
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 452789, 17 pages
doi:10.1155/2012/452789

Research Article
A Mathematical Model for the Dynamics of
a Fish Algae Consumption Model with Impulsive
Control Strategy

Jin Yang1 and Min Zhao2

1 School of Mathematics and Information Science, Wenzhou University, Zhejiang, Wenzhou 325035, China
2 School of Life and Environmental Science, Wenzhou University, Zhejiang, Wenzhou 325035, China

Correspondence should be addressed to Min Zhao, zmcn@tom.com

Received 21 October 2011; Accepted 7 February 2012

Academic Editor: Leevan Ling

Copyright q 2012 J. Yang and M. Zhao. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

A dynamic mathematical model of fish algae consumption with an impulsive control strategy
is proposed and analyzed in detail. It is shown that the system has a globally asymptotically
stable algae-eradication periodic solution which can be obtained using the Floquet theory of
impulsive differential equations and small-amplitude perturbation techniques. The conditions
for the permanence of the system can also be determined. Numerical results for impulsive
perturbations show the rich dynamic behavior of the system. All these results may be useful in
controlling eutrophication.

1. Introduction

One of the most common ecological and environmental problems of inland water bodies
is eutrophication, which diminishes water quality by spurring excessive growth of algae
and increasing amounts of suspended organic material [1–3]. Because of climate change
and discharges of industrial wastewater into rivers, the self-purification capacity of the
water body decreases. This provides favorable conditions for algae growth, leading to
repeated outbreaks of abnormal proliferations of algae blooms in tributaries; recently, this
phenomenon has been increasing [4]. Therefore, research on how to control the amount of
algae in the environment is of great theoretical importance and practical significance.

There are many ways to control algae populations. The most widely used method is
chemical control; this is not discussed in detail here because it has many negative impacts.
More recently, another important method, called biological control, has been introduced.
Biological control is the practice of using natural enemies (fish) to suppress algae, as has
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already been done for pest control [5–8]. These natural enemies can prevent algae popu-
lations from increasing to levels that cause eutrophication.

Mathematical models of ecological population dynamics have not only to account for
growth and interactions, but also to improve the understanding of the functioning of
food chains and webs and their dependence on some environmental conditions [9–12].
Impulsive differential equations have been widely used to study the mathematical properties
of impulsive predator-prey models or three-species food-chain models [13–17]. Moreover,
the theory of impulsive differential equations is being recognized, not only to be richer than
the corresponding theory of differential equations without impulses, but also to represent a
more natural framework for the mathematical modeling of real-world phenomena [18–20].

Recently, because of eutrophication, the nuisance algal (cyanobacteria and green
algae) blooms frequently come forth in the Zeya reservoir which is located in Wenzhou.
The algal blooms can cause clogging and blocking of the filtration system and result in
millions of people without drinkingwater. In order to apply the biological principle to control
algal blooms in the Zeya reservoir, we carry out good biological control agents for the algal
blooms. Firstly, we bring up two species of filter-feeding fish, silver carp (Hypophthalmichthys
molitrix) and bighead carp (Aristichthys nobilis), which are thought to be suited to control algal
biomass directly in freshwater reservoir, especially cyanobacteria and green algae. Secondly,
the decision maker must give cost-benefit and maintenance considerations; the fish should
be harvested at an appropriate time. Finally, in order to prevent the rapid growth of the
cyanobacteria and green algae, we must release a certain amount of filter-feeding fish at
a fixed time. These processes are subject to short-term perturbations. Consequently, it is
obvious to assume that these perturbations act instantaneously in the form of impulses.
Hence, a fish algae consumption model can be described by the following differential
equations:

dx(t)
dt

= r1x(t)
(
G0 − x(t)
G1 − x(t)

)
− c1x

2(t) − u1x(t)z(t)
b1 + x(t)

,

dy(t)
dt

= r2y(t)

(
1 − (y(t)/ym

)
1 − (y(t)/yn

)
)

− c2y
2(t) − u1ay(t)z(t)

x(t) + ay(t) + b2
, t /=nT,

dz(t)
dt

= −mz(t) +
u2ay(t)z(t)

x(t) + ay(t) + b2
+
u3x(t)z(t)
b1 + x(t)

