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Abstract

This article proposes a new modified anisotropic diffusion scheme for automatic defect detection in radiographic
films. The new diffusion method allows to enhance, to sharpen anomalies, and to smooth the background of the
image. This new technique is based on the modification of the classical diffusion rule by using a nonlinear
sigmoidal function. Experimental results are carried out on multiple real radiographic recorded films of Gaz
pipelines of the “Tunisian Society of Electricity and Gas distribution: STEG“ and the society “Control offices–chemical
and industrial analysis laboratories: Saybolt-Tunisia“. The new automatic defect detection method shows good
performance in comparison with other existing algorithms.
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1. Introduction
Industrial radiography is now a well-established techni-
que for the identification and the evaluation of defects
such as discontinuities, cracks, porosities, burn thru, and
lack of penetration found in welded joints (Figure 1).
These radiographic films are mainly used in petroleum,
petrochemical, nuclear, and power generation industries
especially for the inspection of welds in the pipelines.
Until now and in several real industrial applications

radiographic film analysis are done exclusively by the
radiograph inspector, such as in the society “Control
offices–chemical and industrial analysis laboratories:
Saybolt-Tunisia“. The radiograph inspector is then
required to visually inspect each film and detect the pre-
sence of possible defects which he must then identify
and measure. This study is made a tedious task because
of the low dimensions of certain defects (some fissures
can have a thickness around 200 μm), the low contrast
and a noised nature of some radiographic films. Conse-
quently, the detection decision can be subjective in
some cases and work conditions.
Several generic systems, able to carry out automatic

inspection, are already marketed [1-4]. But their capacity
to fault detection is limited to simple and specified

applications for which the defects are well marked by
only some changes in the graylevel or the form. Some of
the most important achievements in this area are pre-
sented below.
In [1], the authors proposed a digital image processing

algorithm based on a global and local approach for
detecting the nature of defect in radiographic images.
This algorithm is based first on smoothing the image
using a filter and then a dynamic stretching procedure
is applied to the region of interest (ROI) by a look up
table transformation. Second, they extract the defect by
applying the morphological operations which eliminate
small holes, spots, and connect the closely regions.
Authors of [3,5] proposed a fuzzy k-nearest neighbor

method based on multilayer perceptron neural network
and a fuzzy expert system for the classification of weld-
ing defect types. The features used for the classification
are distance from center, circularities, compactness,
major axis width and length, elongation, Heywood dia-
meter, the intensity average, and its standard deviation.
A typical method for automated recognition of welding

defects was presented in [2]. The detection algorithm fol-
lows a pattern recognition methodology steps as follows:
Step 1: Segmentation: different regions are found and

isolated from the rest of the X-ray image using a
watershed algorithm and morphological operations (ero-
sion and dilation).

* Correspondence: issam_benmhammed@yahoo.fr
1Scientific Research Unit: University of Tunis, Signal, Image and Intelligent
Control of Industrial Systems: SICISI, Ecole Supérieure des Sciences et
Techniques de Tunis (ESSTT), 5 Av. Taha Hussein, 1008, Tunis, Tunisia
Full list of author information is available at the end of the article

Ben Mhamed et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:46
http://asp.eurasipjournals.com/content/2012/1/46

© 2012 Ben Mhamed et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193641085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:issam_benmhammed@yahoo.fr
http://creativecommons.org/licenses/by/2.0


Step 2: Feature extraction: regions are measured and
shape characteristics are quantified such as diameter
variation and main direction of inertia based on invar-
iant moments.
Step 3: Classification: the extracted features of each

region are analyzed and classified using a k-nearest
neighbor classifier. According to the literature, the
method is robust and achieves good detection rate.
In [6], a welding defect classification method is pro-

posed. In a first step, called image pre-processing, the
quality of the image is improved using a median filter
and a contrast enhancement technique. After that the
evaluation of the characteristic parameters following a
relevance criterion in discriminating welding defect
classes by using a linear correlation coefficient matrix is
then used.
Liao and Ni [7] proposed a weld extraction method

based on the observation of the intensity plot where the
plot of a weld seems to be a Gaussian curve with respect
to the other objects in the image. Then, a weld detection
approach based on a curve fitting was proposed. Their
main idea is to simulate a 2D background for a bad

