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Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a
rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form
with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell
with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT).
These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of
differential equations are obtained.The solution of this set of equations, applying the boundary conditions and continuity conditions
between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented
and good agreement was found.

1. Introduction

Thick cylindrical shells with variable thickness have widely
been applied in many fields such as space fight, rocket,
aviation, and submarine technology. Given the limitations of
the classic theories of thick wall shells, very little attention
has been paid to the analytical and semi-analytical solutions
of these shells. Assuming the transverse shear effect, Naghdi
and Cooper [1] formulated the theory of shear deformation.
The solution of thick cylindrical shells of homogenous and
isotropic materials using the first-order shear deformation
theory (FSDT) was derived by Mirsky and Hermann [2].
Greenspon [3] opted tomake a comparison between the find-
ings regarding the different solutions obtained for cylindrical
shells. Ziv and Perl [4] obtained the response of vibration
analysis of a thick-walled cylindrical shell using FSDT theory
and solved by finite difference method. Suzuki et al. [5] used
the FSDT for vibration analysis of axisymmetric cylindrical
shell with variable thickness. They assumed that the problem
is in the state of plane stress and ignored the normal stress

in the radial direction. Simkins [6] used the FSDT for deter-
mining displacement in a long and thick tube subjected to
moving loads. A paper was also published by Kang and Leissa
[7, 8] where equations of motion and energy functionals were
derived for a three-dimensional coordinate system. The field
equations are utilized to be expressed in terms of displace-
ment components. Eipakchi et al. [9] used the FSDT for
driving governing equations of thick cylinders with varying
thickness and solved the equations with perturbation theory.
Based on the FSDT and the virtual work principle, Ghannad
et al. [10] obtained an elastic solution for thick truncated
conical shells. Using tensor analysis, a complete 3-D set of
field equations developed for elastic analysis of thick shells
of revolution with arbitrary curvature and variable thickness
along the meridional direction made of functionally graded
materials (FGMs) byNejad et al. [11]. Ghannad andNejad [12]
obtained the differential equations governing the homoge-
nous and isotropic axisymmetric thick-walled cylinders with
same boundary conditions at the two ends were generally
derived, making use of first-order shear deformation theory
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Figure 1: Thick cylindrical shell with variable thickness.

and the virtual work principle. Following that, the set of
nonhomogenous linear differential equations for the cylin-
der with clamped-clamped ends was solved. An analytical
solution for clamped-clamped thick cylindrical shells with
variable thickness subjected to constant internal pressure is
presented by Ghannad et al. [13]. Using the first-order shear
deformation theory and assuming the radially varying elastic
modulus, Ghannad and Nejad [14] presented an analytical
solution for displacements and stresses in pressurized thick
heterogeneous cylindrical shells. Ghannad et al. [15] obtained
an analytical solution for stresses and radial displacement for
an FGM clamped-clamped pressurized thick cylindrical shell
with variable thickness using shear deformation theory and
matched asymptotic method.

In this paper, elastic analysis has been presented for
rotating thick cylindrical shells under internal pressure with
variable thickness using disk form multilayers.

2. Formulation of Problem

In the first-order shear deformation theory, the sections
that are straight and perpendicular to the mid-plane remain
straight but not necessarily perpendicular after deformation
and loading. In this case, shear strain and shear stress are
taken into consideration.

Geometry of a thick cylindrical shell with variable thick-
ness ℎ, and the length 𝐿, is shown in Figure 1.

The location of a typical point𝑚, within the shell element
is as

𝑚 : (𝑟, 𝑥) = (𝑅 + 𝑧, 𝑥) ,

0 ≤ 𝑥 ≤ 𝐿, −
ℎ

2
≤ 𝑧 ≤

ℎ

2
,

(1)

where 𝑧 is the distance of typical point from the middle
surface. In (1), 𝑅 and variable thickness ℎ are

𝑅 (𝑥) = 𝑟
𝑖
+
𝑎

2
−
1

2
(tan𝛽) 𝑥,

ℎ (𝑥) = 𝑟
𝑖
+ 𝑎 − (tan𝛽) 𝑥,

(2)

where 𝛽 is tapering angle as

𝛽 = tan−1 (𝑎 − 𝑏
𝐿

) . (3)

The general axisymmetric displacement field (𝑈
𝑥
, 𝑈

𝑧
),

in the first-order Mirsky-Hermann’s theory [2], could be
expressed on the basis of axial displacement and radial
displacement as follows:

𝑈
𝑥 (𝑥, 𝑧) = 𝑢 (𝑥) + 𝜙 (𝑥) 𝑧,

𝑈
𝑧 (𝑥, 𝑧) = 𝑤 (𝑥) + 𝜓 (𝑥) 𝑧,

(4)

where 𝑢(𝑥) and𝑤(𝑥) are the displacement components of the
middle surface. Also, 𝜙(𝑥) and 𝜓(𝑥) are the functions used to
determine the displacement field.