,

Δx(t) = 0,

Δy(t) = 0, t = nT,

Δz(t) = −δz(t) + p,

(1.1)

where x(t), y(t), z(t) are the densities of the cyanobacteria population, green algae
population, and fish population at time t, Δx(t) = x(t+) − x(t); Δy(t) = y(t+) − y(t),
and Δz(t) = z(t+) − z(t); r1, r2 is a growth parameter which is related to the biological
characteristics of populations and the rationalization of environmental resources; r1G0 (0 ≤
G0 ≤ G1) is the carrying capacity of the cyanobacteria population x;G1 is the limiting value of
available resources; ym(0 ≤ (ym/yn) ≤ 1) is the maximum density of green algae population
y (i.e., the environmental carrying capacity); yn is a nutritional parameter which is related to
the resource conditions of the environment; u1 is the cropping rate of fish; u2 and u3 are the
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average growth rate of fish that depends on the cyanobacteria and green algae for food; a is
the capture rate (as a proportion); m is the average mortality rate for fish; b1 and b2 are the
half-saturation constants; c1 and c2 are the intraspecific competition rates of the cyanobacteria
and green algae; T is the period of the impulsive effect;N is the set of all nonnegative integers;
δ (δ ∈ [0, 1]) is the proportion of fish harvested at fixed times t = nT ; and p > 0 is the number
of fish released at times t = nT .

The rest of this paper is arranged as follows: in the next section, some useful notations
and basic properties of a system with impulsive effect are given, and then the main theorems
and their proofs are developed using the Floquet theory. In Section 3, numerical results will
be presented which exhibit the rich dynamic behaviors of system (1.1), and these results will
be briefly discussed. Conclusions are given in the last section.

2. Preliminaries and Mathematical Analysis

Let R+ = [0,∞), R+
3 = {X ∈ R3 | X > 0}. Denote by f = (f1, f2, f3) the mapping defined by the

right-hand sides of the first, second, and third equations of system (1.1). Let V : R+×R3
+ → R+;

then V is said to belong to class V0 if

(1) V is continuous in (nT, (n + 1)T] × R3
+, and for each X ∈ R3

+, n ∈ N,
lim(t,y)→ (nT+,X)V (t, y) = V (nT+, X) exists.

(2) V is locally Lipschitzian in X.

Definition 2.1 (see [18]). Let V ∈ V0; then for (t, x) ∈ (nT, (n + 1)T] × R3
+, the upper right

derivative of V (t)with respect to the impulsive differential system (1.1) is defined as

D+V (t, X) = lim
h→ 0+

sup
1
h

[
V
(
t + h,X + hf(t, X)

) − V (t, X)
]
. (2.1)

Remark 2.2. (1) The solution of system (1.1) is a piecewise continuous function withX : R+ →
R3

+; X(t) is continuous on (nT, (n + 1)T], and X(nT+) = lim(t→nT+)X(nT) exists.
(2) The smoothness properties of f guarantee the global existence and uniqueness of

solutions of system (1.1) (for details, see [18, 19]).
Because x′(t) = y′(t) = z′(t) = 0 whenever x(t) = y(t) = z(t) = 0 (t /=nT) and z(nT+) =

(1 − δ)z(nT) + p, the following lemma can be stated.

Lemma 2.3. Assume X(t) is a solution of system (1.1) such that

(1) if X(0+) ≥ 0, then X(t) ≥ 0 for all t ≥ 0,

(2) if X(0+) > 0, then X(t) > 0 for all t > 0.

Next, an important comparison theorem on impulsive differential equations [18] will be stated.

Lemma 2.4 (comparison theorem). Assume that V ∈ V0 and that

D+V (t, X) ≤ g(t, V (t, X)), t /=nT,

V (t, X(t+)) ≤ ϕn(V (t, X)), t = nT,
(2.2)
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where g : R+ × R+ → R is continuous on (nT, (n + 1)T] × R3
+ and for u ∈ R+, n ∈ N,

lim(t,y)→ (nT+,u)g(t, v) = g(nT+, u) exists, with ϕn : R+ → R+ nondecreasing. Let r(t) be the
maximal solution of the scalar impulsive differential equation:

du(t)
dt

= g(t, u(t)), t /=nT,

u(t+) = ϕn(u(t)), t = nT,

u(0+) = u0,

(2.3)

existing on [0,∞). Then V (0+, X0) ≤ u0, which implies that V (t, X(t)) ≤ r(t), t ≥ 0, where X(t) is
any solution of system (1.1).

