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Abstract
In this paper, we discuss the existence and uniqueness of solutions for a
Riemann-Liouville type fractional differential equation with nonlocal four-point
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point theorems. An illustration of main results is also presented with the aid of some
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1 Introduction
In recent years, boundary value problems of nonlinear fractional differential equations
with a variety of boundary conditions have been investigated by many researchers. Frac-
tional differential equations appear naturally in various fields of science and engineering
and constitute an important field of research [–]. As a matter of fact, fractional deriva-
tives provide an excellent tool for the description of memory and hereditary properties
of various materials and processes. This is one of the characteristics of fractional-order
differential operators that contributes to the popularity of the subject and has motivated
many researchers and modelers to shift their focus from classical models to fractional or-
der models. In consequence, there has been a significant progress in the theoretical anal-
ysis like periodicity, asymptotic behavior and numerical methods for fractional differen-
tial equations. Some recent work on the topic can be found in [–] and the references
therein.
Fractional boundary conditions (FBC) involving fractional derivative Dα of order α ∈

(, ) describe an intermediate boundary between the perfect electric conductor (PEC)
and the perfect magnetic conductor (PMC), whereas α =  and α =  in FBC correspond
to PEC and PMC, respectively. Fractional boundary conditions (FBC) are also matched
with impedance boundary conditions (IBC) in the sense that the fractional order α = 
and α =  in FBC correspond to the value of impedance Z =  and Z = i∞. Recall that the
value of the impedance Z varies from  for PEC to i∞ for PMC. For more details, see [].
In [], the authors recently studied a problem of Riemann-Liouville fractional differ-

ential equations with fractional boundary conditions:

Dαu(t) = f
(
t,u(t)

)
, t ∈ [,T],α ∈ (, ],

Dα–u
(
+

)
= bDα–u

(
T–), Dα–u

(
+

)
= bDα–u

(
T–),
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where Dα denotes the Riemann-Liouville fractional derivative of order α and b �=  and
b �= .
In this paper, motivated by [], we study a fully Riemann-Liouville fractional nonlocal

integral boundary value problem given by
⎧⎪⎨
⎪⎩
Dαu(t) = f (t,u(t)),  < α ≤ , t ∈ [,T],
Dα–u(+) – aDα–u(T–) = AIβu(ξ ),
Dα–u(+) – bDα–u(T–) = BIβu(η), β > ; ξ ,η ∈ (,T),

(.)

where Dα denotes the Riemann-Liouville fractional derivative of order α, f is a given con-
tinuous function, Iβ denotes the Riemann-Liouville integral of order β , and a, A, b, and B
are real constants.
The paper is organized as follows. In Section , we establish an auxiliary lemma which

is needed to define the solutions of the given problem. Section  contains main results. In
Section , we discuss some examples for the illustration of the main results.

2 Preliminaries
Let us recall some basic definitions of fractional theory.

Definition . The Riemann-Liouville fractional integral of order α for a continuous
function g : [,∞) →R is defined as

Iαg(t) =


�(α)

∫ t



g(s)
(t – s)–α

ds, α > ,

provided the integral exists.

Definition . For a continuous function g : [,∞) → R, the Riemann-Liouville deriva-
tive of fractional order α >  is defined as

Dαg(t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–g(s)ds =

(
d
dt

)n

In–αg(t), n –  < α ≤ n,

n = [α] + , where [α] denotes the integer part of the real number α.

Lemma . For  < α ≤ , the solution of Dαu(t) = σ (t), t ∈ [,T] subject to the boundary
conditions given by (.) is

u(t) = Iασ (t) +
(
δtα– – δtα–

)[
AIα+βσ (ξ ) + aIσ (T)

]
+

(
δtα– + δtα–

)[
BIα+βσ (η) + bIσ (T)

]
, (.)

where

δ =
�(α – )

δ

(
 – b –

Bηα+β–

�(α + β – )

)
; δ =

A�(α – )ξα+β–

δ�(α + β – )
;

δ =
�(α)

δ

(
 – a –

Aξα+β–

�(α + β)

)
; δ =

�(α)
δ

(
bT –

Bηα+β–

�(α + β)

)
;

δ = �(α)�(α – )
(
 – a –

Aξα+β–

�(α + β)

)(
 – b –

Bηα+β–

�(α + β – )

)

–
A�(α)�(α – )ξα+β–

�(α + β)�(α + β – )
(
bT�(α + β) + Bηα+β–).

(.)
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Proof For arbitrary constants c, c ∈ R, it is well known that the general solution of the
equation Dαu(t) = σ (t),  < α ≤ , can be written as

u(t) = ctα– + ctα– + Iασ (t). (.)