characterized normal welding by low spatial frequencies
in comparison with the high spatial frequencies defect
image. Thus, a 2D background is estimated by fitting
each vertical line of the weld by a polynomial function,
and the obtained image is subtracted from the original
one.
A two step technique to detect flaws automatically is

proposed in [4] where the authors used a single filter. This
method allows first to identify potential defects in each
image of the sequence, and second to match and track
them from image to image. Many other weld defect detec-
tion methods are so far presented and proposed in the
literature. However, each technique presents its own
advantages and drawbacks. A comprehensive review paper
to compare these techniques is now missing in the litera-
ture. In this article, we shall focus our attention on a well-
known technique namely the anisotropic diffusion model
used to the weld detection defects [8].
Anisotropic diffusion has widely been used as an

adaptive edge-preserving smoothing technique for edge
detection [9], image restoration [10], image smoothing
[11], image segmentation [12], and texture segmentation
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Figure 1 Type of defects in welded joints: (a) burn thru, (b) porosity, (c) lack of penetration, (d) internal undercut, (e) lack of fusion, (f)
external undercut.
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[13]. In this study, we extend the work of Shin-Min
Chao and Tsai [14] used to defect detection in TFT-
LCD screen (Thin Film Transistor–Liquid Crystal Dis-
plays) to tackle the problem of defect inspection in
radiographic films. Consequently, a new anisotropic dif-
fusion scheme is proposed.
Besides that the anisotropic technique has some draw-

backs, but it is seen by the users as the appropriate and
most used one. Hence, this article is devoted to the
improvement of this technique and its application to the
identification of weld defects in the gas distribution
pipelines of the “Tunisian Society of Electricity and Gas
distribution: STEG.”
The main improvement of the method is the use of a

more complex exponential diffusion function multiplied
by a standard used rule. The effectiveness of the new
modification exhibits high detection level of the
obtained experimental results.
This article is organized as follows. In Section 2, a pre-

view of the characteristics of the radiographic films on
welds and the corresponding images prepared by the
“Control offices–chemical and industrial analysis labora-
tories: Saybolt-Tunisia“ is given as well as the principle of
Gamma Ray (g-ray) radiography. The preprocessing steps
are presented in Section 3. A review of the Perona-Malik
anisotropic diffusion rules and the improved diffusion
model proposed by Shin-Du [14] are developed in Section
4. Section 5 presents the new proposed anisotropic diffu-
sion model and presents experimental results on many
radiographic images with various defects. Finally, the main
conclusions of this study are given in Section 6.

2. Preview of the g -ray radiography and
radiographic films on welds
To assess the quality of the welded joints, radiography is
among the most useful of thorough and non-destructive
tests. It is based upon exposing the target area to the short
wavelength. In the society Saybolt-Tunisia the g -ray is
used from the Iridium-192. The corresponding wavelength
is about 510-7 to 310-4 μm. We shall note that the g-ray
can penetrate and then inspect joints of bigger thickness
than treated by X-ray. To produce effective g -ray a small
pellet of Iridium-192 sealed in an appropriate capsule is
used. This latter is placed on one side of the object being
screened, and a photographic film is placed on the other
side. The g -rays pass through the target area and create
an image on this film which will be later developed and
examined.
As it is well known, the quality of radiography images

depends on several parameters such as (and not limited
to) the emplacement of the source, the exposure time of
the film to gamma radiations, the film quality, etc [15].
In radiograph the radiation intensities transmitted by

the source through the target area are rendered as

difference densities in the image. The difference of den-
sities from one region to another constitutes the radio-
graphic contrast. Consequently different films have
different contrast characteristics. To check the film
quality, the following parameters are mainly considered
[16]:

• The radiographic density or the optical density
which is a measure of the film darkening.
• The radiographic contrast that evaluate the capa-
city to distinguish different tones of gray in the film
itself.

In the purpose of measuring the radiographic density
the society Saybolt Society uses a densitometer of type
SM-12 “Pocket Pal“. In the Figure 2 some characteristics
of this devise are given. In practice the acceptable density
values lie in the range of 1.8 and 3.5.
The usual method of measuring the radiographic con-

trast is to include some standard details in the image
which can give an indication of the image quality. Such
devices are known as “Image Quality Indicators (IQIs)” or
“penetrameters”. An IQI must be small and relatively
cheap to manufacture if it is to be used on every radio-
graph and should be as sensitive as possible to changes in
the radiographic technique. In Saybolt-Tunisia the Wire-
Type IQI is used (More precisely the IQI DIN 54109). In
Figure 3 a scheme of the wire IQI and some related char-
acteristics are given.