If the cyanobacteria and green algae are eradicated, then system (1.1) will reduce to the
following system:

dz(t)
dt

= −mz(t), t /=nT,

z(t+) = (1 − δ)z(t) + p, t = nT,

z(0+) = z0.

(2.4)

Therefore, the following result can be easily obtained.

Lemma 2.5. z∗(t) = p exp(−m(t − nT))/(1 − (1 − δ) exp(−mT)) is a positive periodic solution of
(2.4) with initial value z∗(0+) = p/(1 − (1 − δ) exp(−mT)), t ∈ (nT, (n + 1)T], n ∈ N.

z(t) = (z(0+) − p/(1 − (1 − δ) exp(−mT))) exp(−mt) + z∗(t) is a general solution of (2.4)
with initial value z0 = z(0+) ≥ 0, where t ∈ (nT, (n + 1)T], n ∈ N.

For a positive periodic solution z∗(t) of (2.4) and every solution z(t) of (2.4) with z0 ≥ 0,
|z(t) − z∗(t)| → 0, t → ∞.

From Lemma 2.5, the general solution z(t) converges to the positive periodic solution
z∗(t) of (2.4) when t → ∞, and the complete expression for the cyanobacteria and green
algae-eradication periodic solution (0, 0, z∗(t)) of system (1.1) becomes

(0, 0, z∗(t)) =
(
0, 0,

p exp(−m(t − nT))
1 − (1 − δ) exp(−mT)

)
, (2.5)

for t ∈ (nT, (n + 1)T].
Now, the Floquet theorem for impulsive equations [20] will be introduced:

dx(t)
dt

= A(t)x(t), t /= tk,

x(t+) = x(t) + Bkx(t), t = tk,

(2.6)
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with conditions as follows

(1) A(·) ∈ PC(R,Cn×n) and A(t + T) = A(t) (t ∈ R), where PC(R,Cn×n) is the set of all
piecewise continuous matrix functions and Cn×n is the set of n × n matrices.

(2) Bk ∈ (Cn×n) and det(E + Bk)/= 0, tk ≤ Tk+1.

(3) There exists a q ∈ N such that Bk+q = Bk, tk+q = tk + T .

Let H(t) be a fundamental matrix of system (2.6), then there exists a unique
nonsingular matrix M ∈ Cn×n such that H(t + T) = H(t)M. M is similar to the matrix of
system (2.6) and has the same eigenvalues u1, u2, . . . , un. These eigenvalues u1, u2, . . . , un of
system (2.6) are called Floquet multipliers.

Lemma 2.6 (Floquet theorem [20]). Assume that (1)–(3) hold, then system (2.6) is

(1) stable if and only if ui ≤ 1 (i = 1, . . . , n), and to those ui = 1, there correspond simple
elementary divisors;

(2) asymptotically stable if and only if all ui < 1 (i = 1, . . . , n);

(3) unstable if ui > 1 for some i = 1, . . . , n.

After these preliminaries, the main theorems of this paper will now be presented, then
it will be proven that each solution of system (1.1) is ultimately bounded.

Theorem 2.7. There exists a positive constant M such that x(t) ≤ M, y(t) ≤ M, and z(t) ≤ M for
each solution of system (1.1) with all t large enough.

Proof. Define V (t, x(t)) such that

V (t, x(t)) = x(t) + u2y(t) + u1z(t). (2.7)

Because (dx(t)/dt) ≤ r1x(t) − c1x
2(t), then x(t) ≤ (r1/c1), and the upper right

derivative of V (t, x(t)) can be calculated along a solution of system (1.1) when t /=nT :

D+(V (t)) + LV (t) ≤ (L + r1)x(t) − c1x
2(t) + (Lu2 + u2r2)y(t)

− c2u2y
2(t) +

(
Lu1 − u1m +

u1r1u3

b1c1

)
z(t).

