
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2012, Article ID 471973, 9 pages
doi:10.1155/2012/471973

Research Article

A Nonlinear Programming and Artificial Neural Network
Approach for Optimizing the Performance of a Job Dispatching
Rule in a Wafer Fabrication Factory

Toly Chen

Department of Industrial Engineering and Systems Management, Feng Chia University, No. 100 Wenhwa Road, Seatwen,
Taichung 407, Taiwan

Correspondence should be addressed to Toly Chen, tcchen@fcu.edu.tw

Received 21 May 2012; Accepted 18 July 2012

Academic Editor: Yi-Chi Wang

Copyright © 2012 Toly Chen. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A nonlinear programming and artificial neural network approach is presented in this study to optimize the performance of a job
dispatching rule in a wafer fabrication factory. The proposed methodology fuses two existing rules and constructs a nonlinear
programming model to choose the best values of parameters in the two rules by dynamically maximizing the standard deviation of
the slack, which has been shown to benefit scheduling performance by several studies. In addition, a more effective approach is also
applied to estimate the remaining cycle time of a job, which is empirically shown to be conducive to the scheduling performance.
The efficacy of the proposed methodology was validated with a simulated case; evidence was found to support its effectiveness. We
also suggested several directions in which it can be exploited in the future.

1. Introduction

This study attempts to optimize the performance of a
job dispatching rule in a wafer fabrication factory. The
production equation required by a wafer fabrication factory
is very expensive and must be fully utilized. For this purpose,
to ensure that the capacity does not substantially exceed
the demand is a perquisite. Subsequently, how to plan the
use of the existing capacity to shorten the cycle time and
maximize the turnover rate is an important goal. In this
regard, scheduling is undoubtedly a very useful tool.

However, some studies [1–4] noted that job dispatching
is very difficult task in a semiconductor manufacturing
factory. Theoretically, it is an NP-hard problem. In practice,
many semiconductor manufacturing factories suffer from
lengthy cycle times and are not able to improve on their
delivery promises to their customers.

Semiconductor manufacturing can be divided into four
stages: wafer fabrication, wafer probing, packaging, and final
testing. The most important stage is wafer fabrication. It
is also the most time-consuming one. In this study, we
investigated the job dispatching for this stage. This field
includes many different methods, including dispatching

rules, heuristics, data-mining-based approaches [5, 6], agent
technologies [5, 7–9], and simulation. Among them, dis-
patching rules (e.g., first-in first out (FIFO), earliest due
date (EDD), least slack (LS), shortest processing time (SPT),
shortest remaining processing time (SRPT), critical ratio
(CR), the fluctuation smoothing rule for the mean cycle time
(FSMCT), and the fluctuation smoothing rule for cycle time
variation (FSVCT), FIFO+, SRPT+, and SRPT++) all have
received a lot of attention over the last few years [5–7] and are
the most prevalent methods used in practical applications.
For details on the traditional dispatching rules, please refer
to Lu et al. [10].

Some advances in this field are as follows. Altendorfer
et al. [11] proposed the work in parallel queue (WIPQ)
rule targeting maximizing throughput at a low level of
work in process (WIP). Zhang et al. [12] proposed the
dynamic bottleneck detection (DBD) approach by classifying
workstations into several categories and then applied differ-
ent dispatching rules to these categories. They used three
dispatching rules including FIFO, the shortest processing
time until the next bottleneck (SPNB), and CR. Based on
the current conditions in the wafer fabrication factory, Hsieh
et al. [6] chose one approach from FSMCT, FSVCT, largest
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deviation first (LDF), one step ahead (OSA), or FIFO. Chen
[13] modified FSMCT and proposed the nonlinear FSMCT
(NFSMCT) rule, in which he smoothed the fluctuation in
the estimated remaining cycle time and balanced it with that
of the release time or the mean release rate. To diversify
the slack, he applied the “division” operator instead. This
was followed by Chen [14], in which he proposed the one-
factor-tailored NFSMCT (1f-TNFSMCT) rule and the one-
factor-tailored nonlinear FSVCT (1f-TNFSVCT) rule. Both
rules contain an adjustable parameter to allow them to be
customized for a target wafer fabrication factory. Chen [15]
used more parameters and proposed 2f-TNFSMCT and 2f-
TNFSVCT.