The kinematic equations (strain-displacement relations)
in the cylindrical coordinates system are

𝜀
𝑥
=
𝜕𝑈

𝑥

𝜕𝑥
=
𝑑𝑢

𝑑𝑥
+
𝑑𝜙

𝑑𝑥
𝑧,

𝜀
𝜃
=
𝑈
𝑧

𝑟
= (

𝑤

𝑅 + 𝑧
) + (

𝜓

𝑅 + 𝑧
) 𝑧,

𝜀
𝑧
=
𝜕𝑈

𝑧

𝜕𝑧
= 𝜓,

𝛾
𝑥𝑧
=
𝜕𝑈

𝑥

𝜕𝑧
+
𝜕𝑈

𝑧

𝜕𝑥
= (𝜙 +

𝑑𝑤

𝑑𝑥
) +

𝑑𝜓

𝑑𝑥
𝑧.

(5)

The stress-strain relations (constitutive equations) for
homogeneous and isotropic materials are as follows:

{{{

{{{

{

𝜎
𝑥

𝜎
𝜃

𝜎
𝑧

𝜏
𝑥𝑧

}}}

}}}

}

= 𝜆

[
[
[
[

[

1 − 𝜐 𝜐 𝜐 0

𝜐 1 − 𝜐 𝜐 0

𝜐 𝜐 1 − 𝜐 0

0 0 0
1 − 2𝜐

2

]
]
]
]

]

{{{

{{{

{

𝜀
𝑥

𝜀
𝜃

𝜀
𝑧

𝛾
𝑥𝑧

}}}

}}}

}

, (6)
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where 𝜎
𝑖
and 𝜀

𝑖
, 𝑖 = 𝑥, 𝜃, and 𝑧, are the stresses and

strains in the axial (𝑥), circumferential (𝜃), and radial (𝑧)
directions. 𝜐 and 𝐸 are Poisson’s ratio and modulus of
elasticity, respectively. In (6), 𝜆 is

𝜆 =
𝐸

(1 + 𝜐) (1 − 2𝜐)
. (7)

The normal forces (𝑁
𝑥
, 𝑁

𝜃
, 𝑁

𝑧
), bending moments

(𝑀
𝑥
,𝑀

𝜃
,𝑀

𝑧
), shear force (𝑄

𝑥
), and the torsional moment

(𝑀
𝑥𝑧
) in terms of stress resultants are

{

{

{

𝑁
𝑥

𝑁
𝜃

𝑁
𝑧

}

}

}

= ∫

ℎ/2

−ℎ/2

{{{{

{{{{

{

𝜎
𝑥
(1 +

𝑧

𝑅
)

𝜎
𝜃

𝜎
𝑧
(1 +

𝑧

𝑅
)

}}}}

}}}}

}

𝑑𝑧,

{

{

{

𝑀
𝑥

𝑀
𝜃

𝑀
𝑧

}

}

}

= ∫

ℎ/2

−ℎ/2

{{{{

{{{{

{

𝜎
𝑥
(1 +

𝑧

𝑅
)

𝜎
𝜃

𝜎
𝑧
(1 +

𝑧

𝑅
)

}}}}

}}}}

}

𝑧𝑑𝑧,

𝑄
𝑥
= 𝑘∫

ℎ/2

−ℎ/2

𝜏
𝑥𝑧
(1 +

𝑧

𝑅
)𝑑𝑧,

𝑀
𝑥𝑧
= 𝐾∫

ℎ/2

−ℎ/2

𝜏
𝑥𝑧
(1 +

𝑧

𝑅
) 𝑧𝑑𝑧,

(8)

where 𝑘 is the shear correction factor that is embedded in the
shear stress term. In the static state, for cylindrical shells, 𝑘 =
5/6 [16].