(2.8)

Let 0 < L < m − (r1u3/b1c1), then (L + r1)x(t) − c1x
2(t), (Lu2 + u2r2)y(t) − c2u2y

2(t) are
both bounded, so D+(V (t)) + LV (t) is bounded, and L1 and L2 can be chosen such that

dD+(V (t))
dt

≤ −L1V (t) + L2, t /=nT,

V (t+) ≤ V (t) + u1p, t = nT,

(2.9)

where L1 and L2 are positive constants. According to Lemma 2.4,

V (t) ≤
(
V (0+) − L2

L1

)
exp(−L1t) +

u1p
(
1 − exp(−L1nT)

)
1 − exp(−L1T)

exp(−L1(t − nT)) +
L2

L1
, (2.10)
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and hence

V (t) ≤ L2

L1
+
u1p exp(L1T)
exp(L1T) − 1

, (2.11)

as t → ∞, so V (t, x(t)) is ultimately bounded. Therefore, each positive solution of system
(1.1) is ultimately bounded, and the proof is completed.

Theorem 2.8. If

r1G0

G1
T <

u1p
(
1 − exp(−mT)

)
mb1
(
1 − (1 − δ) exp(−mT)

) ,

r2T <
u1ap

(
1 − exp(−mT)

)
mb2
(
1 − (1 − δ) exp(−mT)

) ,
(2.12)

then the periodic solution (0, 0, z∗(t)) is locally asymptotically stable.

Proof. The local stability of the periodic solution (0, 0, z∗(t)) may be determined by
considering the behavior of small-amplitude perturbations of the solution.

Define x(t) = u(t), y(t) = v(t), z(t) = w(t) + z∗(t).
Then the linearization of system (1.1) becomes

du(t)
dt

=
(
r1G0

G1
− u1z

∗(t)
b1

)
u(t),

dv(t)
dt

=
(
r2 − u1az

∗(t)
b2

)
v(t), t /=nT,

dw(t)
dt

=
u3z

∗(t)
b1

u(t) +
u2az

∗(t)
b2

v(t) −mw(t),

Δu(t) = 0,

Δv(t) = −δv(t), t = nT,

Δw(t) = 0,

(2.13)

and, as a result,

⎛
⎜⎜⎝

u(t)

v(t)

w(t)

⎞
⎟⎟⎠ = Φ(t)

⎛
⎜⎜⎝

u(0)

v(0)

w(0)

⎞
⎟⎟⎠, 0 ≤ t ≤ T, (2.14)
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where Φ(t) satisfies

dΦ(t)
dt

=

⎛
⎜⎜⎜⎜⎜⎜⎝

r1G0

G1
− u1z

∗(t)
b1

0 0

0 r2 − u1az
∗(t)

b2
0

u3z
∗(t)
b1

u2az
∗(t)

b2
−m

⎞
⎟⎟⎟⎟⎟⎟⎠

Φ(t), (2.15)

Φ(0) = I, the identity matrix, and

⎛
⎜⎜⎝

u(nT+)

v(nT+)

w(nT+)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1 − δ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

u(nT)

v(nT)

w(nT)

⎞
⎟⎟⎠. (2.16)

Therefore, the stability of the periodic solution (0, 0, z∗(t)) is determined by the
eigenvalues

θ =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1 − δ

⎞
⎟⎟⎠Φ(T). (2.17)

Therefore, all eigenvalues of θ are given by

λ1 = exp

(∫T

0

(
r1G0

G1
− u1z

∗(t)
b1

)
dt

)
,

λ2 = exp

(∫T

0

(
r2 − u1az

∗(t)
b2

)
dt

)
,

λ3 = (1 − δ) exp(−mT) < 1.

(2.18)

According to Lemma 2.6, (0, 0, z∗(t)) is locally asymptotically stable if λ1 < 1, λ2 < 1,
that is to say

r1G0

G1
T <

u1p
(
1 − exp(−mT)

)
mb1
(
1 − (1 − δ) exp(−mT)

) ,

r2T <
u1ap

(
1 − exp(−mT)

)
mb2
(
1 − (1 − δ) exp(−mT)

) ,
(2.19)

which completes the proof.
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Theorem 2.9. If

r1G0

G1
T <

u1p
(
1 − exp(−mT)

)
mb1
(
1 − (1 − δ) exp(−mT)

) ,

r2T <
u1ap

(
1 − exp(−mT)

)
mb2
(
1 − (1 − δ) exp(−mT)

) ,

r1 − u1

b1 +M

(
p exp(−mT)

1 − (1 − δ) exp(−mT)

)
< 0,

r2 − u1a

M + aM + b2

(
p exp(−mT)

1 − (1 − δ) exp(−mT)

)
< 0,

(2.20)

then the periodic solution (0, 0, z∗(t)) is globally asymptotically stable.