In a multiple-objective study, Chen and Wang [16]
proposed a biobjective nonlinear fluctuation smoothing rule
with an adjustable factor (1f-biNFS) to optimize both the
average cycle time and the cycle time variation at the same
time. More degrees of freedom seem to be helpful in the
performance of customizable rules. For this reason, Chen
et al. [17] extended 1f-biNFS to a biobjective fluctuation
smoothing rule with four adjustable factors (4f-biNFS). For a
summary of these rules please refer to Table 1. One drawback
of these rules is that only static factors are used, and they
must be determined in advance. To this end, most studies
(e.g., [13–17]) performed extensive simulations. This is not
only time-consuming but it also fails to consider enough
possible combinations of these factors. Chen [18] established
a mechanism that was able to adjust the values of the factor
in 1f-biNFS dynamically (dynamic 1f-biNFS). However, even
though satisfactory results were obtained in his experiment,
there was no theoretical basis supporting the proposed
mechanism. Chen [19] attempted to relate the scheduling
performance to the factor values using a back propagation
network (BPN). If that would have worked, then the factor
values contributing to the optimal scheduling performance
could have been found. However, the explanatory ability of
the BPN was not good enough.

At the same time, Chen [18] stated that a nonlinear
fluctuation smoothing rule uses the divisor operator instead
of the subtraction operator, which diversifies the slack
and makes the nonlinear fluctuation smoothing rule more
responsive to changes in the parameters. Chen and Wang
[16] proved that the effects of the parameters are balanced
better in a nonlinear fluctuation smoothing rule than in a
traditional one if the variation in the parameters is large.
In addition, there will be fewer ties since the slack values
are very different. Further, magnifying the difference in
the slack seems to improve the scheduling performance,
especially with respect to the average cycle time [20]. For
these reasons, a slack-diversifying fuzzy-neural rule is used
in chen et al. [20] for job dispatching in a wafer fabrication
factory, in order to further improve the performance of
job dispatching in a wafer fabrication factory. The slack-
diversifying nonlinear fluctuation smoothing rule is modi-
fied from 1f-TNFSVCT by maximizing the difference in the
slack measured with the standard deviation of the slack.

This study adopts several treatments to further improve
Wang et al.’s approach.
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Figure 1: The extreme cases.

(1) In nonlinear fluctuation smoothing rules, it is com-
mon that some jobs have very large or small slack
values, that is the extreme case (see Figure 1), which
usually distorts the results of calculating the standard
deviation of slacks. In this study, the extreme cases are
excluded before calculation.

(2) Two objectives, the average cycle time and cycle time
standard deviation, are considered at the same time
by fusing the results from 2f-TNFSMCT and 2f-
TNFSVCT.

(3) A nonlinear programming problem is solved to find
the optimal values of parameters in 2f-TNFSMCT
and 2f-TNFSVCT.

(4) On the other hand, the remaining cycle time of
a job needs to be estimated in 2f-TNFSMCT and
2f-TNFSVCT. For this reason, we also propose a
more effective fuzzy-neural approach to estimate the
remaining cycle time of a job. The fuzzy-neural
approach is a modification of the fuzzy c-means and
back propagation network (FCM-BPN) approach
[17] by incorporating in the concept of principal
component analysis (PCA). According to Chen and
Wang [3], with more accurate remaining cycle time
estimation, the scheduling performance of a fluctu-
ation smoothing rule can be significantly improved.
In the original study, Chen and Wang used a gradient
search algorithm for training the BPN, which is time-
consuming and not very accurate. In this study, we
use the Levenberg-Marquardt algorithm to achieve
the same purpose, which is more efficient than that
in Chen and Wang’s study and can produce more
accurate forecasts.

The differences between the proposed methodology and
the previous methods are summarized in Table 1.