From (.), we have

Dα–u(t) = c�(α) + Iσ (t), Dα–u(t) = c�(α)t + c�(α – ) + Iσ (t), (.)

Iβu(	) =
c	α+β–�(α)

�(α + β)
+
c	α+β–�(α – )

�(α + β – )
+ Iα+βσ (	), (.)

where 	 denotes ξ or η. Applying the given boundary conditions, we get

⎧⎨
⎩
(�(α)( – a) – �(α)Aξα+β–

�(α+β) )c – A�(α–)ξα+β–

�(α+β–) c = AIα+βσ (ξ ) + aIσ (T),

–�(α)(bT + Bηα+β–

�(α+β) )c + �(α – )( – b – Bηα+β–

�(α+β–) )c = BIα+βσ (η) + bIσ (T).
(.)

Solving the system of equations (.) for c, c, we find that

c = δ
(
AIα+βσ (ξ ) + aIσ (T)

)
+ δ

(
BIα+βσ (η) + bIσ (T)

)
,

c = δ
(
BIα+βσ (η) + bIσ (T)

)
– δ

(
AIα+βσ (ξ ) + aIσ (T)

)
.

Substituting these values in (.), we get

u(t) = Iασ (t) +A
(
δtα– – δtα–

)
Iα+βσ (ξ ) + B

(
δtα– + δtα–

)
Iα+βσ (η)

+ b
(
δtα– + δtα–

)
Iσ (T) + a

(
δtα– – δtα–

)
Iσ (T), (.)

where δ, δ, δ, δ and δ are given by (.). This completes the proof. �

3 Existence results
Let C[,T] denote the Banach space of all continuous real-valued functions defined on
[,T] with the norm ‖u‖ = sup{|u(t)| : t ∈ [,T]}. For t ∈ [,T], define ur(t) = tru(t), r ≥ ,
and let Cr[,T] be the space of all functions ur such that u ∈ C[,T] which turns out to
be a Banach space when endowed with the norm ‖u‖r = sup{tr|u(t)| : t ∈ [,T]}.
Let us define an operator Q : C–α[,T]→ C–α[,T] as

(Qu)(t) =
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds

+
(
δtα– – δtα–

)[
A

∫ ξ



(ξ – s)α+β–

�(α + β)
f
(
s,u(s)

)
ds + a

∫ T


f
(
s,u(s)

)
ds

]

+
(
δtα– + δtα–

)[
B

∫ η



(η – s)α+β–

�(α + β)
f
(
s,u(s)

)
ds

+ b
∫ T


(T – s)f

(
s,u(s)

)
ds

]
. (.)

Observe that problem (.) has solutions only if the operatorQ has fixed points.
To establish the first existence result, we need the following fixed point theorem.
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Theorem . ([]) Let E be a Banach space. Let T : E → E be a completely continuous
operator, and let the set V = {x ∈ E|x = μTx,  < μ < } be bounded. Then the operator T
has a fixed point in E.

Theorem . Assume that there exists a constant M >  such that |f (t,u)| ≤ M, ∀t ∈
[,T], u ∈R. Then problem (.) has at least one solution in the space C–α[,T].

Proof As a first step, we show that the operator Q is completely continuous. The conti-
nuity of Q follows from the continuity of f . Let H be a bounded set in C–α[,T]. Hence
H is bounded on C[,T]. Then, ∀u ∈H, t ∈ [,T], we have

t–α
∣∣(Qu)(t)

∣∣
≤M

∣∣∣∣t–α

∫ t



(t – s)α–

�(α)
ds + (δt – δ)

∣∣∣∣
[
A

∫ ξ



(ξ – s)α+β–

�(α + β)
ds + a

∫ T


ds

]

+ (δt + δ)
[
B

∫ η



(η – s)α+β–

�(α + β)
ds + b

∫ T


(T – s)ds

]

≤M
{

T

�(α + )
+

(|δ| + |δ|
)( |A|ξα+β

�(α + β + )
+ |a|T

)

+
(|δ| + |δ|

)( |B|ηα+β

�(α + β + )
+

|b|T



)}

= L,

which implies that ‖(Qu)‖–α ≤ L. Hence QH is uniformly bounded. Also, for t, t ∈
[,T], u ∈H, we have

∣∣t–α
 (Qu)(t) – t–α

 (Qu)(t)
∣∣

≤M
∣∣∣∣ 
�(α)

∫ t



[
t–α
 (t – s)α– – t–α

 (t – s)α–
]
ds –


�(α)

∫ t

t
t–α
 (t – s)α– ds

+ δ(t – t)
[
A

∫ ξ



(ξ – s)α+β–

�(α + β)
ds + a

∫ T


ds

]

+ δ(t – t)
[
B

∫ η



(η – s)α+β–

�(α + β)
ds + b

∫ T


(T – s)ds

]∣∣∣∣ →  as t → t.

