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Abstract
We prove weak and strong convergence theorems for a double Krasnoselskij-type
iterative method to approximate coupled solutions of a bivariate nonexpansive
operator F : C × C → C, where C is a nonempty closed and convex subset of a Hilbert
space. The new convergence theorems generalize, extend, improve, and complement
very important old and recent results in coupled fixed point theory. Some appropriate
examples to illustrate our new results and their generalization are also given.

1 Introduction and preliminaries
LetX be a nonempty set. A pair (x, y) ∈ X×X is called a coupled fixed point of themapping
F : X ×X → X if it is a solution of the system

F(x, y) = x, F(y,x) = y.

The study of coupled fixed points has been considered in  by Bhaskar and Lak-
shmikantham [] (see also []). A rich literature on the existence of coupled fixed points
of mixed monotone, monotone and non-monotone mappings, has been developed ever
since the publication of that paper (see [–]).
The novelty of this paper is that it considers coupled fixed point problem in a partially

ordered metric space for mixed monotone mapping F : X ×X → X in conjunction with a
contraction-type condition of the form

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]
, for each x ≥ u, y≤ v, (.)

where k ∈ [, ).
In particular, the authors establish three kinds of coupled fixed point results: () exis-

tence theorems (Theorems . and .); () an existence and uniqueness theorem (Theo-
rem .); and () theorems that ensure the equality of the coupled fixed point components
(Theorems . and .).

Theorem  ([], Theorem . and Theorem .) Let (X,≤) be a partially ordered set and
suppose there is ametric d on X such that (X,d) is a complete metric space. Let F : X×X →
X be a continuous mapping having the mixed monotone property on X .
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If F satisfies (.) and there exist x, y ∈ X such that

x ≤ F(x, y) and y ≥ F(y,x),

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x).

Suppose, additionally, that x, y ∈ X are comparable. Then for the coupled fixed point
(x, y), we have x = y.

Contraction-type conditions arise naturally in connectionwith Lipshitzian properties of
mappings in the study of nonlinear functional differential and integral equations. There-
fore, coupled fixed point results for contractions have important applications in nonlinear
analysis and have been applied successfully for solving various classes of nonlinear func-
tional equations: integral equations and systems of integral equations [, , , , , ,
, ]; (periodic) two point boundary value problems [, , , ]; nonlinear Hammer-
stein integral equations []; nonlinear elliptic problems and delayed hematopoesis mod-
els []; systems of differential and integral equations []; nonlinearmatrix and nonlinear
quadratic equations [, ], initial value problems for ODE [, ], etc.
We note that in all the above mentioned cases, the main conclusion is drawn using ([],

Theorem.), which guarantees existence aswell as equality of components of the coupled
fixed point.
On the other hand, in almost all the papers dealingwith study of coupled fixed points, no

attention is paid to the constructive features of such a result, i.e., there is neither explicit
mention of the method by which one could approximate that coupled fixed point, nor on
the order of convergence and/or error estimates of the iteration processes involved.
Moreover, there exist (mixed) monotonemappings F(x, y) (see Examples  and  below),

which possess coupled fixed points, for which no coupled fixed point theorem existing in
literature can be applied. This is mainly because all those theorems (we refer here only
to the ones given in [, –, , , –, –]) are based on a strict contractive-type
condition (.).
All the above observations motivate for constructive study of coupled fixed points of a

bivariate mapping F : X ×X → X satisfying a weaker contractive condition of nonexpan-
siveness type and providing a constructive method to approximate these coupled fixed
points, which we generally meet in applications, i.e., when we have equality of the coupled
fixed point components.
The only paper that considers asymptotically nonexpansive bivariate mappings and the

existence of their coupled fixed points is due to Olaoluwa et al. []. No other attempt has
been made to tackle this important problem. We find here coupled solutions for a bivari-
ate weakly nonexpansive operator on Hilbert spaces through an iterative method. Since
nonexpansive bivariate mappings are particular sub-classes of the weakly nonexpansive
mappings considered in the present paper, our results also generalize, improve and com-
plement the corresponding results obtained in [].
In order to illustrate the broader scope and novelty of our results, we present appropriate

examples to delineate them from the existing coupled fixed point theorems in literature
and indicate their potential use in applications.

http://www.fixedpointtheoryandapplications.com/content/2014/1/149
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2 Nonexpansive bivariate operators
In this paper, we define the concept of nonexpansiveness for bivariatemappings as follows.

