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Abstract
An integral-differential model equation, arising from neuronal networks with both
axonal and delayed nonlocal feedback connections, is considered in this paper. The
kernel functions in the feedback channel we study here include not only pure
excitations but also lateral inhibition. For the kernel functions in the synaptic
coupling, pure excitations, lateral inhibition, the lateral excitations and more general
synaptic couplings (e.g., oscillating kernel functions) are considered. The main goal of
this paper is the study of the existence and uniqueness of the traveling wave front
solutions. The main method we applied is the speed index functions and principle of
linear superposition.

1 Introduction
In this paper, we consider the following integral differential model equation

ut + u = α

∫
R
K(x – y)H

(
u
(
y, t –

|x – y|
c

)
– θ

)
dy

+ β

∫
R
J(x – y)H

(
u(y, t – τ ) – θ

)
dy, (.)

which was proposed by Hutt [] to understand the mechanism of the formation and prop-
agation of activity patterns in neural networks. Here, u(x, t) represents the effective post-
synaptic potential of the neuron population at location x and time t. The first term and
the second one on the right side of equation (.) represent the synaptic input by axonal
and feedback connections, respectively. The kernel functionsK(x) and J(x) are introduced
as probability density functions of connection, which may be negative at some points to
allow for inhibitory behavior in coupling. The parameters α and β represent the synaptic
strength of axonal and nonlocal feedback contributions, respectively. Both the intral-areal
nonlocal axonal connections with a transmission delay |x–y|

c and nonlocal feedback con-
nections with a constant time delay τ are incorporated in this model equation, where c
is the transmission speed for both excitatory and inhibitory connections. The transfer
function H is always chosen to be the Heaviside step function: H(u – θ ) =  for all u < θ ,
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H(θ ) = 
 , and H(u – θ ) =  for all u > θ . H(u – θ ) denotes the output firing rate of a neu-

ron, which means that a neuron fires at its maximum rate when the potential exceeds a
threshold, and does not fire otherwise. Here, θ is assumed to be the firing threshold for all
neurons functions.
The model equation (.) is a modification and generalization of some existing models

and also relates to some model equations, which were concerned recently (see Atay and
Hutt [], Coombes et al. [], Ermentrout [], [–]). For example, the following equation

ut + u = α

∫
R
K(x – y)H

(
u(y, t) – θ

)
dy, (.)

which was derived in Amari [] and can be used to describe the simple fields, which are
one-dimensional, homogeneous, have negligible time lag and consist of only one layer. The
following nonlocal nonlinear scalar integral model equation with the incorporate spatio-
temporal delay was proposed to describe the dynamics of an effective post-synaptic po-
tential u(x, t) at position x and the time t

ut + u = α

∫
R
K(x – y)H

(
u
(
y, t –


c
|x – y|

)
– θ

)
dy. (.)

The traveling fronts of these model equations have attracted much research interest
in theory partly due to experimental findings [, ]. It is well known that the kernel
functions in these model equations reflect the underlying connectivity in neural tissue.
However, the kernel functions, which were considered in previous works mostly are the
following three classes:
(A) The first class consists of nonnegative kernel functions (pure excitation).
(B) The second class consists of Mexican hat kernel functions (lateral inhibition), that

is, K ≥  on (–M,N) and K ≤  on (–∞, –M)∪ (N ,∞) for some positive constants
M and N .

(C) The third class consists of upside down Mexican hat kernel functions (lateral
excitation), that is, K ≤  on (–M,N) and K ≥  on (–∞, –M)∪ (N ,∞), for two
positive constantsM and N .

The kernel functions are always supposed to be continuous at x = , almost everywhere
smooth and satisfy the following conditions

∫ 

–∞
K(x)dx =



;

∫ +∞

–∞
K(x)dx = ;

∫ 

–∞
|s|K(s)ds > ;

∣∣K(x)
∣∣ ≤ k exp

(
–ρ|x|) in R,

(.)

where k and ρ are positive constants.
Under the assumptions above, Zhang [] studied the existence, uniqueness and stability

of traveling wave solutions to the model equation (.) with three typical classes of kernel
functions. The traveling wave fronts of generalized equation

ut + f (u) = α

∫
R
K(x – y)H

(
u
(
y, t –


c
|x – y|

)
– θ

)
dy (.)

were considered in [] more recently. The existence and uniqueness of traveling wave
fronts of equations (.) and (.) were studied for five classes of oscillatory kernel func-
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tions by Lv andWang []. While for equation (.), only few special types of kernel func-
tions are known. In Hutt [], the kernel functions K(x) and J(x) are assumed to have the
following forms

K(x) =
ae

e–|x| –

air

e–r|x|, J(x) =


σ

e–|x|/σ . (.)

