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A forecast road surface temperature (RST) helps winter services to optimize costs and to reduce the deicers environmental impacts.
Data from roadweather information systems (RWIS) and thermalmapping are considered inputs for forecasting physical numerical
models. Statistical models include many meteorological parameters along routes and provide a spatial approach. It is based on
typical combinations resulting from treatment and analysis of a database from measurements of road weather stations or thermal
mapping, easy, reliable, and cost effective to monitor RST, and many meteorological parameters. A forecast dedicated to road
networks should combine both spatial and time forecasts needs.This study contributed to building a reliable RST forecast based on
principal component analysis (PCA) and partial least-square (PLS) regression. An urban stretch with various weather conditions
and seasons was monitored over several months to generate an appropriate number of samples. The study first consisted of the
identification of its optimum number to establish a reliable forecast. A second aspect is aimed at comparing RST forecasts from
PLSmodel to measurements. Comparison indicated a forecast over an urban stretch with up to 94% of values within ±1∘C and over
80% within ±3∘C.

1. Context and Introduction

The objective of winter maintenance is to ensure the access
and the use of infrastructures in adverse weather conditions.
It mainly consists in avoiding the occurrence of ice for
temperatures close to freezing and the persistence of snow.
The decision to treat or not a road network is often difficult
and is eased by road weather outstations and forecasts,
commonly in place since the 80s. These stations do provide
measurements of atmospheric and road parameters such as
road surface temperature (RST) to inform road managers
about network status. Forecasts are obtained with numerical
models either sites specific or for a whole network. A range
of forecast models exists, usually site specific, and since the
1980s a significant body of literature has accrued (see [1] for
a thorough review). Furthermore, because of RST variations
up to 10∘C, forecast interpolation is also required. This has

traditionally been achieved via thermal mapping, but of all
the components contained within road weather information
systems (RWIS), this interpolation has frequently been iden-
tified as the least satisfactory [2].

The thermalmapping consists of a high-resolution survey
of RST by means of infrared thermometry. Measurements
are conducted in various winter atmospheric conditions, and
providing thermal fingerprints, used as inputs for forecast
models [3–9]. These fingerprints are also used as a tool for
the optimisation of routes for anti-icing [10] or to identify
locations for the installation of road weather outstations.

The extent of RST variations along a route is controlled
by atmospheric stability and local variations of geographic
parameters and of traffic (profile and density) [3, 8]. The
greatest variations along a route are observed during these
stable anticyclonic conditions [3]. With decreasing atmo-
spheric stability, the amplitude of the thermal fingerprint
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Figure 1: Thermal mapping route (black line) (a) and illustration of its urban configuration (b).

subsequently reduces. Some authors [5] have shown that
under certain weather conditions some consistency appears
in the spatial variation of RST along a route, which enables
thermal mapping surveys under only a few selected weather
conditions (usually extreme, intermediate, and damped) [1].
A standard of five to six surveys was selected typically com-
missioned to provide coverage of the conditions encountered
in a winter season.This approach is not optimum, and results
in daily forecasts are too often “pigeon-holed” into one of the
categories when used operationally [8].

However, measurement campaigns are very time-
consuming. The measurement has to be partitioned into
itinerary stretches done in the open time window. Some
gradual change appeared in practice, moving toward a new
spatial modelling based approach. Route-based forecasts
take into account both meteorological and geographical data
to provide a high-resolution forecast of RST and condition
around the road network [2]. Besides potential significant
improvement in the forecasts, it has also brought about a new
set of challenges. Whereas traditional site-specific forecasts
could be easily validated against sensor data from outstations
located at the forecast sites, this is clearly impossible for
a route-based forecast [1] where thermal mapping is still
required for the verification of the spatial forecast. However,
this approach is not cost effective to provide data at a high
temporal resolution. Route-based forecasts can still only rely
on isolated thermal fingerprints.

A forecast dedicated to road networks is the conjunction
of both spatial and time forecasts needs of a vision of a
full network at once. Thermal mapping is an easy, reliable,
and cost effective way to monitor RST and many other
meteorological parameters along routes. A numerical model
will provide a temporal forecast on specific locations, and
many computations will be necessary to build a forecast
covering the full route or network. A new approach based
on statistics was developed by Chapman et al. [11, 12] and
provided RST over a full given route only through principal
components analysis (PCA) but did not yet provide a RST
forecast as it is usually understood, and it only relies on
RST measurements which are not always available. To do so,
partial least-square (PLS) regression could indeed contribute
to such a goal. A similar study based on these multivariate

data analysis tools was performed by Kršmanc et al. [13] but
only on specific locations.