3. Preprocessing steps
3.1. Digitization
Film digitizing is a critical part of the weld recognition
system. Hence, selecting optimized resolution of scan-
ning and acceptable quality of digitizing plays an impor-
tant role in whole system performance.
In this study, real radiographic films are extracted

from the database of a standard films provided by the
Society of Saybolt-Tunisia. These radiographic films
are considerably dark and their density is rather large.
After digitization the fundamental characteristics of
these images are
• Lack of the contrast between the defect and the

background of the image.
• Presence of a gradient in the background of the

image, characterizing the variation of thickness of the
part being inspected. This gradient can affect the detec-
tion of small size and/or low contrast defects.
• Granular aspect of the background of the image is

seen as a background noise. This is due to the granular
nature and the thickness of the emulsion and the digiti-
zation operation.
As a result, these images are difficult to process and

segment, and consequently conventional methods such
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as thresholding, edge detection, texture analysis, and
others fail to give interesting results.
The second step after the image digitization is the fil-

tering process.

3.2. Median filtering
The median filtering allows mainly the attenuation/
elimination of noise. Indeed the acquired images should
pass through a stage of image filtering in order to
remove distracting and useless information [17]. For
example, the existence of impulsive noise in the images
is one of the most encountered problems that should be
treated.
The application of a low-pass filter is used to remove

noise in radiographic images. The median filter is a non-
linear filter used to remove the impulsive noise from an
image [18-20]. Furthermore, it is more robust than the
traditional linear filtering, because it preserves the sharp
edges. Median filter is a spatial filtering operator; it uses

a 2D mask applied to each pixel in the input image.
This filter performs better than the major averaging fil-
ters because it can remove noise from inputting images
with a minimum amount of blurring effect.
The median filter operation can be expressed as:

g
(
x, y

)
= MEDIAN(i,j)∈R(x,y)f

(
i, j

)
(1)

where, f(i, j) represents the gray level value of the
input image at the pixel (i, j), g(x, y) represents the gray
level value of the smoothed image, R(x, y) represents a
W×W window centered at the pixel (x, y) and MEDIAN
stands for the median of the gray level values within the
specified window.
In order to simplify the defect detection procedure,

the majority of works begin by localizing the ROI and
then applying the weld detection algorithm steps.

3.3. Localization of the ROI
For the multiple reasons evoked above, it is difficult,
event’s impossible, to detect the presence of small
defects and determine accurately their sizes, during the
radiogram visualization. Consequently, for the seeking of
simplifying the task, one could begin by selecting the
ROI, i.e., which can be considered as the parts of the
image where the radiograph interpreters suspect the
presence of imperfections. The selection of the ROI pre-
vents the operator to make treatments on the irrelevant
regions of the image and allows, furthermore, to reduce
the computing time for real-time applications. Figure 4
presents a typical example of the selection of the ROI in
a radiographic image.
Note that the technique of ROI localization is com-

monly used by researchers in several works, see [1,2,21].

�

Figure 2 Characteristics of the densitometer SM-12 “Pocket Pal”.

�
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Figure 3 The Wire-Type IQI DIN 54 109: Three types exist for the
DIN 54109 according to the operating range. 1 ISO 7: 40-160 mm
and even bigger. 6 ISO 12: 12.5-50 mm. 10 ISO 16: 5-20 mm.
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In the following, we shall present the classical diffu-
sion model followed by the new proposed anisotropic
weld defect detection algorithm.

4. Study of the Perona-Malik anisotropic diffusion
model (PMAD)
4.1. Fundamental scheme
In 1990, Perona and Malik [8] proposed to consider the
intensity of the image as a concentration of fluid evol-
ving toward equilibrium. Consequently, they proposed
the new anisotropic diffusion model based on the use of
the classical heat equation of diffusion. Recall that diffu-
sion is a natural physical phenomenon that moderates
the concentration of differences without creating or
destroying mass. Then authors introduced a diffusion
coefficient depending on the pixel position and the cor-
responding magnitude and the gradient direction. This
diffusion coefficient is considered as a tuning parameter
that governs the diffusion. It is chosen so that it permits
diffusion in homogenous areas but not between
boundaries.
To develop an efficient algorithm for automatic defect

detection in radiographic films and since weld defect
can be of very small sizes in the ROI, it is important to
take the image at the highest possible contrast. In the
sequel, we shall present an anisotropic diffusion scheme
for a contrast enhancement.
Anisotropic diffusion was proposed by Perona and Malik