In [], Magpantay and Zou studied the wave fronts of equation (.), in which the ker-
nel function in the feedback channel is assumed to be nonnegative (pure excitation), and
for the kernel function in the synaptic coupling, four types, including types (A), (B) and
(C) and the pure inhibition type, were considered. Modeling of traveling phenomena in
general neural systems necessitates the study for more general types of kernel functions.
However, it is more complicated in practical application in neuronal network. We may
meet the case that both excitation and inhibition happen at the same time. Thus, it is
important to study equation (.) with more general kernel functions.
In the model equation (.), the parameters are always supposed to be positive and  <

c≤ ∞. To include the case c→ ∞, it is understood that c–μ

cμ = 
μ
when c = ∞. In this paper,

for the kernel functions mentioned below, we suppose that they all satisfy the condition
(.). We say K(x) ∈ (B) if K(x) satisfies condition (B).
Motivated by their exciting pioneering works [–], in this paper, we aim to study the

existence and uniqueness of the wave front solutions of IDE (.) with more general kernel
functions. The main idea in this paper is employing the speed index functions (the main
idea in [, ] and other pioneering works) and the principle of linear superposition. It
is easy to see that the kernel functions that were studied before are included in our study.
For example, if the kernel functions K(x) satisfy (L) and (R) with n =  (see Section ),
then they are upside down Mexican hat kernel functions; actually, if the kernel functions
K(x) satisfy (L) and (R) with n = , then they are of case (A) in []. We also prove the
existence and uniqueness of the traveling wave solutions of this model equation with the
general classes of kernel functions under less restrictive conditions.

2 Preliminaries
The travelingwave solutions of an equation are the solutions of the form u(x, t) =U(x+μt),
where z = x+μt is the moving coordinate and μ is a constant, which represents the speed
of the traveling wave. Generally speaking, there are two kinds of traveling waves that at-
tractedmuchmore research concerns, because they possess some important and practical
meanings in a neural network, which are the traveling wave front and the traveling pulse.
We mainly focus on the traveling wave front in this paper.
To study the traveling wave solutions of the integral-differential equation (.), we sub-

stitute u(x, t) =U(x +μt) =U(z) into equation (.), then we get

μU ′(z) +U(z) = α

∫
R
K(x – y)H

(
U

(
y +μt –

μ

c
|x – y|

)
– θ

)
dy

+ β

∫
R
J(x – y)H

(
U(y +μt –μτ ) – θ

)
dy. (.)
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By transformation of the variable x to z = x+μt and the variable of integration y to y+μt,
the integral IDE (.) can be written as

μU ′ +U = α

∫
R
K(z – y)H

(
U

(
y –

μ

c
|z – y|

)
– θ

)
dy

+ β

∫
R
J(z –μτ – y)H

(
U(y) – θ

)
dy. (.)

Let  < μ < c and t = y – μ

c |z – y| in the first term of the right side of equation above, then
we have

μU ′ +U = α

(


 + sgn(z – t)μ

c

)∫
R
K

(
z – t

 + sgn(z – t)μ

c

)
H

(
U(t) – θ

)
dt

+ β

∫
R
J(z –μτ – y)H

(
U(y) – θ

)
dy, (.)

where sgn(x) is the sign-function, i.e., sgn(x) =  when x > ; sgn() =  and sgn(x) = –
when x < . Clearly, the nonlinear terms are on the right side of equation (.). Because
of the special property of Heaviside step function, we know that equation (.) can be
simplified if some properties of the function U(x) are known. Let R[U , θ ] = {y|U(y) > θ},
then equation (.) can be reduced to

μU ′ +U = α

(


 + sgn(z – t)μ

c

)∫
R[U ,θ ]

K
(

z – y
 + sgn(z – y)μ

c

)
dy

+ β

∫
R[U ,θ ]

J(z –μτ – y)dy.

According to the property of the traveling wave front, we know that ifU(z) is a traveling
wave front of equation (.), then U+ = limz→+∞ U(z) and U– = limz→–∞ U(z) exist, U+ 	=
U– and U+, U– should be two different constant solutions of equation (.) or equation
(.). However, it is easy to see that the constant solutions of equation (.) only could be
 or α + β , since R[U+(–), θ ] = ∅ or R[U+(–), θ ] = (–∞,∞).
Suppose thatU(z) is a traveling wave front of equation (.) satisfyingU() = θ ,U(z) < θ

when z < , U(z) > θ when z > , then U(z) satisfies the following equation

μU ′ +U = α

(


 + sgn(z – t)μ

c

)∫ +∞


K

(
z – t

 + sgn(z – t)μ

c

)
dt

+ β

∫ +∞


J(z –μτ – y)dy, (.)

which can be further rewritten as

μU ′ +U = α

∫ cz
c+sgn(z)μ

–∞
K(t)dt + β

∫ z–μτ

–∞
J(y)dy. (.)