This study will be divided in two parts. The first one will
consist of a description of a RST forecast on a specific urban
location based on PLS.The variables consisted in air tempera-
ture obtained frommeasurements with the thermal mapping
vehicle, along with other meteorological and anthropogenic
data. This will contribute and therefore provide a more
comprehensive picture of RST variation for a broader range of
atmospheric stability than that conventionally considered by
such surveys. A second part will be dedicated to a comparison
between forecast results and field data. Then a new approach
will be described about the way a full RST profile over a
route is elaborated from a𝑇air measurement or forecast of one
specific location, which can have a greater reliability thanRST
ones. Results will be provided and discussed.

2. Methodology

2.1. Equipment, Route Investigated. DTer Est in Nancy
(France) has developed and used a thermal mapping vehicle
from the beginning of the existence of the technique. Along
the years, a substantial quantity of thermal data for analysis
has been accumulated. For this investigation, a whole route
going around and within this town was chosen (Figure 1(a)).
Then a stretch of a French urban street in Nancy (France)
was selected for detailed analysis on RST. It is roughly
several hundred meters long with a typical urban canyon
configuration (Figure 1(b)). The thermal dataset is available
for this route contains thirty-four of thermal fingerprints,
each considered a sample, obtained under extreme and
intermediate weather conditions over years 2012 and 2013, at
least once a month.

RST was obtained by using an infrared radiometer
operating in the 7–14𝜇m spectral range, for a range from
−30∘C to +70∘C, an uncertainty of 2∘C (at 23∘C), fitted to the
bottom of a survey vehicle, and located in a compartment at
controlled temperature.The instrument measures the energy
flux density emitted by the surface, and RST is calculated
through the Stefan-Boltzmann equation [14]. The road sur-
face is considered to be a grey body and as such emissivity
is held constant at 0.95 [15, 16]. Air temperature (−40∘C to
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Figure 2: French thermal mapping vehicles and associated instruments (infrared radiometer (b) and atmospheric probe (c)).

+125∘C, ±0.3∘C uncertainty) and relative humidity (0–100%
range, ±2% uncertainty) data are also obtained through an
atmospheric probe located on the roof of the vehicle. An
electrical turbine generated a laminar flow circulating over
the sensors to improve measurements accuracy and avoid
turbulences artefacts. Figure 2 illustrates the French thermal
mapping vehicle with on-board measurements devices.

2.2. Partial Least-Square Regression. PLS is a statistical
method that enables data reduction when dealing with large
datasets [17]. It consisted in computing a calibration using a
training set between air temperature matrix 𝑇air and another
one of variables. As pointed out by Almkvist et al. [18, 19],
the ground heat flux is one variable affecting RST. This work
detailed in this paper focused on a selection of variables easy
to obtain, and that therefore already included this ground
heat flux. It includes RST at the chosen urban location,
relative humidity, wind force global radiation, nebulosity, the
existence of precipitations within the previous 24 hours, the
moment of the day (before midday a.m., or after midday
p.m.), and the traffic intensity (weak, moderate, and high)
as an anthropogenic variable. Traffic data was obtained from
the appropriate service and each qualitative appreciation
corresponds to a range of hours within the day. A weak traffic
occurs during the night, a moderate one roughly between
10:00 a.m. and 4:00 p.m., and the highest appears during
peak hours such as the ones of 8:00 a.m. and 6:00 p.m.
Although RST for wintermonths is around 0∘C, this situation
contributes to make difficult the decision to apply deicers
with respect to very negativeRST values, and this is the reason
why they were studied. This training set contributes to the
generation of a statistical forecast model of RST with 𝑇air.
Since noise is contained in both variables and 𝑇air data, this
computation will conduct to the generation of a calibration
matrix 𝑃 and a minimized error matrix 𝐸, to obtain the
relationship:

Variables = 𝑃 ⋅ 𝑇air +𝐸. (1)

In PLS, a set of basis vectors is searched for variables and
another one for 𝑇air, and the understanding of how these sets
are related is necessary. The eigenvectors for each of these
two spaces are calculated to restore an optimum congruence

between each variable factor and its corresponding 𝑇air in
the least-squares sense. Since some noise is both present
on variables and 𝑇air measurements, eigenvectors calculated
for both spaces are shifted by different amounts in different
directions, due to the independence of noises in theses
spaces, destroying the perfect congruence between variables
and 𝑇air data points. PLS will try to restore the optimum
congruence, defined as a perfectly linear relationship between
the projections, or scores, of the variables and 𝑇air data onto
their corresponding factors.