The remainder of this paper is arranged as follows.
Section 2 provides the details of the proposed methodology.
In Section 3, a simulated case is used to validate the
effectiveness of the nonlinear programming and artificial
neural network approach. The performances of some exist-
ing approaches in this field are also examined using the
simulated data. Finally, we draw our conclusions in Section 4
and provide some worthwhile topics for future work.
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Table 1: The differences between the proposed methodology and the previous methods.

Rule Number of objectives Objectives
Number of adjustable

parameters
Optimized? How to derive the rule?

NFSMCT 1 Average cycle time 1 No (i) Generalizing FSMCT

1f-TNFSVCT 1
Cycle time standard
variation

1 No
(i) Generalizing FSVCT
(ii) Adding adjustable parameters

1f-TNFSMCT 1 Average cycle time 1 No
(i) Generalizing FSMCT
(ii) Adding adjustable parameters

2f-TNFSVCT 1
Cycle time standard
deviation

2 No
(i) Generalizing FSVCT
(ii) Adding adjustable parameters

4f-biNFS 2
Average cycle time,
cycle time standard
deviation

2 Yes
(i) Fusing FSVCT and FSMCT
(ii) Adding adjustable parameters

The proposed
methodology

2
Average cycle time,
cycle time standard
deviation

2 Yes
(i) Fusing 2f-TFSMCT and

2f-TNFSVCT
(ii) Nonlinear programming

2. Methodology

The variables and parameters that will be used in the
proposed methodology are defined in the following.

(1) Rj : the release time of job j; j = 1∼n.

(2) BQ j : the total queue length before bottlenecks at Rj .

(3) CR ju: the critical ratio of job j at step u.

(4) CT j : the cycle time of job j.

(5) CTE j : the estimated cycle time of job j.

(6) Dj : the average delay of the three most recently
completed jobs at Rj .

(7) DD j : the due date of job j.

(8) FQ j : the total queue length in the whole factory at Rj .

(9) Qj : the queue length on the processing route of job j
at Rj .

(10) RCTE ju: the estimated remaining cycle time of job j
from step u.

(11) RPT ju: the remaining processing time of job j from
step u.

(12) SCT ju: the step cycle time of job j until step u.

(13) SK ju: the slack of job j at step u.

(14) Uj : the average factory utilization before job j is
released. If the utilization of the factory is reported
on a daily basis, then Uj is the utilization of the day
before job j is released.

(15) WIP j : the factory work in progress (WIP) at Rj .

(16) λ: mean release rate.

(17) xp: inputs to the three-layer BPN, p = 1∼6.

(18) hl: the output from hidden-layer node l, l = 1∼L.

(19) wo
l : the connection weight between hidden-layer

node l and the output node.

(20) wh
pl: the connection weight between input node p and

hidden-layer node l, p = 1∼6; l = 1∼L.

(21) θhl : the threshold on hidden-layer node l.

(22) θo: the threshold on the output node.

The proposed methodology includes the following seven
steps.

Step 1. Replacing parameters using PCA.

Step 2. Use FCM to classify jobs. The required inputs for this
step are the new variables determined by PCA. To determine
the optimal number of categories, we use the S-test. The
output of this step is the category of each job.

Step 3. Use the BPN approach to estimate the cycle time of
each job. Jobs of different categories will be sent to different
three-layer BPNs. The inputs to the three-layer BPN include
the new variables of a job, while the output is the estimated
cycle time of the job.

Step 4. Derive the remaining cycle time of each job from the
estimated cycle time.

Step 5. Incorporate the estimated remaining cycle time into
the new rule that is composed of two subrules–2f-TNFSMCT
and 2f-TNFSVCT.

Step 6. Find out the optimal value of parameters in the new
rule by solving a nonlinear programming problem.

The remaining cycle time of a job being produced in a
wafer fabrication factory is the time still needed to complete
the job. If the job is just released into the wafer fabrication
factory, then the remaining cycle time of the job is its cycle
time. The remaining cycle time is an important input for
the scheduling rule. Past studies (e.g., [21–24]) have shown
that the accuracy of the remaining cycle time forecasting can
be improved by job classification. Soft computing methods
(e.g., [3, 20, 25, 26]) have received much attention in this
field.