Proof. From Theorem 2.8, the periodic solution (0, 0, z∗(t)) is locally asymptotically stable.
Now it will be proved to be a global attractor. Let V (t) = x(t) + y(t), then by Theorem 2.7,
there exists a constant M > 0 such that x(t) ≤ M, y(t) ≤ M, and z(t) ≤ M. Obviously,

V ′∣∣ (1.1) ≤ x(t)
(
r1 − u1z(t)

b1 +M

)
− c1x

2(t) + y(t)
(
r2 − u1az(t)

M + aM + b2

)
− c2y

2(t). (2.21)

However, for system (1.1),

dz(t)
dt

≥ −mz(t), t /=nT,

z(t+) = (1 − δ)z(t) + p, t = nT.

(2.22)

Therefore, there exists a τ > 0, and an ε > 0 small enough, such that z(t) ≥ z∗1(t) − ε for
all t > τ . This leads to

z(t) ≥ z∗1(t) − ε =
p exp(−mT)

1 − (1 − δ) exp(−mT)
− ε. (2.23)

Let γ Δ= p exp(−mT)/(1−(1−δ) exp(−mT))−ε; it is well known that r1−(u1γ/(b1+M)) <
0 and r2 − (u1aγ/(M + aM + b2)) < 0. Therefore, when t > τ ,

V ′∣∣ (1.1) ≤ x(t)
(
r1 − u1z(t)

b1 +M

)
− c1x

2(t) + y(t)
(
r2 − u1az(t)

M + aM + b2

)
− c2y

2(t) < 0. (2.24)

Therefore, V (t) → 0, x(t) → 0, y(t) → 0 as t → ∞, and it follows that the periodic
solution (0, 0, z∗(t)) is a global attractor. This completes the proof.
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Theorem 2.10. The system (1.1) is permanent, if

r1G0

G1
T >

u1p
(
1 − exp(−mT)

)
mb1
(
1 − (1 − δ) exp(−mT)

) ,

r2T >
u1ap

(
1 − exp(−mT)

)
mb2
(
1 − (1 − δ) exp(−mT)

) ,

r1 − u1

b1 +M

(
p exp(−mT)

1 − (1 − δ) exp(−mT)

)
> 0,

r2 − u1a

M + aM + b2

(
p exp(−mT)

1 − (1 − δ) exp(−mT)

)
> 0.

(2.25)

Proof. Assume thatX(t) = (x(t), y(t), z(t)) is any solution of system (1.1)withX(0) > 0. From
Theorem 2.7, x(t) ≤ M, y(t) ≤ M, and z(t) ≤ M with t ≥ 0. From Lemma 2.5, z(t) ≥ z∗(t) − ε
for all t large enough and some t with z(t) > p exp(−mT)/(1 − (1 − δ) exp(−mT)) − ε = ξ1.
Therefore, it is necessary to find ξ2 and ξ3 such that x(t) ≥ ξ2 and y(t) ≥ ξ3 for t large enough.
Select an ε1 small enough so that

ϕ1 = exp

(∫ (n+1)T

nT

(
r1G0

G1
− r1M

G1 −M
− c1M − u1

b1
(v∗(t) + ε1)

)
dt

)
> 1. (2.26)

Next, it is necessary to prove that x(t) ≥ ξ2 for t large enough, where ξ2 is a positive
constant.