Thus t–αQH and hence QH is equicontinuous. So, by the Arzela-Ascoli theorem, Q is
completely continuous. Next, we consider the set

V =
{
t–αu ∈R : t–αu = μt–αQu,  < μ < 

}
,

and show that V is bounded. For u ∈ V , we have

∣∣t–αu(t)
∣∣ = ∣∣μt–α(Qu)(t)

∣∣ ≤ t–α
∣∣Qu(t)

∣∣ ≤ L.

This implies that the setV is bounded independently ofμ ∈ (, ). Therefore, Theorem .
applies and problem (.) has at least one solution on [,T]. This completes the proof. �
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Theorem . Assume that there exists a constant K >  such that

∣∣f (t,u) – f (t, v)
∣∣ ≤ K |u – v|, ∀t ∈ [,T],u, v ∈R,

then problem (.) has a unique solution in C–α[,T] if Kν < , where

ν =
{

T

�(α + )
+
(|δ| + |δ|)(|A|ξα+β + |a|T�(α + β + ))

�(α + β + )

+
(|δ| + |δ|)(|B|ηα+β + |b|T�(α + β + ))

�(α + β + )

}
. (.)

Proof For every t ∈ [,T], u, v ∈R, we have

t–α
∣∣(Qu)(t) – (Qv)(t)

∣∣
≤ t–α

∫ t



(t – s)α–

�(α)
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣ds

+
(|δt – δ|

)(|A|
∫ ξ



(ξ – s)α+β–

�(α + β)
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣ds

+ |a|
∫ T



∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds
)

+
∣∣(δt + δ)

∣∣(|B|
∫ η



(η – s)α+β–

�(α + β)
∣∣f (s,u(s)) – f

(
s, v(s)

)∣∣ds

+ |b|
∫ T


(T – s)

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds
)

≤ K
{

T

�(α + )
+
(|δ| + |δ|)(|A|ξα+β + |a|T�(α + β + ))

�(α + β + )

+
(|δ| + |δ|)(|B|ηα+β + |b|T�(α + β + ))

�(α + β + )

}
|u – v|.

By the definition of ‖ · ‖–α , we obtain

∥∥(Qu)(t) – (Qv)(t)
∥∥
–α

≤ Kν‖u – v‖–α ≤ ‖u – v‖–α .

It follows that Q is a contraction. Hence, by the Banach contraction theorem, problem
(.) has a unique solution in C–α[,T]. This completes the proof. �

Our next existence result is based on Leray-Schauder nonlinear alternative [].

Lemma . (Leray-Schauder’s nonlinear alternative type) Let E be a Banach space,M be
a closed, convex subset of E,U be an open subset of C and  ∈U . Suppose that F :U → C is
a continuous, compact (that is, F(U) is a relatively compact subset of C)map. Then either
(i) F has a fixed point in U or (ii) there are u ∈ ∂U and λ ∈ (, ) with u = λF(U).

Theorem . Let f : [, ]×R →R be a continuous function. Furthermore, assume that:

(A) There exist a function p ∈ C([,T],R+) and a nondecreasing function ψ : R+ → R
+

such that |f (t,u)| ≤ p(t)ψ(‖u‖), ∀(t,u) ∈ [,T]×R;

http://www.boundaryvalueproblems.com/content/2013/1/274
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(A) There exists a constantM >  such that

M
ψ(M)ν‖p‖ > ,

where ν is given by (.).

Then boundary value problem (.) has at least one solution.

Proof First we shall show that the operator Q defined by (.) maps bounded sets into
bounded ones in C–α([,T],R). For r > , let Hr = {u ∈ C–α[,T] : ‖u‖–α ≤ r} be a
bounded set in C–α([,T],R). Then, for u ∈Hr , we have

t–α
∣∣(Qu)(t)

∣∣
≤ t–α

∫ t



(t – s)α–

�(α)
p(s)ψ

(‖u‖–α

)
ds

+
(|δ| + |δ|

)(|A|
∫ ξ



(ξ – s)α+β–

�(α + β)
p(s)ψ

(‖u‖–α

)
ds + |a|

∫ T


p(s)ψ

(‖u‖–α

)
ds

)

+
(|δ| + |δ|

)(|B|
∫ η



(η – s)α+β–

�(α + β)
p(s)ψ

(‖u‖–α

)
ds

+ |b|
∫ T


(T – s)p(s)ψ

(‖u‖–α

)
ds

)

≤ ‖p‖ψ(r)
{

T

�(α + )
+

(|δ| + |δ|
)( |A|ξα+β

�(α + β + )
+ |a|T

)

+
(|δ| + |δ|

)( |B|ηα+β

�(α + β + )
+

|b|T



)}

≤ ‖p‖ψ(r)ν,

where ν is given by (.).
Next, we shall show that the operator Q maps bounded sets into equicontinuous sets.