Obviously, equation (.) is a linear ordinary differential equation having two equilibria
as  and α + β , which means the wave front of equation (.) satisfying U() = θ , U(z) <
θ when z < , and U(z) > θ when z >  must have the limits limz→+∞ U(z) = α + β and
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limz→–∞ U(z) = . Solving equation (.), we get the solution

U(z) = α

∫ cz
c+sgn(z)μ

–∞
K(s)ds – α

∫ z

–∞
exp

(
s – z
μ

)
K(s)

c
c + sgn(s)μ

ds

+ β

∫ z–μτ

–∞
J(s)ds – β

∫ z

–∞
exp

(
s – z
μ

)
J(s –μτ )ds (.)

and

U ′ =
α

μ

∫ z

–∞
exp

(
s – z
μ

)
K(s)

c
c + sgn(s)μ

ds +
β

μ

∫ z

–∞
exp

(
s – z
μ

)
J(s –μτ )ds. (.)

Notice that function (.) we obtained is just a solution of equation (.), but not necessar-
ily a solution of equation (.), that is to say that it is not necessarily a traveling wave front
of equation (.). Function (.) could be a traveling wave front of equation (.) only if it
satisfies U() = θ , U(z) < θ when z < , and U(z) > θ when z > . Based on the discussion
above, we study the existence and uniqueness of the wave front solution of IDE (.) in the
following two sections under some conditions by proving the existence of a unique wave
speedμ such that function (.) with this uniqueμ satisfiesU() = θ ,U(z) < θ when z < ,
and U(z) > θ when z > .

3 Existence and uniqueness of the wave solution of IDE (1.1) with α = 0
In this section, we study the IDE (.) with α = , i.e.,

ut + u = β

∫
R
J(x – y)H

(
u(y, t – τ ) – θ

)
dy. (.)

According to the discussion in Section , we know that the traveling wave equation of (.)
is

μU ′(z) +U(z) = β

∫
R
J(z – y)H

(
U(y –μτ ) – θ

)
J(y)dy,

where z = x + μt. If we suppose that U() = θ (because of the invariant property of the
traveling wave solution), U(z) > θ when z >  and U(z) < θ when z < , then the equation
above can be reduced to

μU ′(z) +U(z) = β

∫ z–μτ

–∞
J(y)dy. (.)

The solution of equation (.) is

U(z) = β

∫ z

–∞

[
 – exp

(
s – z
μ

)]
J(s –μτ )ds (.)

and

U ′(z) =
β

μ

∫ z

–∞
exp

(
s – z
μ

)
J(s –μτ )ds. (.)
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Similar to the analysis given in Section , we know that function (.) could be a solution of
equation (.) if it satisfies the phase conditionsU() = θ ;U(z) > θ when z >  andU(z) < θ

when z < .
In the following, we firstly prove that function (.) satisfies the phase condition above

when the kernel function J(x) is of type (A) or type (B), i.e., nonnegative function or Mex-
ican hat function. Actually, from (.), we know that U() = θ equals to

θ = β

∫ 

–∞

[
 – exp

(
s
μ

)]
J(s –μτ )ds. (.)

We prove that there exists a unique μ�(θ ) if θ satisfies some conditions such that equality
(.) holds when μ = μ�(θ ). To achieve the process above, we define a function, which we
call speed index function

ϕ(μ) = β

∫ 

–∞

[
 – exp

(
s
μ

)]
J(s –μτ )ds, (.)

which is a continuous function with μ.

3.1 Existence and uniqueness of the wave speed
At first, we prove the existence of the solution to ϕ(μ) = θ , and then, we prove that it
is unique when the kernel function J(z) is of type (A) or type (B). Note that for any real
number, c > ,

lim
μ→+

ϕ(μ) = β

∫ 

–∞
J(s)ds =

β



and

ϕ(c) = β

∫ 

–∞

[
 – exp

(
s
c

)]
J(s – cτ )ds, (.)

then it is easy to see that  ≤ ϕ(c) < β

 for any kernel function of type (A), since β , c and
τ are all positive parameters. Thus, for any θ on interval (ϕ(c), β

 ), there exists μ�(θ ),  <
μ�(θ ) < c such that ϕ(μ�) = θ , i.e., (.) holds when μ = μ�(θ ), which follows directly from
the intermediate value theorem for continuous function.
Next, we show that μ�(θ ) is the unique zero of the equation ϕ(μ) = θ if the kernel func-

tion J(z) satisfies some restrictive conditions. Computing the derivative of ϕ(μ) with re-
spect to μ gives

ϕ′(μ) = –β
eτ

μ

∫ –μτ

–∞
|s| exp

(
s
μ

)
J(s)ds. (.)

For type (A), i.e., J(z) ∈ A, it is obvious that ϕ′(μ) ≤  and ϕ′(μ) =  if and only if J(s) ≡ 
on (–∞, –μτ ), since J(z) ≥  on R. So ϕ(μ) is a nonincreasing function with μ. Then the
uniqueness of the zero to the equation ϕ(μ) = θ follows from the property of ϕ′(μ). If
the uniqueness of the zero to the equation ϕ(μ) = θ does not hold, then there exists an
interval [μ,μ] ⊂ (, c) such that ϕ(μ) ≡ θ when μ ∈ [μ,μ]; ϕ(μ) > θ when μ ∈ (,μ)
and ϕ(μ) < θ when μ ∈ (μ, c). Then, we know that ϕ′(μ) =  when μ ∈ (μ,μ), which

http://www.advancesindifferenceequations.com/content/2013/1/243
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means that J(s)≡  on (–∞, –μτ ), and thus, ϕ(μ) =  whenμ ∈ (μ, c), which contradicts
with the conclusion above that ϕ(μ) ≡ θ when μ ∈ [μ,μ]. Consequently, μ�(θ ) is the
unique zero of the equation ϕ(μ) = θ if the kernel function J(z) is of type (A).
For type (B), i.e., J(z) ∈ B, we have the following lemma.