On the basis of the principle of virtual work, the variations
of strain energy are equal to the variations of work of external
forces as follows:

𝛿𝑈 = 𝛿𝑊, (9)

where𝑈 is the total strain energy of the elastic body and𝑊 is
the total work of external forces due to internal pressure and
centrifugal force.

With substituting strain energy and work of external
forces, we have [8]

∫

𝐿

0

𝑅 (𝑥) ∫

ℎ/2

−ℎ/2

(𝜎
𝑥
𝛿𝜀

𝑥
+ 𝜎

𝜃
𝛿𝜀

𝜃
+ 𝜎

𝑧
𝛿𝜀

𝑧
+ 𝜏

𝑥𝑦
𝛿𝛾

𝑥𝑧
)

× (1 +
𝑧

𝑅
)𝑑𝑧 𝑑𝑥

= ∫

𝐿

0

𝑃𝛿𝑈
𝑧
(𝑅 −

ℎ

2
)𝑑𝑥 − 𝜌𝜔

2

× ∫

𝐿

0

∫

ℎ/2

−ℎ/2

(𝑅 + 𝑧)
2
𝛿𝑈

𝑧
𝑑𝑧 𝑑𝑥,

(10)

where 𝜌 is the density and 𝜔 is the constant angular velocity.
𝜌𝜔

2 is the force per unit volume due to centrifugal force.
Substituting (5) and (6) into (10), and drawing upon calculus
of variation and the virtual work principle, we will have

𝑁
𝑥
𝑅 = 𝐶

0
,

𝑀
𝑥

𝑑𝑅

𝑑𝑥
+ 𝑅(

𝑑𝑀
𝑥

𝑑𝑥
− 𝑄

𝑥
) = 0,

𝑄
𝑥

𝑑𝑅

𝑑𝑥
+ 𝑅(

𝑑𝑄
𝑥

𝑑𝑥
) − 𝑁

𝜃

= −𝑃(𝑅 −
ℎ

2
) −

𝜌𝜔
2

6

ℎ

2
(12𝑅

2
+ ℎ

2
) ,

𝑀
𝑥𝑧

𝑑𝑅

𝑑𝑥
+ 𝑅(

𝑑𝑀
𝑥𝑧

𝑑𝑥
− 𝑁

𝑧
) −𝑀

𝜃

= 𝑃
ℎ

2
(𝑅 −

ℎ

2
) −

𝜌𝜔
2

6
𝑅ℎ

3
.

(11)

And the boundary conditions are

[(𝑁
𝑥
𝛿𝑢 +𝑀

𝑥
𝛿𝜙 + 𝑄

𝑥
𝛿𝑤 +𝑀

𝑥𝑧
𝛿𝜓) 𝑅]

𝐿

0
= 0. (12)

Equation (12) states the boundary conditions which must
exist at the two ends of the cylinder.

In order to solve the set of differential equations (11), with
use of (5) to (8) and then using (11), we have

[𝐵
1
]
𝑑
2

𝑑𝑥2
{𝑦} + [𝐵

2
]
𝑑

𝑑𝑥
{𝑦} + [𝐵

3
] {𝑦} = {𝐹} ,

{𝑦} = {
𝑑𝑢

𝑑𝑥
𝜙 𝑤 𝜓}

𝑇

.

(13)

The coefficients matrices [𝐵
𝑖
]
4×4

and force vector {𝐹}
4×1

are as follows:



4 The Scientific World Journal

[𝐵
1
] =

[
[
[
[
[
[
[
[
[
[

[

0 0 0 0

0 (1 − 𝜐)
ℎ
3

12
𝑅 0 0

0 0 𝜇ℎ𝑅
𝜇ℎ

3

12

0 0
𝜇ℎ

3

12

𝜇ℎ
3

12
𝑅

]
]
]
]
]
]
]
]
]
]

]

,

[𝐵
2
] =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 (1 − 𝜐)
ℎ
3

12
0 0

(1 − 𝜐)
ℎ
3

12
(1 − 𝜐)

ℎ
2

12
(3𝑅

𝑑ℎ

𝑑𝑥
+ ℎ

𝑑𝑅

𝑑𝑥
) −𝜇ℎ𝑅 − (𝜇 − 2𝜐)

ℎ
3

12

0 𝜇ℎ𝑅 𝜇(𝑅
𝑑ℎ

𝑑𝑥
+ ℎ

𝑑𝑅

𝑑𝑥
)