2.1. PCA Analysis. First, PCA is used to replace the inputs
to the FCM-BPN. The combination of PCA and FCM has
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been shown to be a more effective classifier than FCM alone.
Although there are more advanced applications of PCA, in
this study PCA is used to enhance the efficiency of training
the FCM-BPN. PCA consists of the four following steps:

(1) Raw data standardization: to eliminate the difference
between the dimensions and the impact of large
numerical difference in the original variables{Uj ,
Qj , BQ j , FQ j , WIP j , Dj}, the original variables are
standardized:

x∗i j =
xi j − x j

σj
,

x j =
∑n

i=1 xi j
n

,

σj =

√
√
√
√
∑n

i=1

(
xi j − x j

)2

n− 1
,

(1)

where x j and σj indicate the mean and standard
deviation of variable j, respectively,

(2) Establishment of the correlation matrix R:

R = 1
n− 1

X∗TX∗, (2)

where X∗ is the standardized data matrix. The
eigenvalues and eigenvectors of R are calculated and
represented as λ1 ∼ λm and u1 ∼ um, respectively;
λ1 ≥ λ2 ≥ · · · ≥ λm.

(3) Determination of the number of principal compo-
nents: the variance contribution rate is calculated as:

ηi = λi∑m
i=1 λi

· 100%, (3)

and the accumulated variance contribution rate is

ηΣ
(
q
) =

q∑

i=1

ηi. (4)

Choose the smallest q value such that ηΣ(q) ≥ 85%∼
90%.

(4) Formation of the following matrixes:

Um×q =
[
u1,u2, ...,uq

]
,

Zn×q = X∗n×mUm×q.
(5)

After PCA, examples are then classified using FCM.

2.2. The FCM Approach. In the proposed methodology,
jobs are classified into K categories using FCM. If a crisp
clustering method is applied, then it is possible that some
clusters will have very few examples. In contrast, an example
belongs to multiple clusters to different degrees in FCM,
which provides a solution to this problem.

FCM classifies jobs by minimizing the following objective
function:

Min
K∑

k=1

n∑

j=1

μmj(k)e
2
j(k), (6)

where K is the required number of categories; n is the
number of jobs; μj(k) indicates the membership that job j
belongs to category k; ej(k) measures the distance from job
j to the centroid of category k; m ε [1,∞) is a parameter to
adjust the fuzziness and is usually set to 2. The procedure of
FCM is as follows.

(1) Produce a preliminary clustering result.

(2) (Iterations) Calculate the centroid of each category as

x(k) =
{
x(k)p

}
; p = 1 ∼ q,

x(k)p =
∑n

j=1 μ
m
j(k)xjp

∑n
j=1 μ

m
j(k)

,

μj(k) = 1
∑K

q=1

(
ej(k)/e j(q)

)2/(m−1) ,

ej(k) =
√
√
√
√
∑

all p

(
xjp − x(k)p

)2
,

(7)

where x(k) is the centroid of category k. μ(t)
j(k) is the

membership that job i belongs to category k after the
tth iteration.

(3) Remeasure the distance from each job to the centroid
of each category, and then recalculate the corre-
sponding membership.

(4) Stop if the following condition is met. Otherwise,
return to step (2):

max
k

max
j

∣
∣
∣μ(t)

j(k) − μ(t−1)
j(k)

∣
∣
∣ < d, (8)

where d is a real number representing the threshold for the
convergence of membership.

Finally, the separate distance test (S-test) proposed by
Xie and Beni [24] can be applied to determine the optimal
number of categories K:

Min S (9)

subject to

Jm =
K∑

k=1

n∑

j=1

μmj(k)e
2
j(k),

e2
min = min

k1 /= k2

⎛

⎝
∑

all p

(
x(k1)p − x(k2)p

)2

⎞

⎠,

S = Jm
n× e2

min
,

K ∈ Z+.