Lemma . Suppose that the kernel function J(x) is of type (B), that is, J(x) ≤  on
(–∞, –M) ∩ (N , +∞) and J(x) ≥  on [–M,N], and

∫ 
–∞ |s|J(s)ds > , then there exists a

unique M ∈ (,M) such that
∫ –M
–∞ |s|J(s)ds =  and ϕ(c) >  if c < M

τ
.

Proof Let v(z) =
∫ z
–∞ |s|J(s)ds. Then it is easy to see that the function v(z) is continuous,

nonincreasing on (–∞, –M) and nondecreasing on [–M, ] since J(x) ≤  on (–∞, –M)
and J(x) ≥  on [–M, ]. Obviously, v() =

∫ 
–∞ |s|J(s)ds >  and v(–M) < . By the in-

termediate value theorem, we know that there exists a unique M ∈ (,M) such that∫ –M
–∞ |s|J(s)ds = . From (.), we know that if c < M

τ
,

ϕ(c) = β

∫ –cτ

–∞

[
 – exp

(
s + cτ
c

)]
J(s)ds

>
[
 – exp

(
–M + cτ

c

)]
β

∫ –cτ

–∞
J(s)ds

>
[
 – exp

(
–M + cτ

c

)]
β

∫ –M

–∞
J(s)ds

>
[
 – exp

(
–M + cτ

c

)]
β

M

∫ –M

–∞
|s|J(s)ds

= . �

However, when J(z) ∈ B and  < μτ <M, i.e.,  < μ < M
τ
, it is easy to see that

ϕ′(μ) = –β
eτ

μ

∫ –μτ

–∞
|s| exp

(
s
μ

)
J(s)ds

< –β
eτ

μ exp

(
–M
μ

)∫ –μτ

–∞
|s|J(s)ds

< –β
eτ

μ exp

(
–M
μ

)∫ –M

–∞
|s|J(s)ds

= .

Consequently, for any c ∈ (, M
τ
), function (.) is decreasing withμ on interval (, c), and

then  < ϕ(c) < β

 , which can be applied to get the uniqueness of the zero of the equation
ϕ(μ) = θ when ϕ(c) < θ < β

 .We summarize the discussion above in the following theorem.

Theorem . (Existence and uniqueness of the wave speed) For any θ ∈ (ϕ(c), β

 ),
() if the kernel function J(x) is of type (A), then for any c > , there exists a unique

μ�(θ ) ∈ (, c), such that ϕ(μ�) = θ ;
() if the kernel functions J(x) is of type (B), then for any c ∈ (, M

τ
), there exists a unique

μ�(θ ) ∈ (, c), such that ϕ(μ�) = θ , where M ∈ (,M) and is uniquely determined by∫ –M
–∞ |s|J(s)ds = .

http://www.advancesindifferenceequations.com/content/2013/1/243
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3.2 Existence and uniqueness of the wave
We prove that function (.) could satisfy U(z) > θ when z >  and U(z) < θ when z < ,
when μ = μ�(θ ) and the kernel function J(x) is of type (A) or type (B), i.e., nonnegative
function or Mexican hat function. In the rest of this subsection, we write μ for μ�(θ ) for
simplicity.
It is easy to see from (.) that

U ′(z) =
β

μ

∫ z

–∞
exp

(
s – z
μ

)
J(s –μτ )ds

=
β

μ
exp

(
μτ – z

μ

)∫ z–μτ

–∞
exp

(
s
μ

)
J(s)ds.

Denote

h(z) =
∫ z–μτ

–∞
exp

(
s
μ

)
J(s)ds.

ThenU ′(z) has the same sign with h(z). Obviously, h(z) ≥  when J(x) is of type (A). Thus,
function U(z) is a nondecreasing function, since U ′(z) ≥  when J(x) is of type (A). Espe-
cially, we know thatU ′() >  when J(x) is of type (A). Otherwise, there should be J(x) ≡ 
when x ∈ (–∞, –μt), and thus, we get θ =  from (.), which is contradictory to the as-
sumption. So U(z) > θ when z >  and U(z) < θ when z <  when the kernel function J(x)
is of type (A), since U ′() >  and U() = θ .
In the following, we show that U(z) > θ when z >  and U(z) < θ when z <  when the

kernel function J(x) is of type (B). For type (B), it is easy to find from  <μτ <M that h(z)
has the following properties:
() h(z) is nonincreasing on (–∞,μτ –M)∩ (μτ +N , +∞) and nondecreasing on

(μτ –M,μτ +N).
() h(–∞) = , h() >  and there exists z <  such that h(z) ≤  on (–∞, z) and

h(z) ≥  on (z,μτ +N).
() h(z) changes its sign at most once on (μτ +N , +∞), that is to say, h(z) >  on

(μτ +N , +∞), or there exists z� ∈ (μτ +N , +∞), such that h(z) >  on (μτ +N , z�)
and h(z) ≤  on (z�, +∞).