It is easy to prove that there exists a t1 ∈ (0,∞) such that x(t) ≥ ξ2. Otherwise, if
x(t) < ξ2 for all t > 0,

dz(t)
dt

≤
(
u2aM

b2
+
u3M

b1
−m

)
z(t), t /=nT,

z(t+) = (1 − δ)z(t) + p, t = nT,

z(0+) = z0,

(2.27)

and therefore z(t) ≤ v(t) and v(t) → v∗(t), where v(t) is the solution of

dv(t)
dt

=
(
u2aM

b2
+
u3M

b1
−m

)
v(t), t /=nT,

v(t+) = (1 − δ)v(t) + p, t = nT,

v(0+) = v0,

(2.28)

with

v∗(t) =
p exp(−(m − (u2aM/b2) − (u3M/b1))(t − nT))
1 − (1 − δ) exp(−(m − (u2aM/b2) − (u3M/b1))T)

, t ∈ (nT, (n + 1)T]. (2.29)
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Therefore, there exists a T1 > 0 such that z(t) ≤ v(t) ≤ z∗(t) + ε1, and

dx(t)
dt

≥ x(t)
[
r1G0

G1
− r1M

G1 −M
− c1M − u1

b1
(v∗(t) + ε1)

]
, (2.30)

for t > T1. Let N1 ∈ N and N1T ≥ T2 ≥ T1. Integrating (2.30) over (nT, (n + 1)T]n > N1 yields

x((n + 1)T) ≥ x(nT+) exp

(∫ (n+1)T

nT

(
r1G0

G1
− r1M

G1 −M
− c1M − u1

b1
(v∗(t) + ε1)

)
dt

)
= x(nT+),

exp

(∫ (n+1)T

nT

(
r1G0

G1
− r1M

G1 −M
− c1M − u1

b1
(v∗(t) + ε1)

)
dt

)
= x(nT+)ϕ1.

(2.31)

Therefore, x((N1 +n)T) ≥ x(N1T)ϕn
1 → ∞ as n → ∞, but this leads to a contradiction

because x(t) is bounded. Therefore, there exists a t1 > 0 such that x(t1) ≥ ξ2.
Second, if x(t1) ≥ ξ2 for all t ≥ t1, then the proof is complete. Hence, it is only necessary

to consider those solutions which leave the region R = {x(t) : x(t) < ξ2} and reenter it.
Let t∗(t) = inft≥t1{x(t) < ξ2}, then x(t) ≥ ξ2, t ∈ (t, t∗), and t∗ ∈ (n1T, (n1 + 1)T). However,
obviously x(t∗) = ξ2 because X(t) = (x(t), y(t), z(t)) is continuous. It is claimed here that
there must exist a t2 ∈ ((n1 + 1)T, (n1 + 1)T + T1) such that x(t2) ≥ ξ2. Otherwise, x(t) < ξ2, for
t ∈ ((n1 + 1)T, (n1 + 1)T + T1), T1 = n2T + n3T , n2, n3 ∈ N, and then

(n2 − 1)T >
ln
(
ε1/
(
M + p

))
−((u2aM/b2) + (u3M/b1) −m)

,

exp
(
ϕ2(n2 + 1)T

)
ϕn3
1 > 1.

(2.32)

Consider (2.28) with v(t∗+) = z(t∗+); this leads to

v(t) =
(
v((n1 + 1)T+) − p

1 − (1 − δ) exp(−((u2aM/b2) + (u3M/b1) −m)T)

)

× exp
(
−
(
u2aM

b2
+
u3M

b1
−m

)
(t − (n1 + 1)T)

)
+ v∗(t),

(2.33)

for t ∈ (nT, (n + 1)T], n1 + 1 < n < n1 + n2 + n3 + 1, and then

|v(t) − v∗(t)| < (M + p
)
exp
(
−
(
u2aM

b2
+
u3M

b1
−m

)
(t − (n1 + 1)T)

)
< ε1,

z(t) ≤ v(t) ≤ v∗(t) + ε1,

(2.34)

for t ∈ [(n1 + n2 + 1)T, (n1 + 1)T + T1], which implies (2.30). Integrating (2.30) over t ∈ [(n1 +
n2 + 1)T, (n1 + 1)T + T1] yields

x((n1 + n2 + n3 + 1)T) ≥ x((n1 + n2 + 1)T)ϕn3
1 . (2.35)
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For every t ∈ (t∗, (n1 + 1)T), there are only two possible cases: one, if x(t) < ξ2 for
t ∈ (t∗, (n1 + 1)T), when t ∈ (t∗, (n1 + n2 + 1)T), then x(t) < ξ2, and hence

dx(t)
dt

≥ x(t)
[
r1G0

G1
− r1ξ2
G1 −M

− c1M − u1

b1
M

]
= ϕ2x(t). (2.36)

Integrating (2.36) over t ∈ (t∗, (n1 +n2 +1)T), x((n1 +n2 +1)T) ≥ x(t∗) exp(ϕ2(n2 +1)T)
is obvious.