𝜇ℎ
2

4

𝑑ℎ

𝑑𝑥

0 (𝜇 − 2𝜐)
ℎ
3

12

𝜇ℎ
2

4

𝑑ℎ

𝑑𝑥

𝜇ℎ
2

12
(3𝑅

𝑑ℎ

𝑑𝑥
+ ℎ

𝑑𝑅

𝑑𝑥
)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

[𝐵
3
] =

[
[
[
[
[
[
[
[

[

(1 − 𝜐) ℎ𝑅 0 𝜐ℎ 𝜐ℎ𝑅

(1 − 𝜐)
ℎ
2

4

𝑑ℎ

𝑑𝑥
−𝜇ℎ𝑅 0

Vℎ2

2

𝑑ℎ

𝑑𝑥

−𝜐ℎ 𝜇(𝑅
𝑑ℎ

𝑑𝑥
+ ℎ

𝑑𝑅

𝑑𝑥
) − (1 − 𝜐) 𝛼 −ℎ + (1 − 𝜐) 𝛼𝑅

−𝜐ℎ𝑅
𝜇ℎ

2

4

𝑑ℎ

𝑑𝑥
−ℎ + (1 − 𝜐) 𝛼𝑅 − (1 − 𝜐) 𝛼𝑅

2

]
]
]
]
]
]
]
]

]

,

{𝐹} =
1

𝜆

{{{{{{{

{{{{{{{

{

𝐶
0

0

−𝑃(𝑅 −
ℎ

2
) −

𝜌𝜔
2

6

ℎ

2
(12𝑅

2
+ ℎ

2
)

𝑃
ℎ

2
(𝑅 −

ℎ

2
) −

𝜌𝜔
2

6
𝑅ℎ

3

}}}}}}}

}}}}}}}

}

,

(14)

where the parameters are as follows:

𝜇 =
5

12
(1 − 2𝜐) ,

𝛼 = ln(𝑅 + ℎ/2

𝑅 − ℎ/2
) .

(15)

The set of differential equations (13) is solved by pertur-
bation technique in [8]. In the next section, a new method is
presented for solving set of (11).

3. Solution with Disk Form Multilayers

In this method, the thick cylinder with variable thickness is
divided into disk layers with constant height ℎ (Figure 2).

Therefore, the governing equations convert to nonho-
mogeneous set of differential equations with constant coef-
ficients. 𝑥[𝑘] and 𝑅[𝑘] are length and radius of middle of disks.
𝑘 is number of disks. The modulus of elasticity and Poisson’s
ratio of disks are assumed be constant.

The length of middle of an arbitrary disk (Figure 3) is as
follows:

𝑥
[𝑘]

= (𝑘 −
1

2
)
𝐿

𝑛
,

(𝑥
[𝑘]
−
𝑡

2
) ≤ 𝑥 ≤ (𝑥

[𝑘]
+
𝑡

2
) ,

𝑡 =
𝐿

𝑛
,

(16)

where 𝑛 is the number of disks and 𝑘 is the corresponding
number given to each disk.

The radius of middle point of each disk is as follows:

𝑅
[𝑘]

= 𝑟
𝑖
+
ℎ
[𝑘]

2
,

ℎ
[𝑘]

= 𝑎 − tan (𝛽) 𝑥[𝑘].
(17)

Thus,

(
𝑑ℎ

𝑑𝑥
)

[𝑘]

= 2(
𝑑𝑅

𝑑𝑥
)

[𝑘]

= − tan𝛽. (18)



The Scientific World Journal 5

Considering shear stress and based on FSDT, nonhomoge-
neous set of ordinary differential equations with constant
coefficient of each disk is obtained:

[𝐵
1
]
[𝑘] 𝑑

2

𝑑𝑥
2
{𝑦}

[𝑘]
+ [𝐵

2
]
[𝑘] 𝑑

𝑑𝑥
{𝑦}

[𝑘]
+ [𝐵

3
]
[𝑘]
{𝑦}

[𝑘]
= {𝐹}

[𝑘]
,

{𝑦}
[𝑘]

= {(
𝑑𝑢

𝑑𝑥
)

[𝑘]

𝜙
[𝑘]

𝑤
[𝑘]

𝜓
[𝑘]}

𝑇

.