(10)
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The K value minimizing S determines the optimal number
of categories.

2.3. The BPN Approach. After clustering, a portion of the
jobs in each category is input as the “training examples” to
the three-layer BPN to determine the parameter values. The
configuration of the three-layer BPN is set up as follows.
First, inputs are the six parameters associated with the jth
example/job including the q new variables. These parameters
have to be normalized before feeding into the three-layer
BPN. Subsequently, there is only a single hidden layer with
neurons that are twice that in the input layer. Finally,
the output from the three-layer BPN is the (normalized)
estimated cycle time (CTE j) of the example. The activation
function used in each layer is Log Sigmoid function:

f (x) = 1
(1 + e−x)

. (11)

The procedure for determining the parameter values is
now described. Two phases are involved at the training stage.
At first, in the forward phase, inputs are multiplied with
weights, summated, and transferred to the hidden layer.
Then activated signals are outputted from the hidden layer
as

hl = 1

1 + e−n
h
l

, (12)

where

nhl = Ihl − θhl

Ihl =
q∑

p=1

wh
pl · xjp.

(13)

hl’s are also transferred to the output layer with the same
procedure. Finally, the output of the BPN is generated as

oj = 1
1 + e−no

, (14)

where

no = Io − θo,

Io =
L∑

l=1

wo
l · hl.

(15)

Subsequently, in the backward phase, some algorithms
are applicable for training a BPN, such as the gradient
descent algorithms, the conjugate gradient algorithms, and
the Levenberg-Marquardt algorithm. In this study, the
Levenberg-Marquardt algorithm is applied. The Levenberg-
Marquardt algorithm was designed for training with second-
order speed without having to compute the Hessian matrix.
It uses approximation and updates the network parameters
in a Newton-like way, as described below.

The network parameters are placed in vector β = [wh
11, . . .,

wh
qL, θh1 , . . ., θhL , wo

1, . . ., wo
L, θo]. The network output oj can

be represented with f (x j , β). The objective function of the

BPN is to minimize the root mean-squared error (RMSE) or
equivalently the sum of squared error (SSE):

SSE
(
β
) =

n∑

j=1

(
N
(

CT j

)
− f

(
x j ,β

))2
. (16)

The Levenberg-Marquardt algorithm is an iterative pro-
cedure. In the beginning, the user should specify the initial
values of the network parameters β. Let βT = (1, 1, . . ., 1)
is a common practice. In each step, the parameter vector β
is replaced by a new estimate β + δ, where δ = [Δwh

11, . . .,
Δwh

qL, Δθh1 , . . ., ΔθhL , Δwo
1, . . ., Δwo

L, Δθo]. The network output
becomes f (x j ,β+δ) that is approximated by its linearization
as

f
(

x j ,β + δ
)
≈ f

(
x j ,β

)
+ J jδ, (17)

where

J j =
∂ f
(

x j ,β
)

∂β
(18)

is the gradient vector of f with respect to β. Substituting (17)
into (16),

SSE
(
β + δ

) ≈
n∑

j=1

(
N
(
CTj

)
− f

(
x j ,β

)
− J jδ

)2
. (19)

When the network reaches the optimal solution, the gradient
of SSE with respect to δ will be zero. Taking the derivative
of SSE(β + δ) with respect to δ and setting the result to zero
gives

(
JTJ
)
δ = JT

(
N
(
CTj

)
− f

(
x j ,β

))
, (20)

where J is the Jacobian matrix containing the first derivative
of network error with respect to the weights and biases.
Equation (20) includes a set of linear equations that can be
solved for δ.

Finally, the BPN can be applied to estimate the cycle time
of a job, and then the remaining cycle time of the job can be
derived as

RCTE ju = CTE j − SCT ju, (21)

2.4. The New Rule. In traditional fluctuation smoothing
(FS) rules there are two different formulation methods,
depending on the scheduling purpose [22]. ne method is
aimed at minimizing the average cycle time with FSMCT:

SKM ju = j

λ
− RCTE ju. (22)

The other method is aimed at minimizing the variance of
cycle time with FSVCT:

SKV ju = Rj − RCTE ju. (23)

Jobs with the smallest slack values (SKM ju or SKV ju) will be
given higher priority. These two rules and their variants have
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been proven to be very effective in shortening the cycle time
in wafer fabrication factories [10, 14–17].