From the discussion above, we know that there are two cases that may happen to U ′(z)
if the kernel function J(z) is of type (B).
Case () U ′(z) ≤  on (–∞, z), U ′(z) ≥  on (z, +∞).
Case () U ′(z) ≤  on (–∞, z), U ′(z) ≥  on (z, z�) and U ′(z) ≤  on (z�, +∞).
By a simple computation, we get limz→∞ U ′(z) =  and limz→∞ U(z) = β . If the first case

holds, then U(z) is nonincreasing on (–∞, z), nondecreasing on (z, +∞). Note that z <
, U() = θ and U ′() > . Consequently, U(z) > θ when z >  and U(z) < θ when z < 
if case () holds. However, for case (), it is easy to see that U(z) is also nonincreasing
on (–∞, z), nondecreasing on (z, z�) and nonincreasing on (z�, +∞). Because z� >  and
limz→∞ U(z) = β > θ , U(z) > θ when z >  and U(z) < 
 when z <  if the case () holds.
From the discussion above, we know that U(z) > θ when z >  and U(z) < θ when z <  for
any kernel function J(z) of type (B). Consequently, we get the following theorem on the
existence and uniqueness of wave solution to equation (.).

http://www.advancesindifferenceequations.com/content/2013/1/243
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Theorem . (Existence and uniqueness of the wave front) Suppose that the kernel func-
tions J(x) and the parameter c satisfy one of the following assumptions.
() J(x) is of type (A), c > ;
() J(x) is of type (B),

∫ 
–∞ |s|J(s)ds > , c ∈ (, M

τ
), where

∫ –M
–∞ |s|J(s)ds = .

Then for any θ ∈ (ϕ(c), β

 ), IDE (.) has a unique traveling wave solution satisfying the
phase conditions

U(z) < θ when z < ; U() = θ ; U(z) > θ when z > 

and the boundary conditions

lim
z→–∞U(z) = ; lim

z→+∞U(z) = β ; lim
z→±∞U ′(z) = .

This wave front could be expressed as

U(z) = β

∫ z

–∞

[
 – exp

(
s – z
μ

)]
J(s –μτ )ds,

where z = x +μt, and the wave speed μ = μ�(θ ) ∈ (, c) is uniquely determined by the wave
speed equation (.).

4 Existence and uniqueness of the wave solution of IDE (1.1)
In this section, we will study the existence of the traveling wave fronts to this equation
(.) with general types of kernel functions, which includes the cases that have been stud-
ied before. To be more precise, we will show the existence of traveling wave front to this
equation when the kernel function J(x) in feedback channel is of nonnegative function or
Mexican hat function and the kernel function K(x) in synaptic coupling is of some gen-
eral types of functions. Not only three typical types of kernel functions but also oscillatory
kernel functions within certain range of model parameters in synaptic coupling are con-
sidered. First, we give some assumptions for the kernel functions K(x). In addition to the
assumptions (.) for kernel functions, we also assume that the kernel function K(x) in
(–∞, ) satisfies one of the following conditions.
(L) K(x)≥  in x ∈ (–∞, ).
(L) K(x) ≥  when x ∈ (–M, ) ∪ (–M, –M) ∪ (–M, –M) ∪ · · · ∪ (–Mn+, –Mn)

and K(x)≤  when x ∈ (–M, –M)∪ (–M, –M)∪ · · · ∪ (–Mn, –Mn–)∪ (–∞, –Mn+),
where  <M <M < · · · <Mn+ < ∞, and K(x) satisfies that

∫ 

–∞
|s|K(s)ds > ;

∫ –Mi–

–Mi

|s|K(s)ds≥ ;
α


– α

∫ 

–Mi

K(t)dt ≤ θ ,

where i = , , . . . ,n,n +  andM = ,M(n+) = ∞.
(L) K(x)≥  when x ∈ (–M, )∪ (–M, –M)∪ (–M, –M)∪ · · · ∪ (–Mn–, –Mn–)∪

(–∞, –Mn) and K(x) ≤  when x ∈ (–M, –M) ∪ (–M, –M) ∪ · · · ∪ (–Mn, –Mn–),
where  <M <M < · · · <Mn < ∞, and K(x) satisfies that

∫ 

–∞
|s|K(s)ds > ;

∫ 

–Mi

|s|K(s)ds≥ ,

where i = , , . . . ,n.

http://www.advancesindifferenceequations.com/content/2013/1/243
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(L) K(x)≥  when x ∈ (–∞, –M) and K(x) ≤  when x ∈ (–M, ), where  <M <∞.
Assume that the kernel function K(x) in (,∞) satisfies one of the following conditions.
(R) K(x)≥  for all x ∈ (, +∞).
(R) K(x) satisfies that there exist  < N < N < · · · < Nn+ < ∞, such that K(x) ≥ 

when x ∈ (N,N) ∪ (N,N) ∪ · · · ∪ (Nn+, +∞); K(x) ≤  when x ∈ [,N] ∪ [N,N] ∪
· · · ∪ [Nn,Nn+], and

α

∫ Ni–


K(s)ds≤ θ –

α


, i = , , . . . ,n,n + .