[8] for scale-space description of images and edge detec-
tion. Anisotropic diffusion removes noise from an image
by modifying the image via a partial differential equation.
Perona-Malik introduced the following diffusion rule:

∂It(x, y)
∂t

= div
[
ct(x, y) · ∇It(x, y)

]
(2)

where It(x, y) is the gray level at coordinates (x, y) of a
digital image at the iteration t, div is the divergence
operator, and ∇It(x, y) is the gradient of the image. ct(x,
y) is the diffusion coefficient considered as a function of

the gradient ∇Iit
(
x, y

)
in the PMAD model, i.e.,

cit
(
x, y

)
= g

(∇Iit
(
x, y

))
(3)

g is a non-negative monotonically decreasing function
verifying:

g(0) = 1

and

lim|∇Iit→∞| g(∇Iit) = 0
(4)

This anisotropic diffusion rule can discretely be imple-
mented by using four nearest-neighbors and the Lapla-
cian operator [17]:

It+1(x, y) = It(x, y) +
1
4

4∑
i=1

[
cit(x, y) · ∇Iit(x, y)

]
(5)

where ∇Iit
(
x, y

)
; i = 1...4, represents the gradient of

four neighbors in the north, south, east, and west direc-
tions, respectively:

∇I1t
(
x, y

)
= It

(
x, y − 1

) − It
(
x, y

)
(6)

∇I2t
(
x, y

)
= It

(
x, y + 1

) − It
(
x, y

)
(7)

∇I3t
(
x, y

)
= It

(
x + 1, y

) − It
(
x, y

)
(8)

Figure 4 Selection of the ROI.
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∇I4t
(
x, y

)
= It

(
x − 1, y

) − It
(
x, y

)
(9)

It looks like an adaptive diffusion procedure, the
PMAD behavior is a function of the local variations of
the intensity of the image. Thanks to the function ct(x, y)
it allows a large-smoothing in the zones of low gradient,
and a weak-smoothing in the zones of large gradient
(contour). Hence, a thresholding coefficient K allows to
distinguish between the zones with large gradient values
and those with weak gradient ones.
Perona-Malik [8] proposed for example the following

exponential functions (known as edge stopping func-
tion):

g(∇Iit(x, y)) = 1
/[

1 +
(∣∣∇Iit

/
K

∣∣)2] (10)

or

g(∇Iit(x, y)) = e−(|∇Iit|/K)2 (11)

The inverse proportion edge stopping function in
Equation (10) removes the noise in the large area effi-
ciently, because its diffusion is the inverse function of
the image gradient. But unfortunately, this function can-
not preserve edge information. The exponent edge stop-
ping function in Equation (11) allows to overcome this
matter. With the finite difference scheme and the cen-
tral differencing in spatial domain, the 2D anisotropic
diffusion rule can be then expressed as:

I(i, j, t + 1) = I(i, j, t) + λ · [cN · ∇IN(i, j, t)

+ cS · ∇IS(i, j, t) + cW · ∇IW(i, j, t)

+ cE · ∇IE(i, j, t)]

(12)

where 0 ≤ l ≤ 0.25 governs the rate of the diffusion
and N, S, E, W are the mnemonic subscripts for north,
south, east, and west, respectively, and

cN = g (|∇IN|) (13)

cS = g (|∇IS|) (14)

cE = g (|∇IE|) (15)

cW = g (|∇IW |) (16)

The choice of the threshold K is somewhat difficult; it
can be fixed arbitrarily or by estimating the noise. For
this purpose, the authors in [8] proposed to choose it
using the cumulated histogram of the gradient.

Generally speaking, if K is big, the preservation of the
edge will be better; however, the noise will not be suffi-
ciently removed; but if K is small, the noise will be well
removed, but the edges of the image will be blurred.
Let ϕ (∇I) be the flux function as defined in [8]:

ϕ (∇I) = g (∇I) · ∇I (17)

A large flux value indicates a strong effect of smooth-
ness. Figure 5 presents the evolution of the diffusion
coefficient function and the flux function given by Equa-
tions (10) and (17), respectively.
For a given value of K, it is shown from Figure 5a that

the curve of the diffusion coefficient function in Equa-
tion (10) decreases intensively and becomes near zero
when the gradient magnitude |∇I| is greater than 4K.
Therefore, the diffusion stops when |∇I| > 4K . The
maximum smoothness occurs at |∇I| = 1K , as can be
seen in the corresponding flux function in Figure 5b.
The classical model of PMAD can actually smooth
intra-regions in the image.
Consequently, in a low contrast image, the PMAD

model can smooth the background but it cannot clearly
enhance the defects.