Definition  Let X be a normed linear space and C be a subset of X. A mapping F : C ×
C → X is called weakly nonexpansive if

∥∥F(x, y) – F(u, v)
∥∥ ≤ a‖x – u‖ + b‖y – v‖, (.)

for all x, y,u, v ∈ C, where a,b≥  and a + b ≤ .

A similar but stronger concept has been introduced in [].

Definition  ([]) Let X be a normed linear space and C be a subset of X. A mapping
F : C ×C → X is called nonexpansive if

∥∥F(x, y) – F(u, v)
∥∥ ≤ 


(‖x – u‖ + ‖y – v‖), (.)

for all x, y,u, v ∈ C.

Note that our condition (.) is more general than (.): any nonexpansive mapping F is
weakly nonexpansive but the converse is not true, in general, as shown below.

Example  Let X =R (with the usual metric) and F : X → X be defined by

F(x, y) =
x – y


, ∀x, y ∈ X.

Then F satisfies condition (.) but does not satisfy condition (.). Moreover, F possesses
a unique coupled fixed point of the form (x,x), i.e., (, ), but no coupled fixed point the-
orem established in [, –, , , –, –] (and in other related papers) can be
applied to this function F .
First, let us note that (.) holds with the constants a = 

 and b = 
 . Suppose F satis-

fies (.).
Then, taking x = y, y �= z in (.), we get 

 ≥ 
 , a contradiction. This proves that, indeed,

F does not satisfy (.).
To prove the last part of our claim, let us consider the contraction condition in [] (the

same is valid for the corresponding conditions in [, –, , , –, –]),

d
(
F(x, y),F(u, v)

) ≤ kd(x,u) + ld(y, v), (.)

where k, l ∈ (, ) with k + l < .
Assume now that F satisfies (.). Then, taking x = u, y �= z in (.), we get l ≥ 

 and
taking x �= u, y = v in (.), we get k ≥ 

 . Now these calculations for k and l lead to

≤ k + l < ,

a contradiction. This proves that, indeed, F does not satisfy the strict contraction condi-
tion (.). This is also true for contractive conditions considered in [, –, , , –,
–].

http://www.fixedpointtheoryandapplications.com/content/2014/1/149
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Observe that for F in this example, the double sequence {(xn, yn)}n≥, defined by the
Picard-type iteration

xn+ = F(xn, yn), yn+ = F(yn,xn), n≥ , (.)

with x, y ∈ X, is convergent and its limit is always a coupled fixed point of F (but only in
the case x = y this coupled fixed point is (, )); a fact which follows immediately from
the expressions of xn and yn:

xn =



[
x – y +

(
–



)n

(x + y)
]
, n≥ ,

yn =



[
y – x +

(
–



)n

(x + y)
]
, n≥ .

It is important to note that Opoitsev [] was the first who studied coupled fixed points
of bivariate mappings (see also [, ]) where a double Picard-type iteration sequence
{(xn, yn)}n≥ of the form (.) was used.
In order to state our main results, we need some concepts and results, adapted from the

case of mono-variate operators to the case of bivariate operators.
The concept of demicompact operator has been introduced by Petryshyn [] (see also

[] and []) for a mapping T : C →H , where C is a subset of a Hilbert space H . For the
bivariate case it is adapted as follows.