In the case of thermal mapping, each thermal fingerprint
is considered to be a sample, and each variable as a data
point in a multidimensional space. The variables are some of
the physical parameters potentially included in a numerical
model and affecting RST and as explained by Hammond et
al. [1, 12]. By using the data from several thermal surveys,
a data matrix is generated which can then be assimilated
into clusters of points in this multidimensional space. With
respect to thermal mapping, PLS will determine how many
factors are needed to properly forecast RST with 𝑇air. Vari-
ables and 𝑇air matrices, respectively, are 34 lines (one line
per thermal fingerprint) per 8 columns (one column per
variable) (Table 1) and 34 per 28 columns (one column per
data point over the distance of the urban stretch). Once these
factors are identified, they can then be used to build a forecast
model for other weather conditions provided they are not
significantly different from the ones used for the original
PLS calculations. The first objective in this PLS approach is
to identify and then to prescribe the appropriate number
of thermal mapping runs required to forecast an accurate
daily temperature pattern along a given route. It is then to
establish the forecast thermal fingerprints, thus providing a
simple spatial forecastingmodel, based on a cost effective and
realistic data.

2.3. Combination of PCA, PLS, and RWIS Data/Weather Ser-
vices Forecast for a Spatial and Temporal Forecast. Marchetti
et al. [12] gave extensive details about the use of PCA to
thermalmapping data andRST in particular. In this study, the
same methodology was applied to 𝑇air matrix. Each thermal
fingerprint is assimilated to a sample. The matrix contains as
many lines as there are samples and asmany columns as there



4 Advances in Meteorology

Table 1: List of variables used for PLS calculations.

Sample date RST
(∘C)

Measurement
time

(a.m./p.m.)

Traffic
(weak, moderate, and

high)

Wind speed
(km/h)

Relative
humidity

(%)

Global radiation
(J/cm2)

Nebulosity
(octas)

2012-03-07 9.8 p.m. Moderate 50.8 55 66 8
2012-03-15 14.4 p.m. Moderate 10.8 29 170 1
2012-03-21 14.2 p.m. Moderate 35.3 36 176 0
2012-03-29 22.4 p.m. Moderate 40 33 137 7
2012-04-03 22.1 p.m. Moderate 43.9 55 183 5
2012-04-30 24.3 p.m. Moderate 26.3 51 83 8
2012-05-10 33.5 p.m. Moderate 45.4 39 233 3
2012-05-15 11.3 a.m. Weak 19.4 64 25 7
2012-06-14 28.0 a.m. Moderate 20.2 50 288 5
2012-06-28 40.5 a.m. Moderate 41.8 50 265 7
2012-07-04 24.0 a.m. Weak 11.5 83 0 7
2012-07-16 29.8 p.m. Moderate 34.2 43 200 6
2012-08-23 34.8 p.m. Moderate 22.3 32 206 4
2012-09-03 27.9 p.m. Moderate 45 31 194 1
2012-09-04 14.8 a.m. Weak 10.1 85 15 2
2012-09-12 19.3 p.m. Moderate 26.3 57 72 7
2012-10-01 18.9 p.m. Moderate 23.4 44 120 4
2012-10-15 11.6 p.m. Moderate 21.6 60 62 5
2012-11-23 6.3 a.m. Moderate 32 83 24 8
2012-12-11 0.4 p.m. Moderate 28.1 68 15 7
2013-02-14 −6.0 a.m. Moderate 10.4 90 62 7
2013-02-20 −0.6 a.m. Weak 19.1 93 0 7
2013-02-22 −5.4 a.m. High 48.2 66 85 1
2013-03-14 −4.6 p.m. Weak 13.3 83 0 0
2013-03-22 0.8 a.m. High 29.9 74 88 4
2013-04-18 20.2 a.m. Moderate 37.4 69 156 7
2013-08-05 29.9 p.m. Weak 19.8 57 0 8
2013-08-20 37.0 a.m. High 6.8 78 26 1
2013-08-30 29.8 p.m. Moderate 27 37 223 2
2013-08-30 22.8 a.m. Weak 6.8 91 0 8
2013-09-24 15.0 p.m. Weak 5.8 98 0 8
2013-10-24 14.6 a.m. Moderate 11.5 85 37 7
2013-10-24 12.1 p.m. Weak 8.6 100 0 8
2013-12-09 3.3 p.m. Moderate 9 93 38 5