Figure 5 Different curves of the Perona Malik model: (a) Curve
of the diffusion coefficient function: g(∇I) = 1/⌊1+(|∇I |/K)2⌋ (b)
Curve of the flux function: g(∇I) = 1/⌊1+(|∇I |/K)2⌋·∇I.

Ben Mhamed et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:46
http://asp.eurasipjournals.com/content/2012/1/46

Page 6 of 12



Therefore, the result of diffusion still a low contrast
image and defects will not be reliably identified in the
diffused image.
The algorithm of the PMAD model is given in Table 1.
Some simulation results of the PMAD applied to

images of weld are given in Figures 6 and 7. Indeed Fig-
ures 6a1, a2 and 7a1, a2 represent four radiographic
images of weld with internal undercut, external under-
cut, lack of fusion, and lack of penetration defects,
respectively. Figures 6b1, b2 and 7b1, b2 show the
restoration results of the diffusing process using PMAD
model with a parameter K = 2, and Figures 6c1, c2 and
7c1, c2 represent the result of the binarization of these
images with the Otsu method [22].
From these results one can see clearly that this first

method fails to detect weld defects. This means that the
traditional PMAD model cannot enhance sufficiently
anomalies by smoothing low-gradient regions and pre-
serving high-gradient edges. Some improvements of
these results will be found with the Shin-Du model.

4.2. Shin-Du model
This model was proposed by Shin-Min Chao and Tsai
[14], it incorporated a sharpening strategy in the classi-
cal diffusion model in order to enhance the anomalies
effectively in defected surfaces.
The Shin-Du model is then expressed as:

It+1
(
x, y

)
= It

(
x, y

)
+
1
4

4∑
i=1

[
cit · ∇Iit

(
x, y

)]

−1
4

4∑
i=1

[
vit

(
x, y

) · ∇Iit
(
x, y

)] (18)

where the third term on the right-hand side is the shar-
pening operator. The sharpening diffusion coefficient

function has v
(∇Iit

(
x, y

))
in order to ensure non-negative

monotonically increasing function with
v (0) = 0 and lim|∇Iit|→∞

v
(∇Iit

)
= 1

The function v
(∇Iit

(
x, y

))
maintains a high coefficient

values at image edge having large magnitudes and low
coefficient values. The considered image edge should
belong to an image region showing low gradient magni-
tudes. This v

(∇Iit
(
x, y

))
is defined as:

v
(∇Iit

(
x, y

))
= α.

[
1 − g

(∇Iit
(
x, y

))]
(19)

where a is the weight of sharpening coefficient func-
tion, and 0 ≤ a ≤ 1. It governs the degree of sharpness
process.
Table 2 gives the algorithm of the different steps of

this method.
Figure 8a, b represents the diffusion coefficient func-

tion g(∇I)-v(∇I) and the flux function �(∇I) = [g(∇I)-v
(∇I)]· ∇I for the model proposed by Shin-Du, respec-
tively. For a given a and K, it can be seen in Figure 8a
that the diffusion coefficient function decreases dramati-
cally and crosses zero when the gradient magnitude |∇I
| is bigger than K/

√
α .

The flux function in Figure 8b shows that the flow
increases with the gradient strength to reach a maxi-
mum. And then it decreases and crosses zero to reach
negative values. This behavior shows that the diffusion
process performs smoothing for lower gradient area

(when |∇I| < K
/√

α ) and proceeds sharpening for

higher gradient area (when |∇I| > K
/√

α ).
For defect detection in a low-contrast glass substrates

image [17], the model can effectively enhance defects in
the diffused image. But, as shown in Figures 6d1, d2,
7d1, d2 and 6e1, e2, 7e1, e2, the Shin-Du improves the
weld defect detection but it does not show drastic
results for the localization of these defects.