Definition  Amapping F : C ×C →H is called demicompact if it has the property that
whenever {un} and {vn} are bounded sequences inC with the property that {F(un, vn)–un}
and {F(vn,un) – vn} converge strongly to , then there exists a subsequence {(unk , vnk )} of
{(un, vn)} such that unk → u and vnk → v strongly.

We need the following version of the well-known Browder-Gohde-Kirk fixed point the-
orem (see, for example, Theorem . in []), stated here in the Hilbert space setting.

Theorem  Let C be a bounded, closed and convex subset of a Hilbert space H and let
F : C ×C → C be a (weakly) nonexpansive operator. Then F has at least one coupled fixed
point in C.

Proof Let T : C → C be given by T(x) = F(x,x), x ∈ C. By the (weakly) nonexpansiveness
property of F , we obtain the nonexpansiveness of T and hence, by the Browder-Gohde-
Kirk fixed point theorem, it follows that Fix(T) �= ∅. �

Remark  Theorem  shows that F has at least one (coupled) fixed point of the form
(x,x) ∈ C ×C, but, in general, for a bivariate mapping F it is also possible to have coupled
fixed points (x, y) with unequal components, i.e., such that x �= y, as shown by the following
example.

Example  Let X =R (with the usual metric), C = [–,] and F : C → X be defined by

F(x, y) =  – x – y, ∀x, y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/149
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Then F is weakly Lipschitzian with constants a =  and b =  (in the sense of Definition )
and F possesses two coupled fixed points (–,–), (, ) with equal components and two
coupled fixed points with unequal components, (–, ) and (,–).

3 Main results
The main result of this paper is the following strong convergence theorem for a double
Krasnoselskij-type algorithm associated with bivariate weakly nonexpansive operators on
Hilbert spaces.

Theorem  Let C be a bounded, closed and convex subset of a Hilbert space H and let
F : C×C → C be weakly nonexpansive and demicompact operator. Then the set of coupled
fixed points of F is nonempty and the double iterative algorithm {(xn,xn)}∞n= given by x in
C and

xn+ = λxn + ( – λ)F(xn,xn), n≥ , (.)

where λ ∈ (, ), converges (strongly) to a coupled fixed point of F .

Proof ByTheorem, F has at least one coupled fixed pointwith equal components, (x,x) ∈
C ×C.
We first show that the sequence {xn – F(xn,xn)}n∈N converges strongly to zero.
We have

‖xn+ – x‖ = ∥∥λxn + ( – λ)F(xn,xn) – x
∥∥

=
∥∥λ(xn – x) + ( – λ)

(
F(xn,xn) – x

)∥∥

= λ · ‖xn – x‖ + ( – λ) · ∥∥F(xn,xn) – x
∥∥

+ λ( – λ)
〈
F(xn,xn) – x,xn – x

〉
. (.)

Similarly,

∥∥xn – F(xn,xn)
∥∥ = ‖xn – x‖ + ∥∥F(xn,xn) – x

∥∥ – 
〈
F(xn,xn) – x,xn – x

〉
. (.)

On the other hand, by theweak nonexpansiveness condition (.) and F(x,x) = x, we obtain

∥∥F(xn,xn) – x
∥∥ =

∥∥F(xn,xn) – F(x,x)
∥∥ ≤ ‖xn – x‖.

Now, by (.), (.), and the inequality above, it follows that for any real number a we
have

‖xn+ – x‖ + a
∥∥xn – F(xn,xn)

∥∥

≤ [
a + λ + ( – λ)

] · ‖xn – x‖ + 
[
λ( – λ) – a

] · 〈F(xn,xn) – x,xn – x
〉
. (.)