Therefore, x((n1 + n2 + n3 + 1)T) ≥ ξ2 exp(ϕ2(n2 + 1)T)ϕn3
1 > ξ2, but this leads to a

contradiction. Hence, let t3 = inft>t∗{x(t) ≥ ξ2}, then x(t3) = ξ2, and (2.36) holds. Integrating
(2.36) over [t∗, t3),

x(t) ≥ x(t∗) exp
(
ϕ2(t − t∗)

) ≥ ξ2 exp
(
ϕ2(n1 + n3 + 1)T

)
= ξ5. (2.37)

x(t3) ≥ ξ2 is also true for t > t3. Hence, x(t) ≥ ξ5, t > t3. Two, there exists a t5 ∈
(t∗, (n1 + 1)T] such that x(t5) ≥ ξ2. Therefore, let t4 = inft>t∗{x(t) ≥ ξ2}, then x(t) < ξ2 for
t ∈ [t∗, t4) and x(t4) = ξ2. For t ∈ [t∗, t4), (2.36) holds, and integrating it over t ∈ [t∗, t4),
x(t) ≥ x(t∗) exp(ϕ2(t − t∗)) > ξ5. This process can be continued because x(t4) ≥ ξ2 and x(t) ≥
ξ5, t > t4. This yields the two possible cases, x(t) ≥ ξ5, t ≥ t1, and y(t) ≥ ξ4, t ≥ t2. Let
Ω = {(x, y, z) : x(t) ≥ ξ2, y(t) ≥ ξ3, z(t) ≥ ξ1, x(t) + y(t) + z(t) ≤ 3M}. Then the set Ω
is a global attractor. Moreover, every solution X(t) = (x(t), y(t), z(t)) of system (1.1) will
eventually enter and remain in the setΩ. Therefore, system (1.1) is permanent, and the proof
is completed.

3. Numerical Analysis

3.1. Bifurcation Analysis

In Section 2, it has been proved that the cyanobacteria and green algae-eradication periodic
solution is locally asymptotically stable, and conditions have been established for the
permanence of system (1.1). Now, to substantiate these theoretical results, the following
parameters will be considered: u1 = 0.5, u2 = 0.6, u3 = 0.4, r1 = 0.5, r2 = 0.5, G0 = 10, G1 = 15,
ym = 15, yn = 20, c1 = 0.1, c2 = 0.12, a = 0.75, b1 = 0.45, b2 = 0.6, δ = 0.55, T = 40 with initial
values x0 = 0.5, y0 = 0.6, z0 = 0.7.

From Theorem 2.8, it is known that the periodic solution (0, 0, z∗(t)) is locally asymp-
totically stable if p > pmax = 8.15; this periodic solution (0, 0, z∗(t)) is shown in Figure 1. It
is clear that the variable fish z oscillates in a stable cycle, but the cyanobacteria population
x and green algae population y rapidly decrease to zero when p > pmax. When p is smaller
than pmax, then the cyanobacteria and green algae-eradication periodic solution will become
unstable, and it is possible that the cyanobacteria population, green algae population, and
fish population can coexist.

Figure 2 shows typical bifurcation diagrams for system (1.1) with respect to p in
the range p ∈ [0, 10]. As p increases, system (1.1) exhibits rich dynamic behavior, such
as chaotic bands with periodic windows, crises, period-halving bifurcations, quasi-periodic
oscillations, and narrow or wide periodic windows. When p < 0.89, the cyanobacteria
population x enters a chaotic band. As p increases beyond 0.89, the cyanobacteria population
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Figure 1: Dynamic behavior of system (1.1). When p > pmax = 8.15, the cyanobacteria and green algae will
become extinct. Time series evolving according to biological control system (1.1): (a) the cyanobacteria
population x, (b) the green algae population y, and (c) the fish population z.