(R) K(x) satisfies that there exist  < N < N < · · · < Nn < ∞ such that K(x) ≥  when
x ∈ (N,N) ∪ (N,N) ∪ · · · ∪ (Nn–,Nn); K(x) ≤  when x ∈ [,N] ∪ [N,N] ∪ · · · ∪
[Nn, +∞), and

α

∫ Ni–


K(s)ds≤ θ –

α


, i = , , . . . ,n.

(R) K(x) satisfies that there exist  <N < ∞ such that K(x) ≥  when x ∈ (N , +∞) and
K(x)≤  when x ∈ (,N].
(R) K(x) satisfies that there exist  <N <N < · · · <Nn+ < ∞ such that K(x)≥  when

x ∈ [,N] ∪ [N,N] ∪ · · · ∪ [Nn–,Nn–]; K(x) ≤  when x ∈ (N,N) ∪ (N,N) ∪ · · · ∪
(Nn–, +∞), and

α

∫ Ni


K(s)ds≤ θ –

α


, i = , , . . . ,n – .

(R) K(x) satisfies that there exist  < N < N < · · · < Nn+ < ∞ such that K(x) ≥ 
when x ∈ [,N] ∪ [N,N] ∪ · · · ∪ [Nn, +∞); K(x) ≤  when x ∈ (N,N) ∪ (N,N) ∪
· · · ∪ (Nn–,Nn), and

α

∫ Ni


K(s)ds≤ θ –

α


, i = , , . . . ,n.

Obviously, the kernel functions, which satisfy one of the conditions Ri (i = , , . . . , ) in the
interval (,+∞) and one of the conditions Lj (j = , , , ) in the interval (–∞, ), can form
a very general class of functions, which includes all the classes of the kernel functions that
appeared in previous works. In [], we proved the existence of the traveling wave front
of the IDE (.) when β =  with the kernel function satisfying one of the assumptions Li

(i = , , , ) on (–∞, ) and one of the assumptions Rj (j = , , . . . , ) on (,∞). We cite
the main results as follows.

Theorem . Suppose that the positive parameters α and θ satisfy the condition  <
θ < α. K(x) satisfies the basic property of kernel function and one of the assumptions Li

(i = , , , ) on (–∞, ) and one of Rj (j = , , . . . , ) on (, +∞). Then equation (.) with
β =  has a unique traveling wave front solution U(z) =U(x+μt),which could be expressed
as

U(z) = α

∫ cz
c+sgn(z)μ

–∞
K(s)ds – α

∫ z

–∞
exp

(
s – z
μ

)
K(s)

c
c + sgn(s)μ

ds. (.)

http://www.advancesindifferenceequations.com/content/2013/1/243
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The wave speed μ ( < μ < c) is uniquely determined by the following speed equation

α

∫ 

–∞

[
 – exp

(
c –μ

cμ
s
)]

K(s)ds = θ , (.)

and the wave front solution U(z) also satisfies phase conditions

U(z) < θ when z < ; U() = θ ; U(z) > θ when z > 

and the boundary conditions

lim
z→–∞U(z) = ; lim

z→+∞U(z) = α; lim
z→±∞U ′(z) = .

Next, we give the following lemma to prove the existence of travelingwave front to equa-
tion (.) when the kernel function J(x) is of nonnegative function orMexican hat function
and the kernel function K(x) satisfy the assumptions as in Theorem . within a certain
range of model parameters.

Lemma . Let

ψ(μ) = α

∫ 

–∞

[
 – exp

(
c –μ

cμ
s
)]

K(s)ds, (.)

then the following conclusions hold.
() If the kernel function K(x) satisfies one of the assumptions Li (i = , , ) on (–∞, )

and one of Rj (j = , , . . . , ) on (, +∞), then ψ(μ) is monotonic decreasing on (, c).
() If the kernel function K(x) satisfies the assumptions L on (–∞, ) and one of Rj

(j = , , . . . , ) on (, +∞) and ψ(μ) < α
 , then ψ(μ) is monotonic decreasing on

(μ, c).

Proof From (.), we get ψ ′(μ) = – α

μ

∫ 
–∞ |s| exp( c–μ

cμ s)K(s)ds. We prove () by showing
that ψ ′(μ) <  when K(x) satisfies the conditions. We omit the details.
() If K(x) satisfies the assumptions L on (–∞, ) and one of Rj (j = , , . . . , ) on

(,+∞), then

ψ ′(μ) = –
α

μ

∫ 

–∞
|s| exp

(
c –μ

cμ
s
)
K(s)ds

< –
Mα

μ

∫ 

–∞
exp

(
c –μ

cμ
s
)
K(s)ds

=
M
μ

[
ψ(μ) –

α



]
.