are measurement locations (in this case every 3m). Again, by
multiplying the scores and the loadings matrices and adding
the average profile of all samples, 𝑇air profiles of the urban
stretch from PCA, 𝑇air PCA, were built, at least correcting
an eventual offset error. The work consisted in checking the
number of samples mandatory to perform PCA, considering
again a target of four samples.
𝑇air PCA profile was then assimilated to a one-column

matrix, where each element of the column is 𝑇air at a
point of the itinerary (𝑇air PCA,1, 𝑇air PCA,2, . . . , 𝑇air PCA,𝐿), 𝐿
being the final point of this given route. For two 𝑇air PCA
profiles, 𝑇air PCA 1 and 𝑇air PCA 2, an interpolated 𝑇air profile,
𝑇air PCA interpolated, using a coefficient 𝑘 ranging between 0 and

1, will be then obtained by using (2), to denote continuation
of form. The values of 𝑘 are selected to obtain RST profiles
over the full RST range investigated and thus to obtain a RST
profile even if measurements were not made. Consider

𝑇air PCA interpolated

=(

𝑘 ⋅ 𝑇air PCA 1,1 + (1 − 𝑘) ⋅ 𝑇air PCA 2,1

𝑘 ⋅ 𝑇air PCA 1,2 + (1 − 𝑘) ⋅ 𝑇air PCA 2,2

.

.

.

𝑘 ⋅ 𝑇air PCA 1,𝐿 + (1 − 𝑘) ⋅ 𝑇air PCA 2,𝐿

).

(2)
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One of the ideal inputs used to take decisions in winter
maintenance is the knowledge of a RST profile all over the
road network which a service is in charge of. Considering
as impossible to obtain either RST measurements or forecast
over these profiles, these winter services rely on site-specific
RWIS outstations giving atmospheric and road parameters
such as air temperature, relative humidity, and RST. They
can also use numerical weather models outputs to provide a
forecast for this specific spot, or more recently over the whole
route using route-based forecasting techniques [8]. Marchetti
et al. [12] have indicated a way through PCA to obtain
the whole RST profile using the RST at a single outstation,
but which is not a forecast as it is usually understood.
Furthermore, there is some controversy about the proper
way to make RST measurement. It is done either by a probe
embedded into pavement, raising the question of its too
local aspect, or by a radiometer as indicated above, this
temperature being radiative and not thermodynamic. The
𝑇air measurement is more accepted and does not suffer the
same controversy from weather services. The idea is then
to use either RWIS air temperature or forecast data point
from a weather service at one single outstation and then to
use coefficient 𝑘 to match this point with the corresponding
one in 𝑇air PCA interpolated. Then, the whole 𝑇air profile along
the route is built. Once this one is available, a PLS model is
applied to forecast the RST at the location for which the PLS
modelwas developed.Then, using again the PCAanalysis and
the interpolation, a RST profile along this very same route
could be extracted. The principle of this work is described in
Figure 3. A comparison is then conducted betweenmeasured
and forecast RST profiles.

3. Results of RST Forecast Based on PCA and
PLS: Discussion

3.1. Search of the Optimum Number of Measurements Sets
for the PLS for RST Forecast. PCA was conducted with
Unscrambler X 10.1 package software on 𝑇air datasets to iden-
tify potential specific thermal fingerprints. Results indicated
that over 99% of the variance could be explained with the
first principal component, indicating the data homogeneity.
These results are consistent with a previous published study
[12]. In the case of 𝑇air, an average offset of −2.3∘C was
identified and this correction was then applied to 𝑇air profiles
calculated from PCA. Generic 𝑇air profiles over this route
using PCAoutputs (scores and loadings)were then calculated
and illustrated in Figure 4.