(19)

The coefficients matrices [𝐵
𝑖
]
[𝑘]

4×4
and force vector {𝐹}𝑘

4×1

are as follows:

[𝐵1]
[𝑘]

=

[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0

0 (1 − 𝜐)

(ℎ
[𝑘]
)
3

12
𝑅
[𝑘]

0 0

0 0 𝜇ℎ
[𝑘]
𝑅
[𝑘]

𝜇(ℎ
[𝑘]
)
3

12

0 0

𝜇(ℎ
[𝑘]
)
3

12

𝜇(ℎ
[𝑘]
)
3

12
𝑅
[𝑘]

]
]
]
]
]
]
]
]
]
]
]
]

]

,

[𝐵2]
[𝑘]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 (1 − 𝜐)

(ℎ
[𝑘]
)
3

12
0 0

(1 − 𝜐)

(ℎ
[𝑘]
)
3

12
− (1 − 𝜐)

(ℎ
[𝑘]
)
2

24
(6𝑅

[𝑘]
+ ℎ

[𝑘]
) tan𝛽 −𝜇ℎ

[𝑘]
𝑅
[𝑘]

− (𝜇 − 2𝜐)

(ℎ
[𝑘]
)
3

12

0 𝜇ℎ
[𝑘]
𝑅
[𝑘]

−𝜇(𝑅
[𝑘]

+
ℎ
[𝑘]

2
) tan𝛽 −

𝜇(ℎ
[𝑘]
)
2

4
tan𝛽

0 (𝜇 − 2𝜐)

(ℎ
[𝑘]
)
3

12
−

𝜇(ℎ
[𝑘]
)
2

4
tan𝛽 −

𝜇(ℎ
[𝑘]
)
2

24
(6𝑅

[𝑘]
+ ℎ

[𝑘]
) tan𝛽

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

[𝐵3]
[𝑘]

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

(1 − 𝜐) ℎ
[𝑘]
𝑅
[𝑘]

0 𝜐ℎ
[𝑘]

𝜐ℎ
[𝑘]
𝑅
[𝑘]

− (1 − 𝜐)

(ℎ
[𝑘]
)
2

4
tan𝛽 −𝜇ℎ

[𝑘]
𝑅
[𝑘]

0 −

𝜐(ℎ
[𝑘]
)
2

2
tan𝛽

−𝜐ℎ
[𝑘]

−𝜇(𝑅
[𝑘]

+
ℎ
[𝑘]

2
) tan𝛽 − (1 − 𝜐) 𝛼

[𝑘]
−ℎ

[𝑘]
+ (1 − 𝜐) 𝛼

[𝑘]
𝑅
[𝑘]

−𝜐ℎ
[𝑘]
𝑅
[𝑘]

−

𝜇(ℎ
[𝑘]
)
2

4
tan𝛽 −ℎ

[𝑘]
+ (1 − 𝜐) 𝛼

[𝑘]
𝑅
[𝑘]

− (1 − 𝜐) 𝛼
[𝑘]
(𝑅

[𝑘]
)
2

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

{𝐹}
[𝑘]

=
1

𝜆

{{{{{{{{

{{{{{{{{

{

𝐶0
0

−𝑃(𝑅
[𝑘]

−
ℎ
[𝑘]

2
) −

𝜌𝜔
2

6

ℎ
[𝑘]

2
(12 (𝑅

[𝑘]
) + (ℎ

[𝑘]
)
2

)

𝑃
ℎ
[𝑘]

2
(𝑅

[𝑘]
−
ℎ
[𝑘]

2
) −

𝜌𝜔
2

6
(ℎ

[𝑘]
)
3

𝑅
[𝑘]

}}}}}}}}

}}}}}}}}

}

,

(20)

where the parameters are as follows:

𝜇 =
5

12
(1 − 2𝜐) ,

𝛼
[𝑘]

= ln(𝑅
[𝑘]

+ ℎ
[𝑘]
/2

𝑅[𝑘] − ℎ[𝑘]/2
) .

(21)

Defining the differential operator 𝑃(𝐷), (19) is written as

[𝑃 (𝑑)]
[𝑘]

= [𝐵
1
]
[𝑘]
𝐷
2
+ [𝐵

2
]
[𝑘]
𝐷 + [𝐵

3
]
[𝑘]
,

𝐷
2
=

𝑑
2

𝑑𝑥
2
, 𝐷 =

𝑑

𝑑𝑥
.