Consequently, ψ ′(μ) <  if ψ(μ) < α
 , and thus, ψ ′(μ) <  when μ ∈ (μ, c). So, ψ(μ) is

monotonic decreasing on (μ, c). �

Theorem . (Existence and uniqueness of the wave front) Suppose that α > , β > , the
kernel functions K(x) satisfies one of Li (i = , , ) on (–∞, ) and one of Rj (j = , , . . . , )
on (, +∞). Then, when J(x) is of type (A) for any c > , or when J(x) is of type (B) for any

http://www.advancesindifferenceequations.com/content/2013/1/243
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c ∈ (, M
τ
) (where

∫ –M
–∞ |s|J(s)ds = ), for any θ ∈ (ϕ(c), α+β

 ), equation (.) has a unique
traveling wave front solution U(z) =U(x +μt), which could be expressed as

U(z) = α

∫ cz
c+sgn(z)μ

–∞
K(s)ds – α

∫ z

–∞
exp

(
s – z
μ

)
K(s)

c
c + sgn(s)μ

ds

+ β

∫ z

–∞

[
 – exp

(
s – z
μ

)]
J(s –μτ )ds. (.)

The wave speed μ ( < μ < c) is uniquely determined by the following speed equation

α

∫ 

–∞

[
 – exp

(
c –μ

cμ
s
)]

K(s)ds + β

∫ 

–∞

[
 – exp

(
s
μ

)]
J(s –μτ )ds = θ . (.)

The wave front solution U(z) satisfies phase conditions

U(z) < θ when z < ; U() = θ ; U(z) > θ when z > 

and the boundary conditions

lim
z→–∞U(z) = ; lim

z→+∞U(z) = α + β ; lim
z→±∞U ′(z) = .

Proof Suppose that U(z) = u(x + μt) is a traveling wave front of equation (.) satisfying
U() = θ , U(z) < θ when z <  and U(z) > θ when z > , then U(z) satisfies the following
equation

μU ′ +U = α

∫ cz
c+sgn(z)μ

–∞
K(t)dt + β

∫ z–μτ

–∞
J(y)dy, (.)

which is a first-order linear ODE. Solve (.), and let limz→–∞ U(z) = , we get the solution
of (.)

U(z) = α

∫ cz
c+sgn(z)μ

–∞
K(s)ds – α

∫ z

–∞
exp

(
s – z
μ

)
K(s)

c
c + sgn(s)μ

ds

+ β

∫ z

–∞

[
 – exp

(
s – z
μ

)]
J(s –μτ )ds,

which is (.). Note that the solution of equation (.) is not necessary; the traveling wave
solution of the model equation (.), unlessU(z) satisfies the phase conditions thatU() =
θ , U(z) < θ when z <  and U(z) > θ when z > . In the following, we prove that there
exists a unique wave speed μ̂ such that (.) with μ = μ̂ is the unique wave front solution
of equation (.) satisfying the required conditions in this theorem.
Let g(μ) = ψ(μ) + ϕ(μ), i.e.,

g(μ) = α

∫ 

–∞

[
 – exp

(
c –μ

cμ
s
)]

K(s)ds + β

∫ 

–∞

[
 – exp

(
s
μ

)]
J(s –μτ )ds.

It is easy to see that limμ→+ g(μ) = α+β

 and limμ→c– g(μ) = ϕ(c), and g(μ) is continuous
with μ. Consequently, for any θ ∈ (ϕ(c), α+β

 ), there exists μ̂ ∈ (, c), such that g(μ̂) = θ .

http://www.advancesindifferenceequations.com/content/2013/1/243
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From the proofs of Theorem . and Theorem ., we know that if the kernel functions
K(x) and J(x) satisfy the conditions of this theorem, ψ(μ) and ϕ(μ) are decreasing with μ,
so the function g(μ) is also decreasing withμ. Consequently, we get the wave speed, which
is uniquely determined by (.). Let θ = ψ(μ̂) and θ = ϕ(μ̂), then  < θ < α

 , ϕ(c) < θ < β


and θ + θ = θ .
From Theorem ., we know that for θ and μ̂,

Uβ (z) = β

∫ z

–∞

[
 – exp

(
s – z
μ̂

)]
J(s – μ̂τ )ds

is a wave front solution of equation (.) satisfying the phase conditions

Uβ (z) < θ when z < ; Uβ () = θ; Uβ (z) > θ when z > 

and the boundary conditions

lim
z→–∞Uβ (z) = ; lim

z→+∞Uβ (z) = β ; lim
z→±∞U ′

β (z) = .