4.3. Choice of the parameters a and K
Since the parameters a and K should be fixed beforehand
for a particular application, the experiments are conducted
to find appropriate values of K and a for the detection of
defects in the radiographic images. When a is too large,
anomalies cannot be enhanced in the resulting diffusion
image. In contrast, when a is too small the diffusion
results show that the proposed diffusion model will over
sharpen the image.
When K is too large, the resulting images are severely

smoothed. Not only the background area is smoothed,
but also the default form is lost. When K is too small
and a is too large, the diffusion process cannot reduce
noise. These results fail the inspection of defects in
radiographic images.

Table 1 Algorithm of the PMAD model

Initialisation: Chose initial zone parameters: K, ct(x, y)

Step1: Digitization

Step2: Region of Interest Localisation

Step3: Median filtering

Step4: Compute the 2D convolution masks: hN, hS, hF and hW

Step5: For i = 1 to number of image windows

Compute the gradient

Compute the diffusion function c1(x, y) of 4 neighbors

Compute It+1(x, y) = It(x, y) +
1
4

4∑
i=1

[
cit(x, y).∇Iit(x, y)

]
End

Step6: Thresholding
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5. The proposed modified anisotropic diffusion
model
From Figure 1, it is clear that the gray levels of defects
and faultless backgrounds are painfully distinguishable
and really merged together.
In [23], the authors used a sigmoidal function to pro-

duce different degrees of edge sharpening. Then a
weighting function was used for the experimental imple-
mentation given by

σ (x) =
1

1 + e−rx
(20)

s(x) is a sigmoidal function whose values are
1
2
for x

= 0, and clumbs to a value of 1 with increasing x, and
where the r > 0 is a free parameter that controls the
steepness of s(x), i.e., the strength of edge sharpening.
For solving the later cited problem, and preserving the

same context of using a sigmoidal function, we intend
to modify the diffusion function to reach the joint goal
namely good gray level and good sharp edge of the
fault. Then a new anisotropic diffusion model based on
a new stopping edge function is proposed.

Figure 7 Diffusion results of the radiographic images: (a1, a2) defective radiographic images; (b1, b2) respective diffusion results using the
P-M model; (d1, d2) respective diffusion results using the Shin-Du model; (f1, f2) respective diffusion results using the proposed model; (c1,
c2), (e1, e2), (g1, g2) thresholding results using Otsu method.
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(b2) 

 
(c1) 
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Figure 6 Diffusion results of the radiographic images: (a1, a2) defective radiographic images; (b1, b2) respective diffusion results using the
P-M model; (d1, d2) respective diffusion results using the Shin-Du model; (f1, f2) respective diffusion results using the proposed model; (c1,
c2), (e1, e2), (g1, g2) thresholding results using Otsu method.
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In these new models two main modifications on the
Shin’s one are proposed.

- First, a filtering procedure is applied to the image
gradient as follows:

∇∗Iit
(
x, y

)
= MEDIAN

(∇Iit
(
x, y

))
(21)

- Second, a sharpening function is added to the edge
stopping rule. Then the new proposed formula is
given by Equation (22)

g(∇∗Iit) =

⎡
⎣ 1[

1 +
(∇∗Iit

/
K

)2] ·
(

− 1[
1 + exp

(−a ∗ (∇∗Iit
/
K)

)]
)⎤

⎦ (22)

Figures 9 and 10 represent the diffusion coefficient
function g(∇I)-v(∇I) and the flux function �(∇I) = [g(∇I)-
v(∇I)]· ∇I for the proposed diffusion model, respectively.

For given a, K, and a, it can be seen that the diffusion
coefficient function increases to a maximum and then
decreases dramatically and crosses zero to achieve a
minimum (when the gradient magnitude |∇I | is bigger
than 0).
Table 3 shows the different steps of the proposed

model. Figures 6a1, a2 and 7a1, a2 represent four radio-
graphic images of weld with internal undercut, external
undercut, lack of fusion, and lack of penetration defects,
respectively. Figures 6f1, f2 and 7f1, f2 show the restora-
tion results of the diffusing process using the proposed
model with a parameter K = 3 and a = 0.5.
One can note from Figures 6f1, f2 and 7f1, f2 that

defects become visible in the diffused image. This indi-
cates that the proposed model can sufficiently enhance
hardly visible anomalies by simply smoothing low-gradi-
ent regions and preserving high-gradient edges.
To show furthermore the effectiveness of the proposed