(22)

Thus

[𝑃 (𝐷)]
[𝑘]
{𝑦}

[𝑘]
= {𝐹}

[𝑘]
. (23)

The above differential equation has the total solution
including general solution for homogeneous case {𝑦}[𝑘]

ℎ
and

particular solution {𝑦}[𝑘]
𝑃

as follows:

{𝑦}
[𝑘]

= {𝑦}
[𝑘]

ℎ
+ {𝑦}

[𝑘]

𝑃
. (24)

For the general solution for homogeneous case,
{𝑦}

[𝑘]

ℎ
= {𝑉}

[𝑘]
𝑒
𝑚
[𝑘]𝑥 is substituted in [𝑃(𝐷)][𝑘]{𝑦}[𝑘] = 0.

We have


𝑚
2
[𝐵

1
]
[𝑘]

+ 𝑚[𝐵
2
]
[𝑘]

+ [𝐵
3
]
[𝑘]

= 0. (25)
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Thus



𝐵
11

𝐵
12

𝐵
13

𝐵
14

𝐵
21

𝐵
22

𝐵
23

𝐵
24

𝐵
31

𝐵
32

𝐵
33

𝐵
34

𝐵
41

𝐵
42

𝐵
43

𝐵
44



= 0,

𝐵
11
= (1 − 𝜐) ℎ

[𝑘]
𝑅
[𝑘]
,

𝐵
12
= 𝑚 (1 − 𝜐)

(ℎ
[𝑘]
)
3

12
,

𝐵
13
= −𝐵

31
= 𝜐ℎ

[𝑘]
,

𝐵
14
= −𝐵

41
= 𝜐ℎ

[𝑘]
𝑅
[𝑘]
,

𝐵
21
= (1 − 𝜐)

(ℎ
[𝑘]
)
2

12
(𝑚ℎ

[𝑘]
− 3 tan𝛽) ,

𝐵
22
= (1 − 𝜐)

(ℎ
[𝑘]
)
2

24
[2𝑚

2
𝑅
[𝑘]
ℎ
[𝑘]

− 𝑚(6𝑅
[𝑘]

+ ℎ
[𝑘]
) tan𝛽]

− 𝜇ℎ
[𝑘]
𝑅
[𝑘]
,

𝐵
23
= −𝑚𝜇ℎ

[𝑘]
𝑅
[𝑘]
,

𝐵
24
= −

(ℎ
[𝑘]
)
2

12
[𝑚 (𝜇 − 2𝜐) ℎ

[𝑘]
+ 6𝜐 tan𝛽] ,

𝐵
32
= 𝜇[𝑚ℎ

[𝑘]
𝑅
[𝑘]

− (𝑅
[𝑘]

+
ℎ
[𝑘]

2
) tan𝛽] ,

𝐵
33
= 𝜇[𝑚

2
ℎ
[𝑘]
𝑅
[𝑘]

− 𝑚(𝑅
[𝑘]

+
ℎ
[𝑘]

2
) tan𝛽]

− (1 − 𝜐) 𝛼
[𝑘]
,

𝐵
34
= 𝐵

43
=
𝜇(ℎ

[𝑘]
)
2

12
[𝑚

2
(ℎ

[𝑘]
) − 3𝑚 tan𝛽]

− (ℎ
[𝑘]

− (1 − 𝜐) 𝛼
[𝑘]
𝑅
[𝑘]
) ,

𝐵
42
=
(ℎ

[𝑘]
)
2

12
(𝑚 (𝜇 − 2𝜐) ℎ

[𝑘]
− 3𝜇 tan𝛽) ,

𝐵
44
=
𝜇(ℎ

[𝑘]
)
2

24
[2𝑚

2
ℎ
[𝑘]
𝑅
[𝑘]

− 𝑚(6𝑅
[𝑘]

+ ℎ
[𝑘]
) tan𝛽]

− (1 − 𝜐) 𝛼
[𝑘]
(𝑅

[𝑘]
)
2

.