If we choose now a nonzero a such that a ≤ λ( – λ), then from the last inequality we
obtain

‖xn+ – x‖ + a
∥∥xn – F(xn,xn)

∥∥

≤ (
a + λ + ( – λ) + λ( – λ) – a

)‖xn – x‖ = ‖xn – x‖ (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/149
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(we used the Cauchy-Schwarz inequality, 〈F(xn,xn)–x,xn–x〉 ≤ ‖F(xn,xn)–x‖ ·‖xn–x‖ ≤
‖xn – x‖). So, by (.) we get

a
∥∥xn – F(xn,xn)

∥∥ ≤ ‖xn – x‖ – ‖xn+ – x‖, n ≥ . (.)

By (.) we deduce that {‖xn – x‖} is a decreasing sequence of non negative real numbers,
hence it is convergent. By the inequality (.), we also have

 ≤ ∥∥xn – F(xn,xn)
∥∥ ≤ 

a
(‖xn – x‖ – ‖xn+ – x‖), n≥ ,

from which, by letting n→ ∞, we obtain

lim
n→∞

∥∥xn – F(xn,xn)
∥∥ = . (.)

This shows that xn – F(xn,xn) →  (strongly) and so it follows by demicompactness of F
that there exist a subsequence {xnk } ⊂ C and a point q ∈ C such that

lim
k→∞

xnk = q.

As F is nonexpansive, it is continuous. This implies

lim
k→∞

F(xnk ,xnk ) = F(q,q).

By (.),  = limk→∞(xnk – F(xnk ,xnk )) = q – F(q,q), which shows that (q,q) is a coupled
fixed point of F .
Using now the inequality (.), with x = q, we deduce that the sequence of nonnegative

real numbers {‖xn – q‖}n≥ is nonincreasing, hence convergent.
Since its subsequence {‖xnk – q‖}k≥ converges to , it follows that the sequence {‖xn –

q‖}n≥ itself converges to , that is, the sequence {(xn,xn)} converges strongly to (q,q), as
n→ ∞. �

Remark  Any nonexpansive bivariate mapping is weakly nonexpansive. Hence, by The-
orem , we obtain Corollary . in [].

We now introduce the concept of demicompactness at a point for a bivariate operator
(adapted from the original definition of Petryshyn []).

Definition  Amap F of C ×C ⊂H ×H into H is said to be demicompact at (u,u) if, for
any bounded sequence {xn} in C such that xn – F(xn,xn) → (u,u) as n → ∞, there exist a
subsequence {xnj} and an x in C such that xnj → x as j → ∞ and x – F(x,x) = u.

Remark  Clearly, if F is demicompact onC, then it is demicompact at  but the converse
is not true.
The demicompactness of F on the wholeC in Theorem may be weakened to the demi-

compactness at , provided that F is continuous.

http://www.fixedpointtheoryandapplications.com/content/2014/1/149
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Theorem  Let H be a Hilbert space, C a closed, bounded and convex subset of H , and
F : C ×C → C a weakly nonexpansive mapping such that F is demicompact at .
Then the Krasnoselskij-type double sequence {(xn,xn)}∞n= given by x in C and (.) con-

verges (strongly) to a coupled fixed point of F .

Proof Note that in the proof of Theorem , we actually used the demicompactness of F at
, so the arguments used there can be applied here. �

Remark  The conclusion of Theorem  remains true if instead of the demicompactness
of F at , we suppose x �→ x–F(x,x) maps closed sets in C into closed sets ofH (see []).

If inTheorems  and,we remove the demicompactness assumption, then (see []), the
Krasnoselskij iteration does no longer converge strongly, in general, but it could converge
(at least) weakly to a fixed point, as shown in the next theorem,which extendsTheorem.
in [].
Denote by Fix(F), the set of all coupled fixed points of F with equal components, i.e.,

Fix(F) = {p ∈ C : F(p,p) = p}.

Theorem  Let H be a Hilbert space, C a closed, bounded and convex subset of H , and F :
C×C → C a weakly nonexpansive mapping such that Fix(F) = {p}. Then the Krasnoselskij
iteration {xn}∞n= given by x in C and

xn+ = ( – λ)xn + λF(xn,xn), n≥ , (.)

converges weakly to p, for any λ ∈ (, ).