Let t, t ∈ [,T] with t < t and u ∈Hr . Then we have

∣∣t–α
 (Qu)(t) – t–α

 (Qu)(t)
∣∣

≤
∣∣∣∣ 
�(α)

∫ t



[
t–α
 (t – s)α– – t–α

 (t – s)α–
]
p(s)ψ(r)ds

–


�(α)

∫ t

t
t–α
 (t – s)α–p(s)ψ(r)ds

+ δ(t – t)
(
A

∫ ξ



(ξ – s)α+β–

�(α + β)
p(s)ψ(r)ds + a

∫ T


p(s)ψ(r)ds

)

+ δ(t – t)
(
B

∫ η



(η – s)α+β–

�(α + β)
p(s)ψ(r)ds

+ b
∫ T


(T – s)p(s)ψ(r)ds

)∣∣∣∣
≤ ‖p‖ψ(r)

∣∣∣∣ 
�(α)

∫ t



[
t–α
 (t – s)α– – t–α

 (t – s)α–
]
ds

http://www.boundaryvalueproblems.com/content/2013/1/274
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–


�(α)

∫ t

t
t–α
 (t – s)α– ds + δ(t – t)

(
A

∫ ξ



(ξ – s)α+β–

�(α + β)
ds

+ a
∫ T


p(s)ψ(r)ds

)
+ δ(t – t)

(
B

∫ η



(η – s)α+β–

�(α + β)
ds

+ b
∫ T


(T – s)ds

)∣∣∣∣,

which tends to zero independently of u ∈Hr as t → t. ThusQ is completely continuous.
Now let u be a solution of problem (.), then for t ∈ [,T] and λ ∈ (, ), we have

t–α
∣∣u(t)∣∣ ≤ ψ

(‖u‖–α

)‖p‖
{

T

�(α + )
+

(|δ| + |δ|
)( |A|ξα+β

�(α + β + )
+ |a|T

)

+
(|δ| + |δ|

)( |B|ηα+β

�(α + β + )
+

|b|T



)}
, (.)

which can be rewritten as

t–α
∣∣u(t)∣∣

[
ψ

(‖u‖–α

)‖p‖
{

T

�(α + )
+

(|δ| + |δ|
)( |A|ξα+β

�(α + β + )
+ |a|T

)

+
(|δ| + |δ|

)( |B|ηα+β

�(α + β + )
+

|b|T



)}]–
≤ . (.)

By assumption (A), there existsM such that t–α|u(t)| �=M. Let us set

HM =
{
u ∈ C–α[,T] : t–α

∣∣u(t)∣∣ <M + 
}
.

Note that the operator Q :HM → C–α[,T] is completely continuous and by the defini-
tion ofHM , there is no u ∈ ∂HM such that u = λQ(u) for some λ ∈ (, ). In consequence,
by Lemma ., we conclude thatQ has at least one fixed point u ∈HM , which is a solution
of problem (.). �

4 Examples
Example . Consider the following fractional integral boundary value problem:

⎧⎪⎨
⎪⎩
Dαu(t) = sinu(t)+cosu(t)

+cos u(t) , t ∈ [, ],
D.x(+) –D.x(–) = I/x(/),
D–.x(+) –D–.x(–) = I/x(/).

(.)

Since

∣∣f (t,u)∣∣ =
∣∣∣∣ sinu(t) + cosu(t)

 + cos u(t)

∣∣∣∣ ≤ 

,

therefore, Theorem . applies and problem (.) has at least one solution on [, ].

Example . Consider the problem

⎧⎪⎨
⎪⎩
D 

 x(t) = K (cos t + tan– x(t)), t ∈ [, ],
D.x(+) –D.x(–) = I/x(/),
D–.x(+) –D–.x(–) = I/x(/).

(.)

http://www.boundaryvalueproblems.com/content/2013/1/274
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Here α = /, T = , a = b = , ξ = /, η = /, β = /, A = B = . Clearly,

∣∣f (t,u) – f (t, v)
∣∣ ≤ K

∣∣tan– u(t) – tan– v(t)
∣∣ ≤ K |u – v|,

ν 
 . (ν is given by (.)) and in consequence,K < .. Thus, all the assump-
tions of Theorem . are satisfied. Therefore, by the conclusion of Theorem ., there
exists a unique solution for problem (.).
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