method, experiments have been carried on many radio-
graphic images with defects. The algorithms are imple-
mented on a personal computer. Images were 256 × 256
pixels wide with 8-bit grayscale. The values of para-
meters a and K were set at fixed values of 0.5 and 3,
respectively. The number of iterations is 20 for all test
images. Figures 6a1, a2 and 7a1, a2 represent the origi-
nal images of welded joints, Figures 6f1, f2 and 7f1, f2
represent the diffusion results and Figures 6g1, g2 and
7g1, g2 illustrate the simple thresholding [24] results of
the filtered images.
Figures 11, 12, 13, and 14 show different 2D intensity

profiles taken from the regions where the possible
defects are suspected. For each curve we give the mean
and the standard deviation. From these plots and by
inspecting the standard deviation values one can clearly
see that the new method allows to enhance and to shar-
pen different details of the weld defects without affect-
ing the background or the neighboring regions.

6. conclusion
In this article, the anisotropic diffusion scheme for
defect detection in the TFT-LCD screens is extended to
the defect detection in radiographic images. These later

Table 2 Algorithm of the Shin-Du model

Initialisation

Chose initial zone parameters: K, c1(x, y)

Step1: Digitization

Step2: Region of Interest selection

Step3: Median filtering

Step4: Compute the 2D convolution masks: hN, hS, hF and hW

Step5: For i = 1 to number of image windows

- Compute the gradient

- Compute the diffusion function c1(x, y) of 4 neighbors

- Compute the sharpening diffusion coefficient

v
(∇Iti

(
x, y

))
- Compute

It+1(x, y) = It(x, y) +
1
4

4∑
i=1

[
cit · ∇Iit(x, y)

]

−1
4

4∑
i=1

[
vit(x, y) · ∇Iit(x, y)

]
End

Step6: Thresholding

Figure 8 Different curves of the Shin-Du model: (a) Graph of the diffusion coefficient function: g(∇I)-v(∇I) with a = 0.1; (b) Graph of
the flux function: �(∇I) = [g(∇I)-v(∇I)]· ∇I with a = 0.1.
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are used in the inspection of welds in the pipelines.
Until now and in several industrial applications radio-
graphic film analysis are done exclusively by the radio-
graph inspector who is required to visually inspect each
film and detect the presence of possible defects. Conse-
quently the automatization of such a procedure becomes
necessary. The new proposed method allows to

automatically detect the possible defects through enhan-
cing and sharpening the radiographic images. The multi-
ple simulations carried out show good performance of
the proposed detection scheme. Plots of multiple 2D
intensity profiles taken from the areas containing the
defects show that the new method highlights the defect
details and allows efficient distinctions between the
faultless background and the defect details.

Figure 9 Graph of the proposed diffusion coefficient function
g(∇I)-v(∇I): with a = 0.1.

Figure 10 Graph of the flux function for the proposed model
�(∇I) = [g(∇I)-v(∇I)] with a = 0.1.

Table 3 Algorithm of the proposed model

Initialisation

Chose initial zone parameters: K, c1(x, y)

Step1: Digitization

Step2: Region of Interest selection

Step3: Median filtering

Step4: Compute the 2D convolution masks: hN, hS, hF and hW

Step5: For i = 1 to number of image windows

- Compute the gradient

- Compute the diffusion function c1(x, y) of 4 neighbors

- compute the

∇∗Iit
(
x, y

)
= median

(∇Iit
(
x, y

))
- Compute the sharpening diffusion coefficient

v
(∇∗Iit

(
x, y

))
- Compute

It+1(x, y) = It(x, y) +
1
4

4∑
i=1

[
cit · ∇Iit(x, y)

]

−1
4

4∑
i=1

[
vit(x, y) · ∇Iit(x, y)

]
End

Step6: Thresholding
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Figure 11 2D intensity profiles of the line 6 in the ROI of the
internal undercut defect. (a) PMAD model; (b) Shin-Du model; (c)
proposed model.
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Figure 12 2D intensity profiles of the line 7 in the ROI of the
external undercut defect. (a) PMAD model; (b) Shin-Du model; (c)
proposed model.
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Figure 13 2D intensity profiles of the line 3 in the ROI of the
lack of fusion defect. (a) PMAD model; (b) Shin-Du model; (c)
proposed model.
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Figure 14 2D intensity profiles of the line 9 in the ROI of the
lack of penetration defect. (a) PMAD model; (b) Shin-Du model;
(c) proposed model.
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