Proof It suffices to show that if {xnj}∞j=, xnj = Tnjx, where Tx = λx+(–λ)F(x,x), converges
weakly to a certain p, then p is a fixed point of T (and hence p ∈ Fix(F)) and therefore
p = p. Suppose that {xnj}∞j= does not converge weakly to p. As F is weakly nonexpansive,
we have

‖Tx – Ty‖ ≤ λ‖x – y‖ + ( – λ)
∥∥F(x,x) – F(y, y)

∥∥
≤ λ‖x – y‖ + ( – λ)‖x – y‖ = ‖x – y‖,

which shows that T is nonexpansive and hence we get

‖xnj – Tp‖ ≤ ‖Txnj – Tp‖ + ‖xnj – Txnj‖
≤ ‖xnj – p‖ + ‖xnj – Txnj‖.

Using the arguments in the proof of Theorem , it follows

‖xnj – Txnj‖ → , as n→ ∞,

and so the last inequality implies that

lim sup
(‖xnj – Tp‖ – ‖xnj – p‖

) ≤ . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/149
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As in the proof of Theorem , we have

‖xnj – Tp‖ =
∥∥(xnj – p) + (p – Tp)

∥∥

= ‖xnj – p‖ + ‖p – Tp‖ + 〈xnj – p,p – Tp〉,

which shows, together with xnj ⇀ p (as j → ∞), that

lim
n→∞

[‖xnj – Tp‖ – ‖xnj – p‖
]
= ‖p – Tp‖. (.)

On the other hand, we have

‖xnj – Tp‖ – ‖xnj – p‖ =
(‖xnj – Tp‖ – ‖xnj – p‖

)
· (‖xnj – Tp‖ + ‖xnj – p‖

)
. (.)

Since C is bounded, the sequence

{‖xnj – Tp‖ + ‖xnj – p‖
}

is bounded too, and so by (.)-(.) we get

‖p – Tp‖ ≤ , i.e.,Tp = p ⇔ p = F(p,p) = p. �

Remark  The assumption Fix(F) = {p} in Theorem  may be removed to obtain the fol-
lowing more general result (similar to Theorem . in []).

Theorem  Let C be a bounded, closed and convex subset of a Hilbert space and F : C ×
C → C be weakly nonexpansive operator. Then the Krasnoselskij algorithm {xn}∞n= given
by x in C and

xn+ = ( – λ)xn + λF(xn,xn), n≥ ,

converges weakly to a coupled fixed point of F .

Proof We essentially follow the steps and arguments of the proof of Theorem . in [].
For each p ∈ Fix(F)W and each n, we have, as in the proof of Theorem ,

‖xn+ – p‖ ≤ ‖xn – p‖,

which shows that the function g(p) = limn→∞ ‖xn – p‖ is well defined and is a lower semi-
continuous convex function on the nonempty convex set Fix(F). Let

d = inf
{
g(p) : p ∈ Fix(F)

}
.

For each ε > , the set

Eε =
{
y : g(y) ≤ d + ε

}

is closed, convex, and, hence, weakly compact.

http://www.fixedpointtheoryandapplications.com/content/2014/1/149
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Therefore
⋂

ε> Eε �= ∅ (in fact
⋂

ε> Eε = {y : g(y) = d} ≡ F). Moreover, F contains
exactly one point. Indeed, since F is convex and closed, for p,p ∈ F, and pλ = ( –
λ)p + λp,

g(pλ) = lim
n→∞‖pλ – xn‖ = lim

n→∞
(∥∥λ(p – xn) + ( – λ)(p – xn)

∥∥)

= lim
n→∞

(
λ‖p – xn‖ + ( – λ)‖p – xn‖ + λ( – λ)〈p – xn,p – xn〉

)

= lim
n→∞

(
λ‖p – xn‖ + ( – λ)‖p – xn‖ + λ( – λ)‖p – xn‖ · ‖p – xn‖

)

+ lim
n→∞

{
λ( – λ)

[〈p – xn,p – xn〉 – ‖p – xn‖ · ‖p – xn‖
]}

= g(p) + lim
n→∞

{
λ( – λ)〈p – xn,p – xn〉 – ‖p – xn‖ · ‖p – xn‖

}
.