Chen [15] normalized the parameters and used the
division operator instead and derived the 2f-TNFSVCT rule:

SKM ju =
⎛

⎝ β

α
(

RCTE ju −min
(

RCTE ju

))

⎞

⎠

ξ

·
(
Rj − RCTE ju + ζ

(
RCTE ju −min

(
Rj

)))
,

(24)

and the 2f-TNFSMCT rule:

SKV ju =
⎛

⎝ λβ

(n− 1)
(

RCTE ju −min
(

RCTE ju

))

⎞

⎠

ξ

·
(
j

λ
− RCTE ju + ζ

(

RCTE ju − 1
λ

))

,

(25)

where

α = max
(
Rj

)
−min

(
Rj

)
,

β = max
(

RCTE ju

)
−min

(
RCTE ju

)
,

(26)

0 ≤ ξ, ζ ≤1. There are many possible models to form the
combination of ξ and ζ . For example,

(Linear model) ξ = ζ ,

(Nonlinear model) ξ = ζk, k ≥ 0,

(
Logarithmic model

)
ξ = ln(1 + ζ)

ln 2
.

(27)

The new rule is composed of two rules. The first rule is
derived by diversifying the slack in the 2f-TNFSVCT rule,
aimed at minimizing the variation of cycle time [22]. To
diversify the slack, the standard deviation of the slack is to
be maximized as follows:

σSKM ju =

√
√
√
√
∑N

j=1

(
SKM ju − SKM ju

)2

N − 1
.

(28)

However, in nonlinear fluctuation smoothing rules, it is
common that two of the jobs will have very large or small
slack values, that is, the extreme cases, which distort the
sequencing results. For this reason, such jobs are put in a
set EC that will be excluded from calculating the standard
deviation:

SKM′
ju =

∑N
j=1 j /∈EC SKM ju

N − 2
,

σ ′SKM ju
=

√
√
√
√
∑N

j=1, j /∈EC

(
SKM ju − SKM′

ju

)2

N − 3
.

(29)

The second rule is derived by diversifying the slack in
the 2f-TNFSMCT rule, aimed at minimizing the mean cycle
time:

SKV ju =
⎛

⎝ λβ

(n− 1)
(

RCTE ju −min
(

RCTE ju

))

⎞

⎠

ξ

·
(
j

λ
− RCTE ju + ζ

(

RCTE ju − 1
λ

))

.

(30)

To diversify the slackness, the standard deviation of the slack
is to be maximized:

SKV′ju =
∑N

j=1, j /∈EC SKV ju

N − 2
, (31)

σ ′SKV ju
=

√
√
√
√
∑N

j=1, j /∈EC

(
SKV ju − SKV′ju

)2

N − 3
.

(32)

To generate a biobjective rule, the two rules need to
be combined into a single one, for which the following
nonlinear programming model is to be optimized:

Max Z = ω1σ
′
SKM ju

+ (1− ω1)σ ′SKV ju (33)

s.t.

SKM′
ju =

∑N
j=1, j /∈EC SKM ju

N − 2
,

σ ′SKM ju
=

√
√
√
√
∑N

j=1, j /∈EC

(
SKM ju − SKM′

ju

)2

N − 3
,

SKV′ju =
∑N

j=1, j /∈EC SKV ju

N − 2
,

σ ′SKV ju
=

√
√
√
√
∑N

j=1, j /∈EC

(
SKVju − SKV ′

ju

)2

N − 3
,

SKM ju =
⎛

⎝ β

α
(

RCTE ju −min
(

RCTE ju

))

⎞

⎠

ξ

·
(
Rj − RCTE ju + ζ

(
RCTE ju −min

(
Rj

)))
,

SKV ju =
⎛

⎝ λβ

(n− 1)
(

RCTE ju −min
(

RCTE ju

))

⎞

⎠

ξ

·
(
j

λ
− RCTE ju + ζ

(

RCTE ju − 1
λ

))

,

0 ≤ ξ, ζ ≤ 1
(34)

which is an NP problem.