PLS was then performed on the urban stretch, consid-
ering, respectively, first the whole dataset and then only on
some samples corresponding to temperatures below 10∘C
considered as representative of winter in the Nancy (France)
area. The same package software as for PCA was then used.
The idea is to determine the minimum number of samples
to build a reliable statistical model to forecast RST with 𝑇air.
The reliability of such a model is established mainly through
their 𝑅2 and their RMSE. The conducted evaluations and
results are summarized in Table 2. The number of outliers,
which corresponds to data poorly described by the statistical

models, is very small with respect to the number of points
used to elaborate the model, that is, the sample number
multiplied by the 28 columns of 𝑇air matrix. Results indicated
that at least 6 thermal fingerprints are needed to develop a
reliable model with 𝑅2 greater than 0.90, with an optimum to
8 fingerprints.This figure is consistentwith the actual practice
in thermal mapping. Furthermore, this PLS approach is more
adapted to short stretches, with 𝑅2 of 0.97 and 34 samples,
than to a whole and longer itinerary where 𝑅2 is below this
0.90 threshold. The consideration of both 𝑅2 and RMSE
indicated that PLS approach is specifically adapted for road
environment with vegetation, where RMSE is near or below
2∘C.

Once these models were developed, their performances
were evaluated. To do so, they were applied to two 𝑇air
profiles obtained from measurements done along the same
urban stretch at two different dates, alongwith other variables
presented in Table 1, to deduce and somehow to forecast
corresponding RST. A comparison with available RST field
data was then conducted. A specific focus was conducted
on situations corresponding to winter weather conditions in
the Nancy area (RST < 10∘C or near this value). Results are
detailed in Table 3. PLS is therefore able to provide a RST
forecast based on 𝑇air measurement with a bias below 1∘C for
situations close to water freezing and two factors. Too many
factors generated a poor bias but the standard deviation was
unchanged. The worst result was obtained with the warmest
situation, although it is only due to a bias.

3.2. Combination of PLS and Weather Services Forecast for
a Spatial and Temporal Forecast. Some improvements were
obtained in the RST forecast with PLS use. So far, there is still
the need of either a 𝑇air profile or other variables to obtain
RST. As mentioned above, winter services are usually taking
decisions on the basis of RWIS data or on the forecast of
atmospheric parameters among which is air temperature. In
both cases, this piece of information is very local. In some
situations, there are no available RWIS or their density over
the road network is not appropriate, and road managers
can only rely on a forecast from a weather service, with
the inconvenient of a forecast available at given hours with
several hours between each. Sometimes, some locations of
the network have a specific thermal behaviour because of its
configuration, and the provided forecast could greatly differ
from observations. The objective here is then to evaluate the
performance of a RST forecast PLS-based using 𝑇air values
from a RWIS or 𝑇air forecasts from a weather service. With
the methodology described in Figure 3, a full 𝑇air profile is
then built using results presented in Figure 4(b). This built
profile is an input in the selected PLS model elaborated in
Section 3.1 to obtain RST on a specific location. Once this
RST value is available, a full thermal fingerprint is obtained
on the basis of data presented in Figure 4(d).The challenge is
then to determine to what extent a full RST profile could be
elaborated with site-specific 𝑇air data.

A forecast was then undertaken at two different dates,
2013-12-11 and 2013-03-22, for which RST and 𝑇air data were
available along the studied urban stretch. It was obtained
fromMétéo France weather station located in the immediate
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Figure 3: Description of the principle to forecast RST from 𝑇air with PCA and PLS.

vicinity of the departure point of the urban location
(Figure 1).Météo France datawas provided every three hours,
from 0:00 a.m. to 9:00 p.m. GMT. Since thermal fingerprints
did not exactly start at the same time, Météo France data
was interpolated to calculate a corresponding 𝑇air. One has

to consider that this piece of information is sometimes the
only reliable one obtained by road managers. A summary of
these elements is provided in Table 4.

Once these elements gathered, a forecast based on the
air temperature at the beginning of the stretch was used
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Figure 4: Results (explained variance (a, c) and interpolation (b, d)) of PCA applied to 𝑇air and RST profiles of the urban stretch.

Table 2: Configurations for PLS calculations on the urban stretch.

Samples number Maximum explained variance percentage
and associated factors number 𝑅

2 RMSE Outliers number

34 84%-14 factors 0.97 2.6 50
8 94%-6 factors 0.98 0.7 4
6 88%-4 factors 0.99 0.7 4

Table 3: Results of PLS models with optimum number of thermal fingerprints.