(26)

The result of the determinant above is a six-order poly-
nomial which is a function of 𝑚, the solution of which is
6 eigenvalues 𝑚

𝑖
. The eigenvalues are 3 pairs of conjugated

root. Substituting the calculated eigenvalues in the following
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Figure 2: Dividing of thick cylinder with variable thickness to disk
form multilayers.
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Figure 3: Geometry of an arbitrary disk layer.

equation, the corresponding eigenvectors {𝑉}
𝑖
are obtained as

follows:

[𝑚
2
[𝐵

1
]
[𝑘]

+ 𝑚[𝐵
2
]
[𝑘]

+ [𝐵
3
]
[𝑘]
] {𝑉}

[𝑘]
= 0. (27)

Therefore, the homogeneous solution for (23) is

{𝑦}
[𝑘]

ℎ
=

6

∑

𝑖=1

𝐶
[𝑘]

𝑖
{𝑉}

[𝑘]

𝑖
𝑒
𝑚
[𝑘]

𝑖
𝑥
. (28)

The particular solution is obtained as follows:

{𝑦}
[𝑘]

𝑝
= [[𝐵

3
]
[𝑘]
]
−1

{𝐹}
[𝑘]
. (29)

Therefore, the total solution for (23) is

{𝑦}
[𝑘]

=

6

∑

𝑖=1

𝐶
𝑖{𝑉}

[𝑘]

𝑖
𝑒
𝑚
[𝑘]

𝑖
𝑥
+ [[𝐵

3
]
[𝑘]
]
−1

{𝐹}
[𝑘]
. (30)
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In general, the problem for each disk consists of 8 un-
known values of 𝐶

𝑖
, including 𝐶

0
(first equation (11)), 𝐶

1
to

𝐶
6
(30), and 𝐶

7
(Equation 𝑢[𝑘] = ∫ (𝑑𝑢/𝑑𝑥)

[𝑘]
𝑑𝑥 + 𝐶

7
).

4. Boundary and Continuity Conditions

In this problem, the boundary conditions of cylinder are
clamped-clamped ends; then we have

{{{

{{{

{

𝑢

𝜙

𝑤

𝜓

}}}

}}}

}𝑥=0

=

{{{

{{{

{

𝑢

𝜙

𝑤

𝜓

}}}

}}}

}𝑥=𝐿

=

{{{

{{{

{

0

0

0

0

}}}

}}}

}

. (31)

Therefore,

{
𝑈
𝑥 (𝑥, 𝑧)

𝑈
𝑧 (𝑥, 𝑧)

}

𝑥=0,𝐿

= {
0

0
} . (32)

Because of continuity and homogeneity of the cylinder, at the
boundary between two layers, forces, stresses and displace-
ments must be continuous. Given that shear deformation
theory applied is an approximation of one order and also all
equations related to the stresses include the first derivatives
of displacement, the continuity conditions are as follows:

{

{

{

𝑈
[𝑘−1]

𝑥
(𝑥, 𝑧)

𝑈
[𝑘−1]

𝑧
(𝑥, 𝑧)

}

}

}𝑥=𝑥
[𝑘−1]

+𝑡/2

=
{

{

{

𝑈
[𝑘]

𝑥
(𝑥, 𝑧)

𝑈
[𝑘]

𝑧
(𝑥, 𝑧)

}

}

}𝑥=𝑥
[𝑘]
−𝑡/2

,

{

{

{

𝑈
[𝑘]

𝑥
(𝑥, 𝑧)

𝑈
[𝑘]

𝑧
(𝑥, 𝑧)

}

}

}𝑥=𝑥
[𝑘]
+𝑡/2

=
{

{

{

𝑈
[𝑘+1]

𝑥
(𝑥, 𝑧)

𝑈
[𝑘+1]

𝑧
(𝑥, 𝑧)

}

}

}𝑥=𝑥
[𝑘+1]

−𝑡/2

,

{{{{

{{{{

{

𝑑𝑈
[𝑘−1]

𝑥
(𝑥, 𝑧)

𝑑𝑥

𝑑𝑈
[𝑘−1]

𝑧
(𝑥, 𝑧)

𝑑𝑥

}}}}

}}}}

}𝑥=𝑥
[𝑘−1]

+𝑡/2

=

{{{{

{{{{

{

𝑑𝑈
[𝑘]

𝑥
(𝑥, 𝑧)

𝑑𝑥

𝑑𝑈
[𝑘]

𝑧
(𝑥, 𝑧)

𝑑𝑥

}}}}

}}}}

}𝑥=𝑥
[𝑘]
−𝑡/2

,

{{{{

{{{{

{

𝑑𝑈
[𝑘]

𝑥
(𝑥, 𝑧)

𝑑𝑥

𝑑𝑈
[𝑘]

𝑧
(𝑥, 𝑧)

𝑑𝑥

}}}}

}}}}

}𝑥=𝑥
[𝑘]
+𝑡/2

=

{{{{

{{{{

{

𝑑𝑈
[𝑘+1]

𝑥
(𝑥, 𝑧)

𝑑𝑥

𝑑𝑈
[𝑘+1]

𝑧
(𝑥, 𝑧)

𝑑𝑥

}}}}

}}}}

}𝑥=𝑥
[𝑘+1]

−𝑡/2

.