3. A Simulation Study

To evaluate the effectiveness of the proposed methodology,
simulated data were used to avoid disturbing the regular
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operations of the wafer fabrication factory. Simulation is
a widely used technology to assess the effectiveness of a
scheduling policy, especially when the proposed policy and
the current practice are very different. This investigation
is not possible to implement in the actual production
environment. The real-time scheduling systems will input
information very rapidly into the production management
information systems (PROMIS). To this end, a real wafer
fabrication factory located in Taichung Scientific Park of
Taiwan with a monthly capacity of about 25,000 wafers
was simulated. The simulation program has been validated
and verified by comparing the actual cycle times with
the simulated values and by analyzing the trace report,
respectively. The wafer fabrication factory is producing
more than 10 types of memory products and has more
than 500 workstations for performing single-wafer or batch
operations using 58 nm∼110 nm technologies. Jobs released
into the fabrication factory are assigned three types of
priorities, that is, “normal,” “hot,” and “super hot.” Jobs with
the highest priorities will be processed first. Such a large
scale accompanied with reentrant process flows make job
dispatching in the wafer fabrication factory a very tough
task. Currently, the longest average cycle time exceeds three
months with a variation of more than 300 hours. The wafer
fabrication factory is therefore seeking better dispatching
rules to replace first-in first-out (FIFO) and EDD, in order
to shorten the average cycle times and ensure the on-time
delivery to its customers. One hundred replications of the
simulation are successively run. The time required for each
simulation replication is about 30 minute using a PC with
Intel Dual CPU E2200 2.2 GHz and 1.99G RAM. A horizon
of twenty-four months is simulated.

To assess the effectiveness of the proposed methodology
and to make comparison with some existing approaches–
FIFO, EDD, SRPT, CR, FSVCT, FSMCT, Justice [27], NFS
[16], 2f-TNFSMCT, and 2f-TNFSVCT all of these methods
were applied to schedule the simulated wafer fabrication
factory to collect the data of 1000 jobs, and then we separated
the collected data by their product types and priorities. That
is about the amount of work that can be achieved with 100%
of the monthly capacity. In some cases, there was too little
data, so they were not discussed.

To determine the due date of a job, the PCA-FCM-BPN
approach was applied to estimate the cycle time, for which
the Levenberg-Marquardt algorithm rather than the gradient
descent algorithm was applied to speed up the network
convergence. Then, we added a constant allowance of three
days to the estimated cycle time, that is, κ = 72, to determine
the internal due date.

Jobs with the highest priorities are usually processed first.
In FIFO, jobs were sequenced on each machine first by their
priorities, then by their arrival times at the machine. In EDD,
jobs were sequenced first by their priorities, then by their due
dates. In CR, jobs were sequenced first by their priorities,
then by their critical ratios. In the proposed methodology,
the nonlinear model with k = 2 is used. In Justice, jobs were
sequenced on each machine first by their priorities, then
according to the job speed matrix (Table 2).

Table 2: The job speed matrix.

Machine’s bottleneck status

Hungry Proper Crowded

Work progress status
Behind Rapid Rapid Normal

Just in time Rapid Normal Suspended

Advanced Normal Normal Suspended

Subsequently, the average cycle time and cycle time
standard deviation of all cases were calculated to assess the
scheduling performance. With respect to the average cycle
time, the FIFO policy was used as the basis for comparison,
while FSVCT was compared in evaluating cycle time standard
deviation. The results are summarized in Tables 3 and 4.

According to the experimental results, the following
points can be made:

(1) For the average cycle time, the proposed methodol-
ogy outperformed the baseline approach, the FIFO
policy. The average advantage was about 16%.

(2) In addition, the proposed methodology surpassed
the FSVCT policy in reducing cycle time standard
deviation. The most obvious advantage was 59%.