PLS configuration Date Measured RST (∘C) RST forecast (∘C) Bias
𝛽

Standard
deviation
𝜎
𝛽

RST <10∘C (2 factors used out of 6 of the
PLS model using 8 samples)

2012-12-11 0.4 0.4 0.0 1.9
2013-10-24 12.1 10.7 −1.5 1.7

RST <10∘C (6 factors used out of 6 of the
PLS model using 8 samples)

2012-12-11 0.4 0.1 −0.3 1.9
2013-10-24 12.1 11.3 −0.8 1.6

RST <10∘C (2 factors used out of 4 of the
PLS model using 6 samples)

2012-12-11 0.4 0.4 0.0 2.2
2013-03-22 0.8 0.1 −0.7 2.4

RST <10∘C (4 factors used out of 4 of the
PLS model using 6 samples)

2012-12-11 0.4 −0.1 −0.5 2.4
2013-03-22 0.8 −0.2 −1.0 2.7

Where bias 𝛽 = RST
𝑚
− RSTmeasured, with RST

𝑚
, RSTmeasured, respectively, modelled and measured road surface temperature.
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Table 4: 𝑇air data for RST forecast based on the coupling of PCA and PLS for RST forecast.

Date
Thermal fingerprint data Météo France data

Start time thermal
fingerprint

𝑇air at start time and
start point (∘C) Provided 𝑇air (

∘C) and time Calculated 𝑇air at start
time (∘C)

2012-12-11 8:30 a.m. 2.1 0.6, 6:00 a.m./0.8, 9:00 a.m. 0.7

2013-03-22 1:30 p.m. 2.7 −1.3, 12:00 a.m./4.9, 3:00
p.m. 3.1

Table 5: Results of PLS models based on interpolated 𝑇air profiles for two dates.

PLS configuration Date RST measured (∘C) RST forecast (∘C) Bias 𝛽 Standard deviation 𝜎
𝛽

2 factors used out of 6 of the PLS model
using 8 samples

2012-12-11 0.4 −1.9 −2.3 1.3
2013-03-22 0.8 0.5 0.3 1.2

2 factors used out of 4 of the PLS model
based on 6 samples

2012-12-11 0.4 −1.6 −2.0 1.0
2013-03-22 0.8 0.5 0.3 1.2

Table 6: Evaluation of error made on RST forecast with a PLS model (2 factors used out of 4 of the model based on 6 samples) with an error
of ±1∘C on 𝑇air profiles for two dates.

Date Error on 𝑇air forecast (
∘C) −1.0 −0.5 0.0 0.5 1.0

2013-03-22
RST measured (∘C) 0.8
RST forecast (∘C) −0.2 0.3 0.5 1.1 2.6

Standard deviation 𝜎
𝛽

0.9 1.0 1.2 1.3 1.4

2012-12-11
RST measured (∘C) 0.4
RST forecast (∘C) −2.6 −2.0 −1.6 −1.1 −0.6

Standard deviation 𝜎
𝛽

1.1 1.0 1.0 1.0 1.0

to therefore establish RST forecast on the specific urban
location. To do so and as detailed in Figure 3, once the air
temperature in one point is identified, the corresponding full
stretch 𝑇air profile was established using PCA (Figure 4(b)).
This profile was then used as input for the dedicated PLS
model, whose performances were detailed in Table 3. Results
for the two dates are given in Table 5.

In both cases, the standard deviation did not exceed 1.3∘C,
and the bias was larger in only one case (over 2∘C) while
below 1∘C in the second case.The differences of performances
could be easily explained. First of all, Météo France data
every 3 hours has induced a poor accuracy in calculated
𝑇air of Table 4. As indicated in Table 4, air temperatures
measured atMétéo Franceweather station and by the thermal
mapping vehicle were different.The atmospheric probe of the
thermal mapping vehicle did not measure air temperature as
it is done by weather services using a standardized shelter.
Furthermore, although the thermal mapping vehicle was not
exactly in the immediate vicinity of the weather station at
the start time, there were nearly 3 km several hundred meters
between the two locations, and the thermal mapping vehicle
one is constituted of buildings and pavements with respect to
the absence of constructions and the presence of grass for the
weather station. The further the 𝑇air profile elaborated with
PCA from the field measurement, the greater the risk to get
an inappropriate RST.

The error in the RST forecast from PLS depends on
the errors in the different variables used in its elaboration.