From Theorem ., we know that for θ = θ – θ,

Uα(z) = α

∫ cz
c+sgn(z)μ̂

–∞
K(s)ds – α

∫ z

–∞
exp

(
s – z
μ̂

)
K(s)

c
c + sgn(s)μ̂

ds

is a wave front solution of equation

μU ′ +U = α

∫ cz
c+sgn(z)μ

–∞
K(t)dt (.)

with μ = μ̂ and satisfying the phase conditions

Uα(z) < θ when z < ; Uα() = θ; Uα(z) > θ when z > 

and the boundary conditions

lim
z→–∞Uα(z) = ; lim

z→+∞Uβ (z) = α; lim
z→±∞U ′

α(z) = .

Denote U(z;μ) = Uα(z;μ) + Uβ (z;μ). Obviously, U(z;μ) is a solution of equation (.),
which is identical to (.) and satisfies the phase conditions

U(z;μ) < θ + θ = θ when z < ; U(;μ) = θ ; U(z;μ) > θ when z > 

and the boundary conditions

lim
z→–∞U(z;μ)(z) = ; lim

z→+∞U(z;μ)(z) = α + β ; lim
z→±∞U ′(z;μ) = ,

where μ = μ̂ is uniquely determined by (.). �
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For the case that the kernel functions K(x) satisfying L on (–∞, ) and Rj (j = , , . . . , )
on (,+∞), the parameters α and β and the kernel function J(x) satisfying the same con-
ditions as those in Theorem ., we can get the existence of the wave speed by the same
process. But the monotonic property of the function ϕ(μ) can not be guaranteed, nei-
ther the function g(μ), so the uniqueness of the wave speed cannot be obtained in the
same way as Theorem .. However, we can prove the uniqueness of the wave speed when
θ ∈ (ϕ(c), α

 + ϕ(c)].

Theorem . Suppose the kernel function K(x) satisfies L on (–∞, ) and one of Rj (j =
, , . . . , ) on (, +∞), the parameters α and β and the kernel function J(x) satisfy the same
conditions as those in Theorem .. Then for any θ ∈ (ϕ(c), α

 + ϕ(c)], equation (.) has a
unique traveling wave front solution satisfying the same phase and boundary conditions as
in Theorem ..

Proof By the same process as the proof of Theorem ., we know that for any θ ∈ (ϕ(c), α
 +

ϕ(c)], there exists μ̂ ∈ (, c), such that g(μ̂) = θ . We show that there would be a contradic-
tion if there existed  < μ < μ < c such that g(μi) = ψ(μi) + ϕ(μi) = θ , i = , . Actu-
ally, ϕ(μ) > ϕ(μ) > ϕ(c), since ϕ(μ) is decreasing with μ on (, c), and thus,  < ψ(μ) <
ψ(μ) < α

 . However, according to Lemma ., we know that the function ψ(μ) should be
decreasing on (μ,μ). We get a contradiction. Consequently, for any θ ∈ (ϕ(c), α

 + ϕ(c)],
there exists a unique μ̂ ∈ (, c), such that g(μ̂) = ψ(μ̂) + ϕ(μ̂) = θ + θ = θ ,  < θ < α

 and
ϕ(c) < θ < β

 . Just as the proof of Theorem ., we can get the conclusion. �

5 Discussion and conclusion
The existence and uniqueness of the traveling wave fronts of the general integral dif-
ferential model equation (.) arising from neuronal networks with both axonal and de-
layed nonlocal connections are investigated in this paper. Besides the three class of typical
kernel functions, more general kernel functions are considered. Some known results are
amended. In Theorem . of [], Magpantay and Zou showed that for K(x) of type (C)
and θ < α+β

 , if there exists a unique wave speed μ̂ ∈ (, c), then there exists a solution to
equation (.) satisfying the phase and boundary conditions. It is easy to see that if K(x)
satisfies (L) and (R) with n = , then K(x) is of type (C). From the results in Theorem .,
we know that the wave speed is unique, and thus, the unique traveling solution to equation
(.) exists when θ ∈ (ϕ(c), α

 + ϕ(c)].
We have obtained the existence and uniqueness of the wave front solution to IDE (.)

with a very general kernel function K(x) in the first nonlinear term on the right side, but
the kernel function J(x) is restricted to type (A) or type (B). However, at present, if (.) is
still a wave front solution to (.) when the kernel function J(x) of type (C) is still open.
The speed index functions are well applied in studying the existence and uniqueness of

the wave speed, in which the uniqueness is always obtained by proving the monotonicity
of the speed index function. However, in Theorem ., we provided amethod to prove the
uniqueness of thewave speed in the case that themonotonicity of the speed index function
does not hold any more. The principle of linear superposition is applied skillfully to deal
with the obstacles that produced by the two nonlinear terms of equation (.), which may
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provide an idea to investigate the integral differential equations as follows

ut + u =
n∑
i=

αi

∫
R
K(x – y)H

(
u
(
y, t –

|x – y|
ci

)
– θ

)
dy

+
m∑
i=

βi

∫
R
J(x – y)H

(
u(y, t – τi) – θ

)
dy.
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