(3) As expected, SRPT performed well in reducing the
average cycle times, especially for product types with
short cycle times (e.g., product A), but might give
an exceedingly bad performance with respect to cycle
time standard deviation. If the cycle time is long,
the remaining cycle time will be much longer than
the remaining processing time, which leads to the
ineffectiveness of SRPT. SRPT is similar to FSMCT.
Both try to make all jobs equally early or late.

(4) The performance of EDD was also satisfactory for
product types with short cycle time. If the cycle time
is long, it is more likely to deviate from the prescribed
internal due date, which leads to the ineffectiveness
of EDD. That becomes more serious if the percentage
of the product type is high in the product mix (e.g.,
product type A). CR has similar problems.

(5) The proposed rule was also compared with the
traditional one without slack diversification. Taking
product type A with normal priority as an exam-
ple, the comparison results are shown in Figure 2.
Obviously, the proposed rule dominated most of
the traditional rules without slack diversification.
According to these results, slack diversification did
indeed improve the performances of the fluctuation
smoothing policies.

4. Conclusions and Directions for
Future Research

For capital-intensive industries like wafer fabrication, effi-
cient use of expensive equipment is very important. To
this end, job dispatching is a challenging but important
task. However, for such a complex production system,
to optimize the scheduling performance is a tough task.
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Table 3: The performances of various approaches in the average cycle time.

Avg. cycle time (hrs) A (normal) A (hot) A (super hot) B (normal) B (hot)

FIFO 1254 400 317 1278 426

EDD 1094 345 305 1433 438

SRPT 948 350 308 1737 457

CR 1148 355 300 1497 440

FSMCT 1313 347 293 1851 470

FSVCT 1014 382 315 1672 475

NFS 1456 407 321 1452 421

Justice 1126 378 322 1576 489

2f-TNFSMCT 1369 379 306 1361 399

2f-TNFSVCT 1465 416 318 1551 500

The proposed methodology 1076 289 269 1132 388

Table 4: The performances of various approaches in cycle time standard deviation.

Cycle time standard deviation (hrs) A (normal) A (hot) A (super hot) B (normal) B (hot)

FIFO 55 24 25 87 51

EDD 129 25 22 50 63

SRPT 248 31 22 106 53

CR 69 29 18 58 53

FSMCT 419 33 16 129 104

FSVCT 280 37 27 201 77

NFS 87 49 19 44 47

Justice 120 26 20 69 32

2f-TNFSMCT 75 37 17 47 19

2f-TNFSVCT 38 38 29 33 24

The proposed methodology 86 26 15 54 21
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Figure 2: Comparing the slack-diversifying rule with traditional
rules without slack diversification.

As an innovative attempt, this study presents a nonlinear
programming and artificial neural network approach to
optimize the performance of a slack-diversifying dispatching
rule in a wafer fabrication factory, to optimize the average
cycle time, and to optimize cycle time standard deviation.

The proposed methodology merges two existing rules—
2f-TNFSMCT and 2f-TNFSVCT, and constructs a nonlinear
programming model to choose the best values of parameters
in the two rules. A more effective approach is also applied to
estimate the remaining cycle time of a job, which is empiri-
cally shown to be conducive to the scheduling performance.

To further enhance the accuracy of the remaining cycle time
estimation, other dynamic parameters must be considered.
In addition, some advanced methods for the cycle time
estimation, such as data mining methods [28], can be applied
as well.

After a simulation study, we observed the following
phenomena.

(1) Through improving the accuracy of estimating the
remaining cycle time, the performance of a schedul-
ing rule can indeed be strengthened.

(2) Optimizing the adjustable factors in the two rules
appears as an appropriate tool to enhance the
scheduling performance of the rule.

(3) Slack diversification is indeed conducive to the
performance of a fluctuation smoothing rule.

However, to further assess the effectiveness and efficiency
of the proposed methodology, the only way is to apply it to
an actual wafer fabrication factory. In addition, other rules
can be optimized in the same way in future studies.
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