In a first approach, it depends on the error made on 𝑇air
used as input, especially in the situation when the profile
of air temperature over the stretch is elaborated from one
single point. To analyze to what extent the error made in
the RST forecast, a set of PLS calculations was undertaken
considering inputs of 𝑇air profiles within ±1

∘C with respect to
the measured 𝑇air profile at two given dates (2013-03-22 and
2012-12-11) at start time and start point. Corresponding RST
forecasts and a comparison with field measurement are given
in Table 6.When the𝑇air inputs were between −0.2

∘C and 1∘C
with respect to 𝑇air at start time and start point, 79% to 93%
of the error on forecast RST was within ±1∘C.

The RST forecast value corresponds to the start point of
the urban stretch. To obtain the whole RST profile over the
very same stretch, the profiles obtained from the PCA and
presented in Figure 4(d) were then used. The comparison
between the forecast and the measured profiles is presented
in Figure 5 for the two dates, 2013-03-22 and 2012-12-11,
considering the RST forecast of Table 5 for the PLS model
with 2 factors out of the 4 available ones and considering no
error was made on RST.

In the 2013-03-22 case, 100% of the forecast is within
±2∘C, 94% within ±1∘C, and nearly 85% of the forecast is
within±0.5∘C, with a standard deviation of±1∘C.The greatest
difference of nearly 1.8∘C between measurement and forecast
can also be attributed to the presence of a specific urban
configuration, with an incidence on the sky view factor that
accounts for 60% of the RST value [20]. In the second
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Figure 5: Comparison between measured RST and a RST forecast over a full urban stretch based on the combined use of PCA and PLS for
two dates (2013-03-22 (a) and 2012-12-11 (b)).

case (2012-12-11), only 85% of the forecast is within ±3∘C,
the difference being comprised between 3.2∘C and 2.1∘C. As
indicated by Gustavsson et al. [21], RST is clearly affected
by the urban configuration and by anthropogenic heat flux,
in particular traffic, which is one of the differences between
the two dates. The global radiation and the nebulosity were
also among the main differences. Although good results were
obtained with this PLS configuration in one situation, some
variables, such as traffic,might be changed to numerical ones.
Indeed, the traffic density can be related to heat flux due
to tire friction, to sensible and latent flux due to vehicles
engines, and to changes in convective heat exchange because
of passing cars. Nevertheless, the objective is to generate a
forecast based on a methodology which is different enough
from the one of physical numerical models, and providing
relevant and robust forecast. The extension of the forecast to
a longer stretch could easily be obtained by elaborating new
PLS models on the basis of an adjusted set of variables as the
one illustrated in Table 1, and by iterating the PLS calculations
to as many stretches as necessary.

4. Conclusion

The objective of this paper was to investigate a statistical
approach to forecast road surface temperature on the basis of
thermal mapping data.The tools used were principal compo-
nents analysis and partial least-squares regression, to build a
road surface temperature forecast based on air temperature
and other meteorological variables along with an anthro-
pogenic one. The forecast was first based on air temperature
profile over the full urban stretch and then on one single data
point. Results of the investigations indicated the possibility
to elaborate a road surface temperature forecast with PLS
and air temperature data. Nearly 94% of the forecasts were
within ±1∘C with respect to field measurements for a selected
urban stretch in one situation and over 80%within ±3∘C.The
PCA used to 𝑇air profiles allowed the elaboration of generic

ones. Then, the knowledge of 𝑇air from a single weather
outstation was used to identify the corresponding 𝑇air profile
for further site-specific RST forecast with PLS. Once this
value is obtained, the results of PCA to RST profiles were used
to retrieve the RST profile over the full urban stretch. Results
clearly depend on the proximity of this air profile from field
measurements. An estimation of the error indicated that 𝑇air
inputs between ±0.5∘C provided the best RST forecast results.
Investigations indicated that the six to eight thermal surveys,
mandatory to obtain a reliable road surface temperature
forecast, and covering a large spectrum of weather situations,
remain low enough to still have a cost effective approach of
RST forecast within the global frame of winter maintenance.
The idea will then be to iterate PLS calculations over several
stretches to obtain a forecast over a full itinerary or over a full
network. To obtain an analysis less statistical-mathematical
and more physical, some investigations could be undertaken
to apply independent component analysis (ICA) to thermal
mapping data and to decompose a multivariate signal into
independent non-Gaussian signals.
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