛

∑
𝑖=1

cos 2𝜋𝑥
𝑖
) + 20 + 𝑒

(A.7)

(8) Griewank function

𝑓
8 (𝑥) =

1

4000

𝑛

∑
𝑖=1

𝑥
2

𝑖
−

𝑛

∏
𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1. (A.8)

A.3. CEC2005 Function

(9) Shifted sphere function

𝑓
9 (𝑥) =

𝐷

∑
𝑖=1

𝑧
𝑖

2
+ 𝑓bias1, 𝑧 = 𝑥 − 𝑜 (A.9)

(10) Shifted Schwefel’s problem 1.2

𝑓
10 (𝑥) =

𝐷

∑
𝑖=1

(

𝑖

∑
𝑗=1

𝑧
𝑗
)

2

+ 𝑓bias, 𝑧 = 𝑥 − 𝑜 (A.10)
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(11) Shifted Rosenbrock’s function

𝑓
11 (𝑥) =

𝐷−1

∑
𝑖=1

(100(𝑧
𝑖

2
− 𝑧
𝑖+1

)
2

+ (𝑧
𝑖

2
− 1)
2

) + 𝑓bias (A.11)

(12) Shifted rotated Griewank’s function without bounds

𝑓
12 (𝑥) =

𝐷

∑
𝑖=1

𝑧
𝑖

2

4000
−

𝐷

∏
𝑖=1

cos(
𝑧
𝑖

√𝑖
) + 1 + 𝑓bias (A.12)

(13) Shifted rotated Ackley’s function with global opti-
mum on bounds

𝑓
13 (𝑥) = − exp(−0.2√

1

𝐷

𝐷

∑
𝑖=1

𝑧
𝑖
2) − exp(

𝐷

∑
𝑖=1

cos (2𝜋𝑧
𝑖
))

+ 20 + 𝑒 + 𝑓bias, 𝑧 = (𝑥 − 𝑜) ∗𝑀

(A.13)

(14) Shifted Rastrigin’s function

𝑓
14 (𝑥) =

𝐷

∑
𝑖=1

(𝑧
𝑖

2
− 10 cos (2𝜋𝑧

𝑖
) + 10) + 𝑓bias, 𝑧 = 𝑥 − 𝑜

(A.14)

(15) Shifted rotated Rastrigin’s function

𝑓
15 (𝑥) =

𝐷

∑
𝑖=1

(𝑧
𝑖

2
− 10 cos (2𝜋𝑧

𝑖
) + 10)

+ 𝑓bias, 𝑧 = (𝑥 − 𝑜) ∗𝑀.

(A.15)

A.4. Discrete Benchmark Functions

(16) Goldberg’s order-3

The fitness 𝑓 of a bit string is the sum of the results
of separately applying the following function to consecutive
groups of three components each:

𝑓
16 (𝑥) =

{{{{

{{{{

{

0.9 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 = 0

0.6 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 = 1

0.3 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 = 2

1.0 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 = 3.

(A.16)

If the string size (the dimension of the problem) is𝐷, the
maximum value is 𝐷/3 for the string 111 ⋅ ⋅ ⋅ 111. In practice,
we will then use as fitness the value 𝐷/3 − 𝑓 so that the
problem is now to find the minimum 0.

(17) Bipolar order-6
The fitness 𝑓 is the sum of the results of applying the

following function to consecutive groups of six components
each:

𝑓
17 (𝑥) =

{{{{

{{{{

{

1.0 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 = 0 or 6

0.0 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 = 1 or 5

0.4 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 = 2 or 4

0.8 if 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 = 3.

(A.17)

The maximum value is 𝐷/6. In practice, we will use as
fitness the value 𝐷/6 − 𝑓 so that the problem is now to find
the minimum 0.

(18) Mulenbein’s order-5

The fitness 𝑓 is the sum of the results of applying the
following function to consecutive groups of five components
each:

𝑓
18 (𝑥) =

{{{{{{{{{

{{{{{{{{{

{

4.0 if 𝑦 = 00000

3.0 if 𝑦 = 00001

2.0 if 𝑦 = 00011

1.0 if 𝑦 = 00111

3.5 if 𝑦 = 11111

0.0 ortherwise.

(A.18)

The maximum value is 3.5𝐷/5. In practice, the value
3.5𝐷/5−𝑓 is used as the fitness so that the problem is now to
find the minimum 0.

(19) Clerc’s order-3 problem 1

The fitness 𝑓 is the sum of the results of applying the fol-
lowing function to consecutive groups of three components
each:

𝑓
19 (𝑥) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

0.9 if 𝑦 = 000

0.6 if 𝑦 = 001

0.3 if 𝑦 = 010

1.0 if 𝑦 = 011

0.2 if 𝑦 = 100

0.4 if 𝑦 = 101

0.6 if 𝑦 = 110

0.8 if 𝑦 = 111.

(A.19)

The maximum value is 𝐷/3. In practice, we will then use
as fitness the value𝐷/3−𝑓 so that the problem is now to find
the minimum 0.

(20) Clerc’s order-3 problem 2

The fitness 𝑓 is the sum of the results of applying the fol-
lowing function to consecutive groups of three components
each:

𝑓
20 (𝑥) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

0.2 if 𝑦 = 000

1.0 if 𝑦 = 001

0.3 if 𝑦 = 010

0.8 if 𝑦 = 011

0.6 if 𝑦 = 100

0.4 if 𝑦 = 101

0.6 if 𝑦 = 110

0.9 if 𝑦 = 111.

(A.20)

The maximum value is 𝐷/3. In practice, we will use as
fitness the value 𝐷/3 − 𝑓 so that the problem is now to find
the minimum 0.
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B. Parameters of the Test Functions

The dimensions, initialization ranges, global optima 𝑥∗, and
the corresponding fitness value 𝑓(𝑥∗) of each function are
listed in Table 9.
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