Hence

lim
n→∞

{
λ( – λ)

[〈p – xn,p – xn〉 – ‖p – xn‖ · ‖p – xn‖
]}

= .

Since

‖p – xn‖ → d and ‖p – xn‖ → d,

the latter relation implies that

‖p – p‖ =
∥∥(p – xn) + (xn – p)

∥∥

= ‖p – xn‖ + ‖xn – p‖ – 〈p – xn,p – xn〉
→ d

 + d
 – d

 = ,

giving a contradiction.
Now, in order to show that xn = Fn(x,x) ⇀ p, it suffices to assume that xnj ⇀ p for an

infinite subsequence and then prove that p = p. By the arguments in the proof of Theo-
rem , p ∈ Fix(F). Considering the definition of g and the fact that xnj → p, we have

‖xnj – p‖ = ‖xnj – p + p – p‖

= ‖xnj – p‖ + ‖p – p‖ – 〈xnj – p,p – p〉
→ g(p) + ‖p – p‖ = g(p) = d

.

Since g(p) ≥ d
, the last inequality implies that

‖p – p‖ ≤ ,

which means that p = p. �

4 Conclusions and further study
Example  Let X = R (with the usual metric), C = [–, ]. Define bivariate function F :
C → C by

F(x, y) = –
x + y


, ∀x, y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/149
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Then F satisfies (.) and is demicompact. Hence, all the assumptions of Theorem  are
satisfied. It is easy to see that F possesses a unique coupled fixed point, (, ), and the
Krasnoselskij-type iteration algorithm (.) yields the sequence

xn = ( – λ)nx, n ≥ .

Since – <  – λ < , it follows that (xn,xn) converges to (, ) as n → ∞, for any initial
value x.
This shows that, for weakly nonexpansive mappings, by using a Krasnoselskij-type iter-

ation we can reach the convergence, while, by means of Picard-type iterations, this cannot
be obtained, in general. Indeed, in this case, the Picard-type iteration (un,un) associated
with F is given by un+ = –un, n≥ , which is not convergent (except for the case u = ).

Remark It is important at this stage to say that the coupled fixed point theorems existing
in literature, see [, –, , , –, –] (only a short list is cited here), cannot be
applied to the bivariate functions in Examples  and .
Finally, let us note that the double sequence {(xn, yn)}, defined for each component by a

formula of the form (.) with F(xn, yn) and F(yn,xn), respectively, instead of F(xn,xn), in
the case of the function F in Example  will be given by

xn =


[
( – λ)n(x – y) + ( – λ)n(x + y)

]
, n≥ ,

yn =


[
( – λ)n(y – x) + ( – λ)n(x + y)

]
, n≥ ,

and it is easily seen that {(xn, yn)} still converges to (, ), the unique coupled fixed point
of F , for all x, y ∈ C.
This also indicates that it is not necessary to consider only the case of a double sequence

with equal components {(xn,xn)} inTheorems - (but the proof of a convergence theorem
for such an iterative method will be essentially different from the one given in this paper).

To conclude this paper, we note that, for the general case of a weakly nonexpansive bi-
variate mapping F , the Picard-type iteration process (.) does not generally converge or,
even if it converges, its limit is not a coupled fixed point of F , but the Krasnoselskij-type
iteration process always converges to a coupled fixed point of F .
In the same way, we can prove convergence theorems for iterative methods of Kras-

noselskij type for tripled fixed points, quadruple fixed points etc. of weakly nonexpansive
mappings (see [, , , , –, –], and references therein).
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