(33)

Given the continuity conditions, in terms of 𝑧, 8 equations
are obtained. In general, if the cylinder is divided into 𝑛

disk layers, 8(𝑛 − 1) equations are obtained. Using the 8
equations of boundary condition, 8𝑛 equations are obtained.
The solution of these equations yields 8𝑛 unknown constants.

5. Results and Discussion

A cylindrical shell with 𝑟
𝑖
= 40mm, 𝑎 = 20mm, 𝑏 =

10mm, and 𝐿 = 800mm will be considered in this paper.
For analytical and numerical results the properties used are
𝐸 = 200GPa and 𝜐 = 0.3. The applied internal pressure is
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Figure 4: Effect of the number of disk layers on the radial
displacement.

80MPa.The thick cylindrical shell with variable thickness has
clamped-clamped boundary conditions.

The effect of the number of disk layers on the radial
displacement is shown in Figure 4. It is observed that if the
number of disk layers is less than 50, it will have a significant
effect on the response. However, if the number of layers is
more than 60 disks, therewill be no significant effect on radial
displacement. In the problem in question 75 disks are used.

In Figures 5, 6, 7, and 8, displacement and stress dis-
tributions are obtained using multilayer method (ML), are
compared with the solutions of FEM, and are presented in
the form of graphs. Figures 5 to 8 show that the disk layer
method based on FSDThas an acceptable amount of accuracy
when one wants to obtain radial displacement, radial stress,
circumferential stress, and shear stress.

The distribution of radial displacement at different layers
is plotted in Figure 8. The radial displacement at points
away from the boundaries depends on radius and length.
According to Figure 8 the change in radial displacements in
the lower boundary is greater than that of the upper boundary
and the greatest radial displacement occurs in the internal
surface (𝑧 = −ℎ/2).

Distribution of circumferential stress in different layers
is shown in Figure 9. The circumferential stress at all points
depends on radius and length. The circumferential stress at
layers close to the external surface is negative and at other
layers positive. The greatest circumferential stress occurs in
the internal surface.

Figure 10 shows the distribution of shear stress at different
layers. The shear stress at points away from the boundaries
at different layers is the same and trivial. However, at points
near the boundaries, the stress is significant, especially in the
internal surface, which is the greatest.

The effects of angular velocity𝜔 on the distribution of the
stresses and radial displacement are presented in Figures 11–
13.

Figures 11 and 12 indicate radial displacement and circum-
ferential stress rise with increasing angular velocity. Also for
the angular speed less than 500 rad/s, the centrifugal force is
less effective than the internal pressure.
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According to Figure 13, the shear stress is independent of
the centrifugal force. Also, it is noted that the shear stress at
points away from the boundaries is zero.
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6. Conclusions

In the present study, we have the following.

(1) Based on FSDT and elasticity theory, the governing
equations of thick-walled disks are derived.
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(2) A thick cylindrical shell with variable thickness is
divided into disks with constant height.

(3) With considering continuity between layers and
applying boundary conditions, the governing set of
differential equations with constant coefficients is
solved.

(4) The results obtained for stresses and displacements
are compared with the solutions carried out through
the FEM. Good agreement was found among the
results.

Adventures of the semi-analytical using disk form multi-
layers are as follows.

(i) First shear deformation theory and perturbation the-
ory result in the analytical solution of the problem
with higher accuracy and within a shorter period of
time.

(ii) The solutions are complicated and time consuming.
(iii) The shells with different geometries, and different

loadings, and different boundary conditions, with
even variable pressure, could be more easily solved.

(iv) The method is very suitable for the purpose of cal-
culation of radial stress, circumferential stress, shear
stress, and radial displacement.
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Figure 13: Shear stress distribution in middle layers.

Finally, in spite of the existing analyticalmethods, due to their
complex mathematical relations governing them, could not
easily solve them.Therefore, themultilayer disk formmethod
could be a good replacement for the analysis of thick-walled
shells.
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