x enters a chaotic band with periodic windows, crisis phenomena appear, and the chaotic
attractor suddenly changes into a periodic attractor. Then the periodic attractor loses its
stability, and system (1.1) again enters a chaotic band. Finally, the chaotic attractor changes
into a periodic attractor again; details of these results are shown in Figure 3. When 1.15 <

p < 2.7, there is a cascade of period-halving bifurcation which leads system (1.1) to a
T -periodic solution (Figure 4), where the period-halving bifurcation is the opposite of the
bifurcation observed earlier. When p > 2.75, the green algae population y decreases to zero
because of the increasing number of fish population z and the competition between the
cyanobacteria population x and green algae population y. Then the cyanobacteria population
x and fish population z can coexist in a stable cycle, but the numbers of the cyanobacteria
population x will decrease because of short supply of resources. When p > pmax = 8.15
the cyanobacteria population x will be eradicated because the number of fish population
z released is continually increasing, then the cyanobacteria and green algae-eradication
periodic solution occurs. Once the cyanobacteria population x and green algae population
y have decreased to zero, fish population z will be eradicated after a period of time because
of lack of food. Therefore, it is apparent that the value of p can effectively control the size
of the cyanobacteria population and green algae population. All these numerical simulations
are consistent with the theoretical proofs presented earlier.



Journal of Applied Mathematics 13

0

0.1

0.2

0.3

0.4

2 4 86 10

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

(b)

0.5

1

1.5

2

2.5

3

3.5

0 2 4 86 10

(c)

Figure 2: Bifurcation diagrams for system (1.1) showing the effect of p. (a) x versus p, (b) y versus p, and
(c) z versus p.

3.2. Strange Attractors and Power Spectra

Now the commonly used method called power spectra will be used to study the qualitative
nature of strange attractors [21]. By calculating the largest Lyapunov exponent for strange
attractor (a) (Figure 5(a)), this value is determined to be 0.18219. Obviously, the strange
attractor is a chaotic attractor. Furthermore, the spectrum of chaotic attractor (a) (Figure 5(b))
is composed of dense wave bands and sparse wave peaks with low wave troughs. These
results agree with the observation that the chaotic attractor comes into being because some
cycles lose weak stability.

3.3. The Largest Lyapunov Exponent

Convincing evidence for deterministic chaos has come from several recent experiments [22–
24]. From these results, it is clear that chaos plays a very important role in these studies,
and therefore detecting and exploring chaos is very important [25–31]. Therefore, the largest
Lyapunov exponent is considered to be the most useful diagnostic tool for chaotic systems.
The largest Lyapunov exponent λ must be positive for a chaotic attractor, otherwise, if λ
is negative, the system will enter a stable state or become a periodic attractor. The largest
Lyapunov exponent for system (1.1) was calculated for various values of p, and Figure 6
shows the results for p from 0 to 2.
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Figure 3: Crisis. (a) Chaotic attractor when p = 0.88, (b) phase diagram of periodic solution when p = 0.9,
(c) chaotic attractor when p = 1, and (d) phase diagram of periodic solution when p = 1.1.

4. Conclusions

In this paper, the effects of impulsive perturbations on a fish algae model have been investi-
gated. It has been proved by means of the Floquet theory of impulsive differential equations
and small-amplitude perturbation techniques that system (1.1) has a stable algae-eradication
periodic solution. Furthermore, the conditions for system (1.1) to be permanent have been
determined using the comparison theorem. Typical bifurcation diagrams have been analyzed
in detail, revealing that the system exhibits very rich dynamics. From Theorem 2.8, it is clear
that the cyanobacteria and green algae-eradication periodic solution (0, 0, z∗(t)) is locally
asymptotically stable if p > pmax = 8.15, but that the cyanobacteria population x and
green algae population y rapidly decrease to zero. When the value of p > 2.75, green algae
population y decreases to zero, but the cyanobacteria population x and fish population z can
coexist in a cycle; when 2.25 < p < 2.75, the cyanobacteria population, green algae population
and fish population can coexist in a cycle. When 0 < p < 2.25, system (1.1) undergoes complex
dynamics. From the above analysis, it is apparent that the numbers of both algae species can
be controlled effectively using an impulsive control strategy.
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Figure 4: Period-halving bifurcation. (a)Chaotic attractor when p = 1.3, (b) phase diagram of a 4T-periodic
solution when p = 1.55, (c) phase diagram of a 2T-periodic solution when p = 2, and (d) a period-T
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Figure 5: Strange attractor and power spectrum. (a) Strange attractor when p = 1.25, (b) power spectrum
of attractor (a).
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